blob: 99a1c2e6e2e8b39d8c100c526ee1d718014b7f2e [file] [log] [blame]
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright © 2010-2015 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15#include <common.h>
16#include <asm/io.h>
17#include <memalign.h>
18#include <nand.h>
19#include <clk.h>
Simon Glass9bc15642020-02-03 07:36:16 -070020#include <dm/device_compat.h>
Simon Glassd66c5f72020-02-03 07:36:15 -070021#include <dm/devres.h>
Simon Glass4dcacfc2020-05-10 11:40:13 -060022#include <linux/bitops.h>
Simon Glassc06c1be2020-05-10 11:40:08 -060023#include <linux/bug.h>
Simon Glassd66c5f72020-02-03 07:36:15 -070024#include <linux/err.h>
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +010025#include <linux/ioport.h>
26#include <linux/completion.h>
27#include <linux/errno.h>
28#include <linux/log2.h>
29#include <asm/processor.h>
30#include <dm.h>
31
32#include "brcmnand.h"
33#include "brcmnand_compat.h"
34
35/*
36 * This flag controls if WP stays on between erase/write commands to mitigate
37 * flash corruption due to power glitches. Values:
38 * 0: NAND_WP is not used or not available
39 * 1: NAND_WP is set by default, cleared for erase/write operations
40 * 2: NAND_WP is always cleared
41 */
42static int wp_on = 1;
43module_param(wp_on, int, 0444);
44
45/***********************************************************************
46 * Definitions
47 ***********************************************************************/
48
49#define DRV_NAME "brcmnand"
50
51#define CMD_NULL 0x00
52#define CMD_PAGE_READ 0x01
53#define CMD_SPARE_AREA_READ 0x02
54#define CMD_STATUS_READ 0x03
55#define CMD_PROGRAM_PAGE 0x04
56#define CMD_PROGRAM_SPARE_AREA 0x05
57#define CMD_COPY_BACK 0x06
58#define CMD_DEVICE_ID_READ 0x07
59#define CMD_BLOCK_ERASE 0x08
60#define CMD_FLASH_RESET 0x09
61#define CMD_BLOCKS_LOCK 0x0a
62#define CMD_BLOCKS_LOCK_DOWN 0x0b
63#define CMD_BLOCKS_UNLOCK 0x0c
64#define CMD_READ_BLOCKS_LOCK_STATUS 0x0d
65#define CMD_PARAMETER_READ 0x0e
66#define CMD_PARAMETER_CHANGE_COL 0x0f
67#define CMD_LOW_LEVEL_OP 0x10
68
69struct brcm_nand_dma_desc {
70 u32 next_desc;
71 u32 next_desc_ext;
72 u32 cmd_irq;
73 u32 dram_addr;
74 u32 dram_addr_ext;
75 u32 tfr_len;
76 u32 total_len;
77 u32 flash_addr;
78 u32 flash_addr_ext;
79 u32 cs;
80 u32 pad2[5];
81 u32 status_valid;
82} __packed;
83
84/* Bitfields for brcm_nand_dma_desc::status_valid */
85#define FLASH_DMA_ECC_ERROR (1 << 8)
86#define FLASH_DMA_CORR_ERROR (1 << 9)
87
88/* 512B flash cache in the NAND controller HW */
89#define FC_SHIFT 9U
90#define FC_BYTES 512U
91#define FC_WORDS (FC_BYTES >> 2)
92
93#define BRCMNAND_MIN_PAGESIZE 512
94#define BRCMNAND_MIN_BLOCKSIZE (8 * 1024)
95#define BRCMNAND_MIN_DEVSIZE (4ULL * 1024 * 1024)
96
97#define NAND_CTRL_RDY (INTFC_CTLR_READY | INTFC_FLASH_READY)
98#define NAND_POLL_STATUS_TIMEOUT_MS 100
99
100/* Controller feature flags */
101enum {
102 BRCMNAND_HAS_1K_SECTORS = BIT(0),
103 BRCMNAND_HAS_PREFETCH = BIT(1),
104 BRCMNAND_HAS_CACHE_MODE = BIT(2),
105 BRCMNAND_HAS_WP = BIT(3),
106};
107
108struct brcmnand_controller {
109#ifndef __UBOOT__
110 struct device *dev;
111#else
112 struct udevice *dev;
113#endif /* __UBOOT__ */
114 struct nand_hw_control controller;
115 void __iomem *nand_base;
116 void __iomem *nand_fc; /* flash cache */
117 void __iomem *flash_dma_base;
118 unsigned int irq;
119 unsigned int dma_irq;
120 int nand_version;
Philippe Reynes7f28cf62019-03-15 15:14:37 +0100121 int parameter_page_big_endian;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100122
123 /* Some SoCs provide custom interrupt status register(s) */
124 struct brcmnand_soc *soc;
125
126 /* Some SoCs have a gateable clock for the controller */
127 struct clk *clk;
128
129 int cmd_pending;
130 bool dma_pending;
131 struct completion done;
132 struct completion dma_done;
133
134 /* List of NAND hosts (one for each chip-select) */
135 struct list_head host_list;
136
137 struct brcm_nand_dma_desc *dma_desc;
138 dma_addr_t dma_pa;
139
140 /* in-memory cache of the FLASH_CACHE, used only for some commands */
141 u8 flash_cache[FC_BYTES];
142
143 /* Controller revision details */
144 const u16 *reg_offsets;
145 unsigned int reg_spacing; /* between CS1, CS2, ... regs */
146 const u8 *cs_offsets; /* within each chip-select */
147 const u8 *cs0_offsets; /* within CS0, if different */
148 unsigned int max_block_size;
149 const unsigned int *block_sizes;
150 unsigned int max_page_size;
151 const unsigned int *page_sizes;
152 unsigned int max_oob;
153 u32 features;
154
155 /* for low-power standby/resume only */
156 u32 nand_cs_nand_select;
157 u32 nand_cs_nand_xor;
158 u32 corr_stat_threshold;
159 u32 flash_dma_mode;
160};
161
162struct brcmnand_cfg {
163 u64 device_size;
164 unsigned int block_size;
165 unsigned int page_size;
166 unsigned int spare_area_size;
167 unsigned int device_width;
168 unsigned int col_adr_bytes;
169 unsigned int blk_adr_bytes;
170 unsigned int ful_adr_bytes;
171 unsigned int sector_size_1k;
172 unsigned int ecc_level;
173 /* use for low-power standby/resume only */
174 u32 acc_control;
175 u32 config;
176 u32 config_ext;
177 u32 timing_1;
178 u32 timing_2;
179};
180
181struct brcmnand_host {
182 struct list_head node;
183
184 struct nand_chip chip;
185#ifndef __UBOOT__
186 struct platform_device *pdev;
187#else
188 struct udevice *pdev;
189#endif /* __UBOOT__ */
190 int cs;
191
192 unsigned int last_cmd;
193 unsigned int last_byte;
194 u64 last_addr;
195 struct brcmnand_cfg hwcfg;
196 struct brcmnand_controller *ctrl;
197};
198
199enum brcmnand_reg {
200 BRCMNAND_CMD_START = 0,
201 BRCMNAND_CMD_EXT_ADDRESS,
202 BRCMNAND_CMD_ADDRESS,
203 BRCMNAND_INTFC_STATUS,
204 BRCMNAND_CS_SELECT,
205 BRCMNAND_CS_XOR,
206 BRCMNAND_LL_OP,
207 BRCMNAND_CS0_BASE,
208 BRCMNAND_CS1_BASE, /* CS1 regs, if non-contiguous */
209 BRCMNAND_CORR_THRESHOLD,
210 BRCMNAND_CORR_THRESHOLD_EXT,
211 BRCMNAND_UNCORR_COUNT,
212 BRCMNAND_CORR_COUNT,
213 BRCMNAND_CORR_EXT_ADDR,
214 BRCMNAND_CORR_ADDR,
215 BRCMNAND_UNCORR_EXT_ADDR,
216 BRCMNAND_UNCORR_ADDR,
217 BRCMNAND_SEMAPHORE,
218 BRCMNAND_ID,
219 BRCMNAND_ID_EXT,
220 BRCMNAND_LL_RDATA,
221 BRCMNAND_OOB_READ_BASE,
222 BRCMNAND_OOB_READ_10_BASE, /* offset 0x10, if non-contiguous */
223 BRCMNAND_OOB_WRITE_BASE,
224 BRCMNAND_OOB_WRITE_10_BASE, /* offset 0x10, if non-contiguous */
225 BRCMNAND_FC_BASE,
226};
227
228/* BRCMNAND v4.0 */
229static const u16 brcmnand_regs_v40[] = {
230 [BRCMNAND_CMD_START] = 0x04,
231 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
232 [BRCMNAND_CMD_ADDRESS] = 0x0c,
233 [BRCMNAND_INTFC_STATUS] = 0x6c,
234 [BRCMNAND_CS_SELECT] = 0x14,
235 [BRCMNAND_CS_XOR] = 0x18,
236 [BRCMNAND_LL_OP] = 0x178,
237 [BRCMNAND_CS0_BASE] = 0x40,
238 [BRCMNAND_CS1_BASE] = 0xd0,
239 [BRCMNAND_CORR_THRESHOLD] = 0x84,
240 [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
241 [BRCMNAND_UNCORR_COUNT] = 0,
242 [BRCMNAND_CORR_COUNT] = 0,
243 [BRCMNAND_CORR_EXT_ADDR] = 0x70,
244 [BRCMNAND_CORR_ADDR] = 0x74,
245 [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
246 [BRCMNAND_UNCORR_ADDR] = 0x7c,
247 [BRCMNAND_SEMAPHORE] = 0x58,
248 [BRCMNAND_ID] = 0x60,
249 [BRCMNAND_ID_EXT] = 0x64,
250 [BRCMNAND_LL_RDATA] = 0x17c,
251 [BRCMNAND_OOB_READ_BASE] = 0x20,
252 [BRCMNAND_OOB_READ_10_BASE] = 0x130,
253 [BRCMNAND_OOB_WRITE_BASE] = 0x30,
254 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
255 [BRCMNAND_FC_BASE] = 0x200,
256};
257
258/* BRCMNAND v5.0 */
259static const u16 brcmnand_regs_v50[] = {
260 [BRCMNAND_CMD_START] = 0x04,
261 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
262 [BRCMNAND_CMD_ADDRESS] = 0x0c,
263 [BRCMNAND_INTFC_STATUS] = 0x6c,
264 [BRCMNAND_CS_SELECT] = 0x14,
265 [BRCMNAND_CS_XOR] = 0x18,
266 [BRCMNAND_LL_OP] = 0x178,
267 [BRCMNAND_CS0_BASE] = 0x40,
268 [BRCMNAND_CS1_BASE] = 0xd0,
269 [BRCMNAND_CORR_THRESHOLD] = 0x84,
270 [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
271 [BRCMNAND_UNCORR_COUNT] = 0,
272 [BRCMNAND_CORR_COUNT] = 0,
273 [BRCMNAND_CORR_EXT_ADDR] = 0x70,
274 [BRCMNAND_CORR_ADDR] = 0x74,
275 [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
276 [BRCMNAND_UNCORR_ADDR] = 0x7c,
277 [BRCMNAND_SEMAPHORE] = 0x58,
278 [BRCMNAND_ID] = 0x60,
279 [BRCMNAND_ID_EXT] = 0x64,
280 [BRCMNAND_LL_RDATA] = 0x17c,
281 [BRCMNAND_OOB_READ_BASE] = 0x20,
282 [BRCMNAND_OOB_READ_10_BASE] = 0x130,
283 [BRCMNAND_OOB_WRITE_BASE] = 0x30,
284 [BRCMNAND_OOB_WRITE_10_BASE] = 0x140,
285 [BRCMNAND_FC_BASE] = 0x200,
286};
287
288/* BRCMNAND v6.0 - v7.1 */
289static const u16 brcmnand_regs_v60[] = {
290 [BRCMNAND_CMD_START] = 0x04,
291 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
292 [BRCMNAND_CMD_ADDRESS] = 0x0c,
293 [BRCMNAND_INTFC_STATUS] = 0x14,
294 [BRCMNAND_CS_SELECT] = 0x18,
295 [BRCMNAND_CS_XOR] = 0x1c,
296 [BRCMNAND_LL_OP] = 0x20,
297 [BRCMNAND_CS0_BASE] = 0x50,
298 [BRCMNAND_CS1_BASE] = 0,
299 [BRCMNAND_CORR_THRESHOLD] = 0xc0,
300 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xc4,
301 [BRCMNAND_UNCORR_COUNT] = 0xfc,
302 [BRCMNAND_CORR_COUNT] = 0x100,
303 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
304 [BRCMNAND_CORR_ADDR] = 0x110,
305 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
306 [BRCMNAND_UNCORR_ADDR] = 0x118,
307 [BRCMNAND_SEMAPHORE] = 0x150,
308 [BRCMNAND_ID] = 0x194,
309 [BRCMNAND_ID_EXT] = 0x198,
310 [BRCMNAND_LL_RDATA] = 0x19c,
311 [BRCMNAND_OOB_READ_BASE] = 0x200,
312 [BRCMNAND_OOB_READ_10_BASE] = 0,
313 [BRCMNAND_OOB_WRITE_BASE] = 0x280,
314 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
315 [BRCMNAND_FC_BASE] = 0x400,
316};
317
318/* BRCMNAND v7.1 */
319static const u16 brcmnand_regs_v71[] = {
320 [BRCMNAND_CMD_START] = 0x04,
321 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
322 [BRCMNAND_CMD_ADDRESS] = 0x0c,
323 [BRCMNAND_INTFC_STATUS] = 0x14,
324 [BRCMNAND_CS_SELECT] = 0x18,
325 [BRCMNAND_CS_XOR] = 0x1c,
326 [BRCMNAND_LL_OP] = 0x20,
327 [BRCMNAND_CS0_BASE] = 0x50,
328 [BRCMNAND_CS1_BASE] = 0,
329 [BRCMNAND_CORR_THRESHOLD] = 0xdc,
330 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
331 [BRCMNAND_UNCORR_COUNT] = 0xfc,
332 [BRCMNAND_CORR_COUNT] = 0x100,
333 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
334 [BRCMNAND_CORR_ADDR] = 0x110,
335 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
336 [BRCMNAND_UNCORR_ADDR] = 0x118,
337 [BRCMNAND_SEMAPHORE] = 0x150,
338 [BRCMNAND_ID] = 0x194,
339 [BRCMNAND_ID_EXT] = 0x198,
340 [BRCMNAND_LL_RDATA] = 0x19c,
341 [BRCMNAND_OOB_READ_BASE] = 0x200,
342 [BRCMNAND_OOB_READ_10_BASE] = 0,
343 [BRCMNAND_OOB_WRITE_BASE] = 0x280,
344 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
345 [BRCMNAND_FC_BASE] = 0x400,
346};
347
348/* BRCMNAND v7.2 */
349static const u16 brcmnand_regs_v72[] = {
350 [BRCMNAND_CMD_START] = 0x04,
351 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
352 [BRCMNAND_CMD_ADDRESS] = 0x0c,
353 [BRCMNAND_INTFC_STATUS] = 0x14,
354 [BRCMNAND_CS_SELECT] = 0x18,
355 [BRCMNAND_CS_XOR] = 0x1c,
356 [BRCMNAND_LL_OP] = 0x20,
357 [BRCMNAND_CS0_BASE] = 0x50,
358 [BRCMNAND_CS1_BASE] = 0,
359 [BRCMNAND_CORR_THRESHOLD] = 0xdc,
360 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
361 [BRCMNAND_UNCORR_COUNT] = 0xfc,
362 [BRCMNAND_CORR_COUNT] = 0x100,
363 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
364 [BRCMNAND_CORR_ADDR] = 0x110,
365 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
366 [BRCMNAND_UNCORR_ADDR] = 0x118,
367 [BRCMNAND_SEMAPHORE] = 0x150,
368 [BRCMNAND_ID] = 0x194,
369 [BRCMNAND_ID_EXT] = 0x198,
370 [BRCMNAND_LL_RDATA] = 0x19c,
371 [BRCMNAND_OOB_READ_BASE] = 0x200,
372 [BRCMNAND_OOB_READ_10_BASE] = 0,
373 [BRCMNAND_OOB_WRITE_BASE] = 0x400,
374 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
375 [BRCMNAND_FC_BASE] = 0x600,
376};
377
378enum brcmnand_cs_reg {
379 BRCMNAND_CS_CFG_EXT = 0,
380 BRCMNAND_CS_CFG,
381 BRCMNAND_CS_ACC_CONTROL,
382 BRCMNAND_CS_TIMING1,
383 BRCMNAND_CS_TIMING2,
384};
385
386/* Per chip-select offsets for v7.1 */
387static const u8 brcmnand_cs_offsets_v71[] = {
388 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
389 [BRCMNAND_CS_CFG_EXT] = 0x04,
390 [BRCMNAND_CS_CFG] = 0x08,
391 [BRCMNAND_CS_TIMING1] = 0x0c,
392 [BRCMNAND_CS_TIMING2] = 0x10,
393};
394
395/* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
396static const u8 brcmnand_cs_offsets[] = {
397 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
398 [BRCMNAND_CS_CFG_EXT] = 0x04,
399 [BRCMNAND_CS_CFG] = 0x04,
400 [BRCMNAND_CS_TIMING1] = 0x08,
401 [BRCMNAND_CS_TIMING2] = 0x0c,
402};
403
404/* Per chip-select offset for <= v5.0 on CS0 only */
405static const u8 brcmnand_cs_offsets_cs0[] = {
406 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
407 [BRCMNAND_CS_CFG_EXT] = 0x08,
408 [BRCMNAND_CS_CFG] = 0x08,
409 [BRCMNAND_CS_TIMING1] = 0x10,
410 [BRCMNAND_CS_TIMING2] = 0x14,
411};
412
413/*
414 * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
415 * one config register, but once the bitfields overflowed, newer controllers
416 * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
417 */
418enum {
419 CFG_BLK_ADR_BYTES_SHIFT = 8,
420 CFG_COL_ADR_BYTES_SHIFT = 12,
421 CFG_FUL_ADR_BYTES_SHIFT = 16,
422 CFG_BUS_WIDTH_SHIFT = 23,
423 CFG_BUS_WIDTH = BIT(CFG_BUS_WIDTH_SHIFT),
424 CFG_DEVICE_SIZE_SHIFT = 24,
425
426 /* Only for pre-v7.1 (with no CFG_EXT register) */
427 CFG_PAGE_SIZE_SHIFT = 20,
428 CFG_BLK_SIZE_SHIFT = 28,
429
430 /* Only for v7.1+ (with CFG_EXT register) */
431 CFG_EXT_PAGE_SIZE_SHIFT = 0,
432 CFG_EXT_BLK_SIZE_SHIFT = 4,
433};
434
435/* BRCMNAND_INTFC_STATUS */
436enum {
437 INTFC_FLASH_STATUS = GENMASK(7, 0),
438
439 INTFC_ERASED = BIT(27),
440 INTFC_OOB_VALID = BIT(28),
441 INTFC_CACHE_VALID = BIT(29),
442 INTFC_FLASH_READY = BIT(30),
443 INTFC_CTLR_READY = BIT(31),
444};
445
446static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
447{
448 return brcmnand_readl(ctrl->nand_base + offs);
449}
450
451static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
452 u32 val)
453{
454 brcmnand_writel(val, ctrl->nand_base + offs);
455}
456
457static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
458{
459 static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
460 static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
461 static const unsigned int page_sizes[] = { 512, 2048, 4096, 8192, 0 };
462
463 ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
464
465 /* Only support v4.0+? */
466 if (ctrl->nand_version < 0x0400) {
467 dev_err(ctrl->dev, "version %#x not supported\n",
468 ctrl->nand_version);
469 return -ENODEV;
470 }
471
472 /* Register offsets */
473 if (ctrl->nand_version >= 0x0702)
474 ctrl->reg_offsets = brcmnand_regs_v72;
475 else if (ctrl->nand_version >= 0x0701)
476 ctrl->reg_offsets = brcmnand_regs_v71;
477 else if (ctrl->nand_version >= 0x0600)
478 ctrl->reg_offsets = brcmnand_regs_v60;
479 else if (ctrl->nand_version >= 0x0500)
480 ctrl->reg_offsets = brcmnand_regs_v50;
481 else if (ctrl->nand_version >= 0x0400)
482 ctrl->reg_offsets = brcmnand_regs_v40;
483
484 /* Chip-select stride */
485 if (ctrl->nand_version >= 0x0701)
486 ctrl->reg_spacing = 0x14;
487 else
488 ctrl->reg_spacing = 0x10;
489
490 /* Per chip-select registers */
491 if (ctrl->nand_version >= 0x0701) {
492 ctrl->cs_offsets = brcmnand_cs_offsets_v71;
493 } else {
494 ctrl->cs_offsets = brcmnand_cs_offsets;
495
496 /* v5.0 and earlier has a different CS0 offset layout */
497 if (ctrl->nand_version <= 0x0500)
498 ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
499 }
500
501 /* Page / block sizes */
502 if (ctrl->nand_version >= 0x0701) {
503 /* >= v7.1 use nice power-of-2 values! */
504 ctrl->max_page_size = 16 * 1024;
505 ctrl->max_block_size = 2 * 1024 * 1024;
506 } else {
507 ctrl->page_sizes = page_sizes;
508 if (ctrl->nand_version >= 0x0600)
509 ctrl->block_sizes = block_sizes_v6;
510 else
511 ctrl->block_sizes = block_sizes_v4;
512
513 if (ctrl->nand_version < 0x0400) {
514 ctrl->max_page_size = 4096;
515 ctrl->max_block_size = 512 * 1024;
516 }
517 }
518
519 /* Maximum spare area sector size (per 512B) */
520 if (ctrl->nand_version >= 0x0702)
521 ctrl->max_oob = 128;
522 else if (ctrl->nand_version >= 0x0600)
523 ctrl->max_oob = 64;
524 else if (ctrl->nand_version >= 0x0500)
525 ctrl->max_oob = 32;
526 else
527 ctrl->max_oob = 16;
528
529 /* v6.0 and newer (except v6.1) have prefetch support */
530 if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
531 ctrl->features |= BRCMNAND_HAS_PREFETCH;
532
533 /*
534 * v6.x has cache mode, but it's implemented differently. Ignore it for
535 * now.
536 */
537 if (ctrl->nand_version >= 0x0700)
538 ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
539
540 if (ctrl->nand_version >= 0x0500)
541 ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
542
543 if (ctrl->nand_version >= 0x0700)
544 ctrl->features |= BRCMNAND_HAS_WP;
545#ifndef __UBOOT__
546 else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
547#else
548 else if (dev_read_bool(ctrl->dev, "brcm,nand-has-wp"))
549#endif /* __UBOOT__ */
550 ctrl->features |= BRCMNAND_HAS_WP;
551
552 return 0;
553}
554
555static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
556 enum brcmnand_reg reg)
557{
558 u16 offs = ctrl->reg_offsets[reg];
559
560 if (offs)
561 return nand_readreg(ctrl, offs);
562 else
563 return 0;
564}
565
566static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
567 enum brcmnand_reg reg, u32 val)
568{
569 u16 offs = ctrl->reg_offsets[reg];
570
571 if (offs)
572 nand_writereg(ctrl, offs, val);
573}
574
575static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
576 enum brcmnand_reg reg, u32 mask, unsigned
577 int shift, u32 val)
578{
579 u32 tmp = brcmnand_read_reg(ctrl, reg);
580
581 tmp &= ~mask;
582 tmp |= val << shift;
583 brcmnand_write_reg(ctrl, reg, tmp);
584}
585
586static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
587{
588 return __raw_readl(ctrl->nand_fc + word * 4);
589}
590
591static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
592 int word, u32 val)
593{
594 __raw_writel(val, ctrl->nand_fc + word * 4);
595}
596
597static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
598 enum brcmnand_cs_reg reg)
599{
600 u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
601 u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
602 u8 cs_offs;
603
604 if (cs == 0 && ctrl->cs0_offsets)
605 cs_offs = ctrl->cs0_offsets[reg];
606 else
607 cs_offs = ctrl->cs_offsets[reg];
608
609 if (cs && offs_cs1)
610 return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
611
612 return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
613}
614
615static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
616{
617 if (ctrl->nand_version < 0x0600)
618 return 1;
619 return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
620}
621
622static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
623{
624 struct brcmnand_controller *ctrl = host->ctrl;
625 unsigned int shift = 0, bits;
626 enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
627 int cs = host->cs;
628
629 if (ctrl->nand_version >= 0x0702)
630 bits = 7;
631 else if (ctrl->nand_version >= 0x0600)
632 bits = 6;
633 else if (ctrl->nand_version >= 0x0500)
634 bits = 5;
635 else
636 bits = 4;
637
638 if (ctrl->nand_version >= 0x0702) {
639 if (cs >= 4)
640 reg = BRCMNAND_CORR_THRESHOLD_EXT;
641 shift = (cs % 4) * bits;
642 } else if (ctrl->nand_version >= 0x0600) {
643 if (cs >= 5)
644 reg = BRCMNAND_CORR_THRESHOLD_EXT;
645 shift = (cs % 5) * bits;
646 }
647 brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
648}
649
650static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
651{
652 if (ctrl->nand_version < 0x0602)
653 return 24;
654 return 0;
655}
656
657/***********************************************************************
658 * NAND ACC CONTROL bitfield
659 *
660 * Some bits have remained constant throughout hardware revision, while
661 * others have shifted around.
662 ***********************************************************************/
663
664/* Constant for all versions (where supported) */
665enum {
666 /* See BRCMNAND_HAS_CACHE_MODE */
667 ACC_CONTROL_CACHE_MODE = BIT(22),
668
669 /* See BRCMNAND_HAS_PREFETCH */
670 ACC_CONTROL_PREFETCH = BIT(23),
671
672 ACC_CONTROL_PAGE_HIT = BIT(24),
673 ACC_CONTROL_WR_PREEMPT = BIT(25),
674 ACC_CONTROL_PARTIAL_PAGE = BIT(26),
675 ACC_CONTROL_RD_ERASED = BIT(27),
676 ACC_CONTROL_FAST_PGM_RDIN = BIT(28),
677 ACC_CONTROL_WR_ECC = BIT(30),
678 ACC_CONTROL_RD_ECC = BIT(31),
679};
680
681static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
682{
683 if (ctrl->nand_version >= 0x0702)
684 return GENMASK(7, 0);
685 else if (ctrl->nand_version >= 0x0600)
686 return GENMASK(6, 0);
687 else
688 return GENMASK(5, 0);
689}
690
691#define NAND_ACC_CONTROL_ECC_SHIFT 16
692#define NAND_ACC_CONTROL_ECC_EXT_SHIFT 13
693
694static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
695{
696 u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
697
698 mask <<= NAND_ACC_CONTROL_ECC_SHIFT;
699
700 /* v7.2 includes additional ECC levels */
701 if (ctrl->nand_version >= 0x0702)
702 mask |= 0x7 << NAND_ACC_CONTROL_ECC_EXT_SHIFT;
703
704 return mask;
705}
706
707static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
708{
709 struct brcmnand_controller *ctrl = host->ctrl;
710 u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
711 u32 acc_control = nand_readreg(ctrl, offs);
712 u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
713
714 if (en) {
715 acc_control |= ecc_flags; /* enable RD/WR ECC */
716 acc_control |= host->hwcfg.ecc_level
717 << NAND_ACC_CONTROL_ECC_SHIFT;
718 } else {
719 acc_control &= ~ecc_flags; /* disable RD/WR ECC */
720 acc_control &= ~brcmnand_ecc_level_mask(ctrl);
721 }
722
723 nand_writereg(ctrl, offs, acc_control);
724}
725
726static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
727{
728 if (ctrl->nand_version >= 0x0702)
729 return 9;
730 else if (ctrl->nand_version >= 0x0600)
731 return 7;
732 else if (ctrl->nand_version >= 0x0500)
733 return 6;
734 else
735 return -1;
736}
737
738static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
739{
740 struct brcmnand_controller *ctrl = host->ctrl;
741 int shift = brcmnand_sector_1k_shift(ctrl);
742 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
743 BRCMNAND_CS_ACC_CONTROL);
744
745 if (shift < 0)
746 return 0;
747
748 return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
749}
750
751static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
752{
753 struct brcmnand_controller *ctrl = host->ctrl;
754 int shift = brcmnand_sector_1k_shift(ctrl);
755 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
756 BRCMNAND_CS_ACC_CONTROL);
757 u32 tmp;
758
759 if (shift < 0)
760 return;
761
762 tmp = nand_readreg(ctrl, acc_control_offs);
763 tmp &= ~(1 << shift);
764 tmp |= (!!val) << shift;
765 nand_writereg(ctrl, acc_control_offs, tmp);
766}
767
768/***********************************************************************
769 * CS_NAND_SELECT
770 ***********************************************************************/
771
772enum {
773 CS_SELECT_NAND_WP = BIT(29),
774 CS_SELECT_AUTO_DEVICE_ID_CFG = BIT(30),
775};
776
777static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl,
778 u32 mask, u32 expected_val,
779 unsigned long timeout_ms)
780{
781#ifndef __UBOOT__
782 unsigned long limit;
783 u32 val;
784
785 if (!timeout_ms)
786 timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
787
788 limit = jiffies + msecs_to_jiffies(timeout_ms);
789 do {
790 val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
791 if ((val & mask) == expected_val)
792 return 0;
793
794 cpu_relax();
795 } while (time_after(limit, jiffies));
796#else
797 unsigned long base, limit;
798 u32 val;
799
800 if (!timeout_ms)
801 timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
802
803 base = get_timer(0);
804 limit = CONFIG_SYS_HZ * timeout_ms / 1000;
805 do {
806 val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
807 if ((val & mask) == expected_val)
808 return 0;
809
810 cpu_relax();
811 } while (get_timer(base) < limit);
812#endif /* __UBOOT__ */
813
814 dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
815 expected_val, val & mask);
816
817 return -ETIMEDOUT;
818}
819
820static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
821{
822 u32 val = en ? CS_SELECT_NAND_WP : 0;
823
824 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
825}
826
827/***********************************************************************
828 * Flash DMA
829 ***********************************************************************/
830
831enum flash_dma_reg {
832 FLASH_DMA_REVISION = 0x00,
833 FLASH_DMA_FIRST_DESC = 0x04,
834 FLASH_DMA_FIRST_DESC_EXT = 0x08,
835 FLASH_DMA_CTRL = 0x0c,
836 FLASH_DMA_MODE = 0x10,
837 FLASH_DMA_STATUS = 0x14,
838 FLASH_DMA_INTERRUPT_DESC = 0x18,
839 FLASH_DMA_INTERRUPT_DESC_EXT = 0x1c,
840 FLASH_DMA_ERROR_STATUS = 0x20,
841 FLASH_DMA_CURRENT_DESC = 0x24,
842 FLASH_DMA_CURRENT_DESC_EXT = 0x28,
843};
844
845static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
846{
847 return ctrl->flash_dma_base;
848}
849
850static inline bool flash_dma_buf_ok(const void *buf)
851{
852#ifndef __UBOOT__
853 return buf && !is_vmalloc_addr(buf) &&
854 likely(IS_ALIGNED((uintptr_t)buf, 4));
855#else
856 return buf && likely(IS_ALIGNED((uintptr_t)buf, 4));
857#endif /* __UBOOT__ */
858}
859
860static inline void flash_dma_writel(struct brcmnand_controller *ctrl, u8 offs,
861 u32 val)
862{
863 brcmnand_writel(val, ctrl->flash_dma_base + offs);
864}
865
866static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl, u8 offs)
867{
868 return brcmnand_readl(ctrl->flash_dma_base + offs);
869}
870
871/* Low-level operation types: command, address, write, or read */
872enum brcmnand_llop_type {
873 LL_OP_CMD,
874 LL_OP_ADDR,
875 LL_OP_WR,
876 LL_OP_RD,
877};
878
879/***********************************************************************
880 * Internal support functions
881 ***********************************************************************/
882
883static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
884 struct brcmnand_cfg *cfg)
885{
886 if (ctrl->nand_version <= 0x0701)
887 return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
888 cfg->ecc_level == 15;
889 else
890 return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
891 cfg->ecc_level == 15) ||
892 (cfg->spare_area_size == 28 && cfg->ecc_level == 16));
893}
894
895/*
William Zhang1100e492019-09-04 10:51:13 -0700896 * Returns a nand_ecclayout strucutre for the given layout/configuration.
897 * Returns NULL on failure.
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100898 */
William Zhang1100e492019-09-04 10:51:13 -0700899static struct nand_ecclayout *brcmnand_create_layout(int ecc_level,
900 struct brcmnand_host *host)
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100901{
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100902 struct brcmnand_cfg *cfg = &host->hwcfg;
William Zhang1100e492019-09-04 10:51:13 -0700903 int i, j;
904 struct nand_ecclayout *layout;
905 int req;
906 int sectors;
907 int sas;
908 int idx1, idx2;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100909
William Zhang1100e492019-09-04 10:51:13 -0700910#ifndef __UBOOT__
911 layout = devm_kzalloc(&host->pdev->dev, sizeof(*layout), GFP_KERNEL);
912#else
913 layout = devm_kzalloc(host->pdev, sizeof(*layout), GFP_KERNEL);
914#endif
915 if (!layout)
916 return NULL;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100917
William Zhang1100e492019-09-04 10:51:13 -0700918 sectors = cfg->page_size / (512 << cfg->sector_size_1k);
919 sas = cfg->spare_area_size << cfg->sector_size_1k;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100920
William Zhang1100e492019-09-04 10:51:13 -0700921 /* Hamming */
922 if (is_hamming_ecc(host->ctrl, cfg)) {
923 for (i = 0, idx1 = 0, idx2 = 0; i < sectors; i++) {
924 /* First sector of each page may have BBI */
925 if (i == 0) {
926 layout->oobfree[idx2].offset = i * sas + 1;
927 /* Small-page NAND use byte 6 for BBI */
928 if (cfg->page_size == 512)
929 layout->oobfree[idx2].offset--;
930 layout->oobfree[idx2].length = 5;
931 } else {
932 layout->oobfree[idx2].offset = i * sas;
933 layout->oobfree[idx2].length = 6;
934 }
935 idx2++;
936 layout->eccpos[idx1++] = i * sas + 6;
937 layout->eccpos[idx1++] = i * sas + 7;
938 layout->eccpos[idx1++] = i * sas + 8;
939 layout->oobfree[idx2].offset = i * sas + 9;
940 layout->oobfree[idx2].length = 7;
941 idx2++;
942 /* Leave zero-terminated entry for OOBFREE */
943 if (idx1 >= MTD_MAX_ECCPOS_ENTRIES_LARGE ||
944 idx2 >= MTD_MAX_OOBFREE_ENTRIES_LARGE - 1)
945 break;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100946 }
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100947
William Zhang1100e492019-09-04 10:51:13 -0700948 return layout;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100949 }
950
William Zhang1100e492019-09-04 10:51:13 -0700951 /*
952 * CONTROLLER_VERSION:
953 * < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
954 * >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
955 * But we will just be conservative.
956 */
957 req = DIV_ROUND_UP(ecc_level * 14, 8);
958 if (req >= sas) {
Sean Anderson4b5aa002020-09-15 10:44:50 -0400959 dev_err(host->pdev,
William Zhang1100e492019-09-04 10:51:13 -0700960 "error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
961 req, sas);
962 return NULL;
963 }
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100964
William Zhang1100e492019-09-04 10:51:13 -0700965 layout->eccbytes = req * sectors;
966 for (i = 0, idx1 = 0, idx2 = 0; i < sectors; i++) {
967 for (j = sas - req; j < sas && idx1 <
968 MTD_MAX_ECCPOS_ENTRIES_LARGE; j++, idx1++)
969 layout->eccpos[idx1] = i * sas + j;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100970
William Zhang1100e492019-09-04 10:51:13 -0700971 /* First sector of each page may have BBI */
972 if (i == 0) {
973 if (cfg->page_size == 512 && (sas - req >= 6)) {
974 /* Small-page NAND use byte 6 for BBI */
975 layout->oobfree[idx2].offset = 0;
976 layout->oobfree[idx2].length = 5;
977 idx2++;
978 if (sas - req > 6) {
979 layout->oobfree[idx2].offset = 6;
980 layout->oobfree[idx2].length =
981 sas - req - 6;
982 idx2++;
983 }
984 } else if (sas > req + 1) {
985 layout->oobfree[idx2].offset = i * sas + 1;
986 layout->oobfree[idx2].length = sas - req - 1;
987 idx2++;
988 }
989 } else if (sas > req) {
990 layout->oobfree[idx2].offset = i * sas;
991 layout->oobfree[idx2].length = sas - req;
992 idx2++;
993 }
994 /* Leave zero-terminated entry for OOBFREE */
995 if (idx1 >= MTD_MAX_ECCPOS_ENTRIES_LARGE ||
996 idx2 >= MTD_MAX_OOBFREE_ENTRIES_LARGE - 1)
997 break;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100998 }
999
William Zhang1100e492019-09-04 10:51:13 -07001000 return layout;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001001}
1002
William Zhang1100e492019-09-04 10:51:13 -07001003static struct nand_ecclayout *brcmstb_choose_ecc_layout(
1004 struct brcmnand_host *host)
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001005{
William Zhang1100e492019-09-04 10:51:13 -07001006 struct nand_ecclayout *layout;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001007 struct brcmnand_cfg *p = &host->hwcfg;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001008 unsigned int ecc_level = p->ecc_level;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001009
1010 if (p->sector_size_1k)
1011 ecc_level <<= 1;
1012
William Zhang1100e492019-09-04 10:51:13 -07001013 layout = brcmnand_create_layout(ecc_level, host);
1014 if (!layout) {
Sean Anderson4b5aa002020-09-15 10:44:50 -04001015 dev_err(host->pdev,
1016 "no proper ecc_layout for this NAND cfg\n");
William Zhang1100e492019-09-04 10:51:13 -07001017 return NULL;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001018 }
1019
William Zhang1100e492019-09-04 10:51:13 -07001020 return layout;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001021}
1022
1023static void brcmnand_wp(struct mtd_info *mtd, int wp)
1024{
1025 struct nand_chip *chip = mtd_to_nand(mtd);
1026 struct brcmnand_host *host = nand_get_controller_data(chip);
1027 struct brcmnand_controller *ctrl = host->ctrl;
1028
1029 if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1030 static int old_wp = -1;
1031 int ret;
1032
1033 if (old_wp != wp) {
1034 dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
1035 old_wp = wp;
1036 }
1037
1038 /*
1039 * make sure ctrl/flash ready before and after
1040 * changing state of #WP pin
1041 */
1042 ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY |
1043 NAND_STATUS_READY,
1044 NAND_CTRL_RDY |
1045 NAND_STATUS_READY, 0);
1046 if (ret)
1047 return;
1048
1049 brcmnand_set_wp(ctrl, wp);
1050 nand_status_op(chip, NULL);
1051 /* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1052 ret = bcmnand_ctrl_poll_status(ctrl,
1053 NAND_CTRL_RDY |
1054 NAND_STATUS_READY |
1055 NAND_STATUS_WP,
1056 NAND_CTRL_RDY |
1057 NAND_STATUS_READY |
1058 (wp ? 0 : NAND_STATUS_WP), 0);
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001059 if (ret)
Sean Anderson4b5aa002020-09-15 10:44:50 -04001060 dev_err(host->pdev, "nand #WP expected %s\n",
1061 wp ? "on" : "off");
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001062 }
1063}
1064
1065/* Helper functions for reading and writing OOB registers */
1066static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1067{
1068 u16 offset0, offset10, reg_offs;
1069
1070 offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1071 offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1072
1073 if (offs >= ctrl->max_oob)
1074 return 0x77;
1075
1076 if (offs >= 16 && offset10)
1077 reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1078 else
1079 reg_offs = offset0 + (offs & ~0x03);
1080
1081 return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1082}
1083
1084static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1085 u32 data)
1086{
1087 u16 offset0, offset10, reg_offs;
1088
1089 offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1090 offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1091
1092 if (offs >= ctrl->max_oob)
1093 return;
1094
1095 if (offs >= 16 && offset10)
1096 reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1097 else
1098 reg_offs = offset0 + (offs & ~0x03);
1099
1100 nand_writereg(ctrl, reg_offs, data);
1101}
1102
1103/*
1104 * read_oob_from_regs - read data from OOB registers
1105 * @ctrl: NAND controller
1106 * @i: sub-page sector index
1107 * @oob: buffer to read to
1108 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1109 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1110 */
1111static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1112 int sas, int sector_1k)
1113{
1114 int tbytes = sas << sector_1k;
1115 int j;
1116
1117 /* Adjust OOB values for 1K sector size */
1118 if (sector_1k && (i & 0x01))
1119 tbytes = max(0, tbytes - (int)ctrl->max_oob);
1120 tbytes = min_t(int, tbytes, ctrl->max_oob);
1121
1122 for (j = 0; j < tbytes; j++)
1123 oob[j] = oob_reg_read(ctrl, j);
1124 return tbytes;
1125}
1126
1127/*
1128 * write_oob_to_regs - write data to OOB registers
1129 * @i: sub-page sector index
1130 * @oob: buffer to write from
1131 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1132 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1133 */
1134static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1135 const u8 *oob, int sas, int sector_1k)
1136{
1137 int tbytes = sas << sector_1k;
1138 int j;
1139
1140 /* Adjust OOB values for 1K sector size */
1141 if (sector_1k && (i & 0x01))
1142 tbytes = max(0, tbytes - (int)ctrl->max_oob);
1143 tbytes = min_t(int, tbytes, ctrl->max_oob);
1144
1145 for (j = 0; j < tbytes; j += 4)
1146 oob_reg_write(ctrl, j,
1147 (oob[j + 0] << 24) |
1148 (oob[j + 1] << 16) |
1149 (oob[j + 2] << 8) |
1150 (oob[j + 3] << 0));
1151 return tbytes;
1152}
1153
1154#ifndef __UBOOT__
1155static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1156{
1157 struct brcmnand_controller *ctrl = data;
1158
1159 /* Discard all NAND_CTLRDY interrupts during DMA */
1160 if (ctrl->dma_pending)
1161 return IRQ_HANDLED;
1162
1163 complete(&ctrl->done);
1164 return IRQ_HANDLED;
1165}
1166
1167/* Handle SoC-specific interrupt hardware */
1168static irqreturn_t brcmnand_irq(int irq, void *data)
1169{
1170 struct brcmnand_controller *ctrl = data;
1171
1172 if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1173 return brcmnand_ctlrdy_irq(irq, data);
1174
1175 return IRQ_NONE;
1176}
1177
1178static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1179{
1180 struct brcmnand_controller *ctrl = data;
1181
1182 complete(&ctrl->dma_done);
1183
1184 return IRQ_HANDLED;
1185}
1186#endif /* __UBOOT__ */
1187
1188static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1189{
1190 struct brcmnand_controller *ctrl = host->ctrl;
1191 int ret;
1192
1193 dev_dbg(ctrl->dev, "send native cmd %d addr_lo 0x%x\n", cmd,
1194 brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS));
1195 BUG_ON(ctrl->cmd_pending != 0);
1196 ctrl->cmd_pending = cmd;
1197
1198 ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1199 WARN_ON(ret);
1200
1201 mb(); /* flush previous writes */
1202 brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1203 cmd << brcmnand_cmd_shift(ctrl));
1204}
1205
1206/***********************************************************************
1207 * NAND MTD API: read/program/erase
1208 ***********************************************************************/
1209
1210static void brcmnand_cmd_ctrl(struct mtd_info *mtd, int dat,
1211 unsigned int ctrl)
1212{
1213 /* intentionally left blank */
1214}
1215
1216static int brcmnand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
1217{
1218 struct nand_chip *chip = mtd_to_nand(mtd);
1219 struct brcmnand_host *host = nand_get_controller_data(chip);
1220 struct brcmnand_controller *ctrl = host->ctrl;
1221
1222#ifndef __UBOOT__
1223 unsigned long timeo = msecs_to_jiffies(100);
1224
1225 dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1226 if (ctrl->cmd_pending &&
1227 wait_for_completion_timeout(&ctrl->done, timeo) <= 0) {
1228 u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1229 >> brcmnand_cmd_shift(ctrl);
1230
1231 dev_err_ratelimited(ctrl->dev,
1232 "timeout waiting for command %#02x\n", cmd);
1233 dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1234 brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1235 }
1236#else
1237 unsigned long timeo = 100; /* 100 msec */
1238 int ret;
1239
1240 dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1241
1242 ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, timeo);
1243 WARN_ON(ret);
1244#endif /* __UBOOT__ */
1245
1246 ctrl->cmd_pending = 0;
1247 return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1248 INTFC_FLASH_STATUS;
1249}
1250
1251enum {
1252 LLOP_RE = BIT(16),
1253 LLOP_WE = BIT(17),
1254 LLOP_ALE = BIT(18),
1255 LLOP_CLE = BIT(19),
1256 LLOP_RETURN_IDLE = BIT(31),
1257
1258 LLOP_DATA_MASK = GENMASK(15, 0),
1259};
1260
1261static int brcmnand_low_level_op(struct brcmnand_host *host,
1262 enum brcmnand_llop_type type, u32 data,
1263 bool last_op)
1264{
1265 struct mtd_info *mtd = nand_to_mtd(&host->chip);
1266 struct nand_chip *chip = &host->chip;
1267 struct brcmnand_controller *ctrl = host->ctrl;
1268 u32 tmp;
1269
1270 tmp = data & LLOP_DATA_MASK;
1271 switch (type) {
1272 case LL_OP_CMD:
1273 tmp |= LLOP_WE | LLOP_CLE;
1274 break;
1275 case LL_OP_ADDR:
1276 /* WE | ALE */
1277 tmp |= LLOP_WE | LLOP_ALE;
1278 break;
1279 case LL_OP_WR:
1280 /* WE */
1281 tmp |= LLOP_WE;
1282 break;
1283 case LL_OP_RD:
1284 /* RE */
1285 tmp |= LLOP_RE;
1286 break;
1287 }
1288 if (last_op)
1289 /* RETURN_IDLE */
1290 tmp |= LLOP_RETURN_IDLE;
1291
1292 dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1293
1294 brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1295 (void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1296
1297 brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1298 return brcmnand_waitfunc(mtd, chip);
1299}
1300
1301static void brcmnand_cmdfunc(struct mtd_info *mtd, unsigned command,
1302 int column, int page_addr)
1303{
1304 struct nand_chip *chip = mtd_to_nand(mtd);
1305 struct brcmnand_host *host = nand_get_controller_data(chip);
1306 struct brcmnand_controller *ctrl = host->ctrl;
1307 u64 addr = (u64)page_addr << chip->page_shift;
1308 int native_cmd = 0;
1309
1310 if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
1311 command == NAND_CMD_RNDOUT)
1312 addr = (u64)column;
1313 /* Avoid propagating a negative, don't-care address */
1314 else if (page_addr < 0)
1315 addr = 0;
1316
1317 dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
1318 (unsigned long long)addr);
1319
1320 host->last_cmd = command;
1321 host->last_byte = 0;
1322 host->last_addr = addr;
1323
1324 switch (command) {
1325 case NAND_CMD_RESET:
1326 native_cmd = CMD_FLASH_RESET;
1327 break;
1328 case NAND_CMD_STATUS:
1329 native_cmd = CMD_STATUS_READ;
1330 break;
1331 case NAND_CMD_READID:
1332 native_cmd = CMD_DEVICE_ID_READ;
1333 break;
1334 case NAND_CMD_READOOB:
1335 native_cmd = CMD_SPARE_AREA_READ;
1336 break;
1337 case NAND_CMD_ERASE1:
1338 native_cmd = CMD_BLOCK_ERASE;
1339 brcmnand_wp(mtd, 0);
1340 break;
1341 case NAND_CMD_PARAM:
1342 native_cmd = CMD_PARAMETER_READ;
1343 break;
1344 case NAND_CMD_SET_FEATURES:
1345 case NAND_CMD_GET_FEATURES:
1346 brcmnand_low_level_op(host, LL_OP_CMD, command, false);
1347 brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
1348 break;
1349 case NAND_CMD_RNDOUT:
1350 native_cmd = CMD_PARAMETER_CHANGE_COL;
1351 addr &= ~((u64)(FC_BYTES - 1));
1352 /*
1353 * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
1354 * NB: hwcfg.sector_size_1k may not be initialized yet
1355 */
1356 if (brcmnand_get_sector_size_1k(host)) {
1357 host->hwcfg.sector_size_1k =
1358 brcmnand_get_sector_size_1k(host);
1359 brcmnand_set_sector_size_1k(host, 0);
1360 }
1361 break;
1362 }
1363
1364 if (!native_cmd)
1365 return;
1366
1367 brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1368 (host->cs << 16) | ((addr >> 32) & 0xffff));
1369 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1370 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, lower_32_bits(addr));
1371 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1372
1373 brcmnand_send_cmd(host, native_cmd);
1374 brcmnand_waitfunc(mtd, chip);
1375
1376 if (native_cmd == CMD_PARAMETER_READ ||
1377 native_cmd == CMD_PARAMETER_CHANGE_COL) {
1378 /* Copy flash cache word-wise */
1379 u32 *flash_cache = (u32 *)ctrl->flash_cache;
1380 int i;
1381
1382 brcmnand_soc_data_bus_prepare(ctrl->soc, true);
1383
1384 /*
1385 * Must cache the FLASH_CACHE now, since changes in
1386 * SECTOR_SIZE_1K may invalidate it
1387 */
Philippe Reynes7f28cf62019-03-15 15:14:37 +01001388 for (i = 0; i < FC_WORDS; i++) {
1389 u32 fc;
1390
1391 fc = brcmnand_read_fc(ctrl, i);
1392
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001393 /*
1394 * Flash cache is big endian for parameter pages, at
1395 * least on STB SoCs
1396 */
Philippe Reynes7f28cf62019-03-15 15:14:37 +01001397 if (ctrl->parameter_page_big_endian)
1398 flash_cache[i] = be32_to_cpu(fc);
1399 else
1400 flash_cache[i] = le32_to_cpu(fc);
1401 }
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001402
1403 brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
1404
1405 /* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
1406 if (host->hwcfg.sector_size_1k)
1407 brcmnand_set_sector_size_1k(host,
1408 host->hwcfg.sector_size_1k);
1409 }
1410
1411 /* Re-enable protection is necessary only after erase */
1412 if (command == NAND_CMD_ERASE1)
1413 brcmnand_wp(mtd, 1);
1414}
1415
1416static uint8_t brcmnand_read_byte(struct mtd_info *mtd)
1417{
1418 struct nand_chip *chip = mtd_to_nand(mtd);
1419 struct brcmnand_host *host = nand_get_controller_data(chip);
1420 struct brcmnand_controller *ctrl = host->ctrl;
1421 uint8_t ret = 0;
1422 int addr, offs;
1423
1424 switch (host->last_cmd) {
1425 case NAND_CMD_READID:
1426 if (host->last_byte < 4)
1427 ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
1428 (24 - (host->last_byte << 3));
1429 else if (host->last_byte < 8)
1430 ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
1431 (56 - (host->last_byte << 3));
1432 break;
1433
1434 case NAND_CMD_READOOB:
1435 ret = oob_reg_read(ctrl, host->last_byte);
1436 break;
1437
1438 case NAND_CMD_STATUS:
1439 ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1440 INTFC_FLASH_STATUS;
1441 if (wp_on) /* hide WP status */
1442 ret |= NAND_STATUS_WP;
1443 break;
1444
1445 case NAND_CMD_PARAM:
1446 case NAND_CMD_RNDOUT:
1447 addr = host->last_addr + host->last_byte;
1448 offs = addr & (FC_BYTES - 1);
1449
1450 /* At FC_BYTES boundary, switch to next column */
1451 if (host->last_byte > 0 && offs == 0)
1452 nand_change_read_column_op(chip, addr, NULL, 0, false);
1453
1454 ret = ctrl->flash_cache[offs];
1455 break;
1456 case NAND_CMD_GET_FEATURES:
1457 if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
1458 ret = 0;
1459 } else {
1460 bool last = host->last_byte ==
1461 ONFI_SUBFEATURE_PARAM_LEN - 1;
1462 brcmnand_low_level_op(host, LL_OP_RD, 0, last);
1463 ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
1464 }
1465 }
1466
1467 dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
1468 host->last_byte++;
1469
1470 return ret;
1471}
1472
1473static void brcmnand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1474{
1475 int i;
1476
1477 for (i = 0; i < len; i++, buf++)
1478 *buf = brcmnand_read_byte(mtd);
1479}
1480
1481static void brcmnand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
1482 int len)
1483{
1484 int i;
1485 struct nand_chip *chip = mtd_to_nand(mtd);
1486 struct brcmnand_host *host = nand_get_controller_data(chip);
1487
1488 switch (host->last_cmd) {
1489 case NAND_CMD_SET_FEATURES:
1490 for (i = 0; i < len; i++)
1491 brcmnand_low_level_op(host, LL_OP_WR, buf[i],
1492 (i + 1) == len);
1493 break;
1494 default:
1495 BUG();
1496 break;
1497 }
1498}
1499
1500/**
1501 * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
1502 * following ahead of time:
1503 * - Is this descriptor the beginning or end of a linked list?
1504 * - What is the (DMA) address of the next descriptor in the linked list?
1505 */
1506#ifndef __UBOOT__
1507static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
1508 struct brcm_nand_dma_desc *desc, u64 addr,
1509 dma_addr_t buf, u32 len, u8 dma_cmd,
1510 bool begin, bool end,
1511 dma_addr_t next_desc)
1512{
1513 memset(desc, 0, sizeof(*desc));
1514 /* Descriptors are written in native byte order (wordwise) */
1515 desc->next_desc = lower_32_bits(next_desc);
1516 desc->next_desc_ext = upper_32_bits(next_desc);
1517 desc->cmd_irq = (dma_cmd << 24) |
1518 (end ? (0x03 << 8) : 0) | /* IRQ | STOP */
1519 (!!begin) | ((!!end) << 1); /* head, tail */
1520#ifdef CONFIG_CPU_BIG_ENDIAN
1521 desc->cmd_irq |= 0x01 << 12;
1522#endif
1523 desc->dram_addr = lower_32_bits(buf);
1524 desc->dram_addr_ext = upper_32_bits(buf);
1525 desc->tfr_len = len;
1526 desc->total_len = len;
1527 desc->flash_addr = lower_32_bits(addr);
1528 desc->flash_addr_ext = upper_32_bits(addr);
1529 desc->cs = host->cs;
1530 desc->status_valid = 0x01;
1531 return 0;
1532}
1533
1534/**
1535 * Kick the FLASH_DMA engine, with a given DMA descriptor
1536 */
1537static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
1538{
1539 struct brcmnand_controller *ctrl = host->ctrl;
1540 unsigned long timeo = msecs_to_jiffies(100);
1541
1542 flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
1543 (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
1544 flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, upper_32_bits(desc));
1545 (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
1546
1547 /* Start FLASH_DMA engine */
1548 ctrl->dma_pending = true;
1549 mb(); /* flush previous writes */
1550 flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
1551
1552 if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
1553 dev_err(ctrl->dev,
1554 "timeout waiting for DMA; status %#x, error status %#x\n",
1555 flash_dma_readl(ctrl, FLASH_DMA_STATUS),
1556 flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
1557 }
1558 ctrl->dma_pending = false;
1559 flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
1560}
1561
1562static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1563 u32 len, u8 dma_cmd)
1564{
1565 struct brcmnand_controller *ctrl = host->ctrl;
1566 dma_addr_t buf_pa;
1567 int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1568
1569 buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
1570 if (dma_mapping_error(ctrl->dev, buf_pa)) {
1571 dev_err(ctrl->dev, "unable to map buffer for DMA\n");
1572 return -ENOMEM;
1573 }
1574
1575 brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
1576 dma_cmd, true, true, 0);
1577
1578 brcmnand_dma_run(host, ctrl->dma_pa);
1579
1580 dma_unmap_single(ctrl->dev, buf_pa, len, dir);
1581
1582 if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
1583 return -EBADMSG;
1584 else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
1585 return -EUCLEAN;
1586
1587 return 0;
1588}
1589#endif /* __UBOOT__ */
1590
1591/*
1592 * Assumes proper CS is already set
1593 */
1594static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
1595 u64 addr, unsigned int trans, u32 *buf,
1596 u8 *oob, u64 *err_addr)
1597{
1598 struct brcmnand_host *host = nand_get_controller_data(chip);
1599 struct brcmnand_controller *ctrl = host->ctrl;
1600 int i, j, ret = 0;
1601
1602 /* Clear error addresses */
1603 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
1604 brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
1605 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
1606 brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
1607
1608 brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1609 (host->cs << 16) | ((addr >> 32) & 0xffff));
1610 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1611
1612 for (i = 0; i < trans; i++, addr += FC_BYTES) {
1613 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1614 lower_32_bits(addr));
1615 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1616 /* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
1617 brcmnand_send_cmd(host, CMD_PAGE_READ);
1618 brcmnand_waitfunc(mtd, chip);
1619
1620 if (likely(buf)) {
1621 brcmnand_soc_data_bus_prepare(ctrl->soc, false);
1622
1623 for (j = 0; j < FC_WORDS; j++, buf++)
1624 *buf = brcmnand_read_fc(ctrl, j);
1625
1626 brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
1627 }
1628
1629 if (oob)
1630 oob += read_oob_from_regs(ctrl, i, oob,
1631 mtd->oobsize / trans,
1632 host->hwcfg.sector_size_1k);
1633
1634 if (!ret) {
1635 *err_addr = brcmnand_read_reg(ctrl,
1636 BRCMNAND_UNCORR_ADDR) |
1637 ((u64)(brcmnand_read_reg(ctrl,
1638 BRCMNAND_UNCORR_EXT_ADDR)
1639 & 0xffff) << 32);
1640 if (*err_addr)
1641 ret = -EBADMSG;
1642 }
1643
1644 if (!ret) {
1645 *err_addr = brcmnand_read_reg(ctrl,
1646 BRCMNAND_CORR_ADDR) |
1647 ((u64)(brcmnand_read_reg(ctrl,
1648 BRCMNAND_CORR_EXT_ADDR)
1649 & 0xffff) << 32);
1650 if (*err_addr)
1651 ret = -EUCLEAN;
1652 }
1653 }
1654
1655 return ret;
1656}
1657
1658/*
1659 * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
1660 * error
1661 *
1662 * Because the HW ECC signals an ECC error if an erase paged has even a single
1663 * bitflip, we must check each ECC error to see if it is actually an erased
1664 * page with bitflips, not a truly corrupted page.
1665 *
1666 * On a real error, return a negative error code (-EBADMSG for ECC error), and
1667 * buf will contain raw data.
1668 * Otherwise, buf gets filled with 0xffs and return the maximum number of
1669 * bitflips-per-ECC-sector to the caller.
1670 *
1671 */
1672static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
1673 struct nand_chip *chip, void *buf, u64 addr)
1674{
1675 int i, sas;
1676 void *oob = chip->oob_poi;
1677 int bitflips = 0;
1678 int page = addr >> chip->page_shift;
1679 int ret;
1680
1681 if (!buf) {
1682#ifndef __UBOOT__
1683 buf = chip->data_buf;
1684#else
1685 buf = chip->buffers->databuf;
1686#endif
1687 /* Invalidate page cache */
1688 chip->pagebuf = -1;
1689 }
1690
1691 sas = mtd->oobsize / chip->ecc.steps;
1692
1693 /* read without ecc for verification */
1694 ret = chip->ecc.read_page_raw(mtd, chip, buf, true, page);
1695 if (ret)
1696 return ret;
1697
1698 for (i = 0; i < chip->ecc.steps; i++, oob += sas) {
1699 ret = nand_check_erased_ecc_chunk(buf, chip->ecc.size,
1700 oob, sas, NULL, 0,
1701 chip->ecc.strength);
1702 if (ret < 0)
1703 return ret;
1704
1705 bitflips = max(bitflips, ret);
1706 }
1707
1708 return bitflips;
1709}
1710
1711static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
1712 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
1713{
1714 struct brcmnand_host *host = nand_get_controller_data(chip);
1715 struct brcmnand_controller *ctrl = host->ctrl;
1716 u64 err_addr = 0;
1717 int err;
1718 bool retry = true;
1719
1720 dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
1721
1722try_dmaread:
1723 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_COUNT, 0);
1724
1725#ifndef __UBOOT__
1726 if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
1727 err = brcmnand_dma_trans(host, addr, buf, trans * FC_BYTES,
1728 CMD_PAGE_READ);
1729 if (err) {
1730 if (mtd_is_bitflip_or_eccerr(err))
1731 err_addr = addr;
1732 else
1733 return -EIO;
1734 }
1735 } else {
1736 if (oob)
1737 memset(oob, 0x99, mtd->oobsize);
1738
1739 err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
1740 oob, &err_addr);
1741 }
1742#else
1743 if (oob)
1744 memset(oob, 0x99, mtd->oobsize);
1745
1746 err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
1747 oob, &err_addr);
1748#endif /* __UBOOT__ */
1749
1750 if (mtd_is_eccerr(err)) {
1751 /*
1752 * On controller version and 7.0, 7.1 , DMA read after a
1753 * prior PIO read that reported uncorrectable error,
1754 * the DMA engine captures this error following DMA read
1755 * cleared only on subsequent DMA read, so just retry once
1756 * to clear a possible false error reported for current DMA
1757 * read
1758 */
1759 if ((ctrl->nand_version == 0x0700) ||
1760 (ctrl->nand_version == 0x0701)) {
1761 if (retry) {
1762 retry = false;
1763 goto try_dmaread;
1764 }
1765 }
1766
1767 /*
1768 * Controller version 7.2 has hw encoder to detect erased page
1769 * bitflips, apply sw verification for older controllers only
1770 */
1771 if (ctrl->nand_version < 0x0702) {
1772 err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
1773 addr);
1774 /* erased page bitflips corrected */
1775 if (err >= 0)
1776 return err;
1777 }
1778
1779 dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
1780 (unsigned long long)err_addr);
1781 mtd->ecc_stats.failed++;
1782 /* NAND layer expects zero on ECC errors */
1783 return 0;
1784 }
1785
1786 if (mtd_is_bitflip(err)) {
1787 unsigned int corrected = brcmnand_count_corrected(ctrl);
1788
1789 dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
1790 (unsigned long long)err_addr);
1791 mtd->ecc_stats.corrected += corrected;
1792 /* Always exceed the software-imposed threshold */
1793 return max(mtd->bitflip_threshold, corrected);
1794 }
1795
1796 return 0;
1797}
1798
1799static int brcmnand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1800 uint8_t *buf, int oob_required, int page)
1801{
1802 struct brcmnand_host *host = nand_get_controller_data(chip);
1803 u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
1804
1805 nand_read_page_op(chip, page, 0, NULL, 0);
1806
1807 return brcmnand_read(mtd, chip, host->last_addr,
1808 mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
1809}
1810
1811static int brcmnand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1812 uint8_t *buf, int oob_required, int page)
1813{
1814 struct brcmnand_host *host = nand_get_controller_data(chip);
1815 u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
1816 int ret;
1817
1818 nand_read_page_op(chip, page, 0, NULL, 0);
1819
1820 brcmnand_set_ecc_enabled(host, 0);
1821 ret = brcmnand_read(mtd, chip, host->last_addr,
1822 mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
1823 brcmnand_set_ecc_enabled(host, 1);
1824 return ret;
1825}
1826
1827static int brcmnand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1828 int page)
1829{
1830 return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
1831 mtd->writesize >> FC_SHIFT,
1832 NULL, (u8 *)chip->oob_poi);
1833}
1834
1835static int brcmnand_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1836 int page)
1837{
1838 struct brcmnand_host *host = nand_get_controller_data(chip);
1839
1840 brcmnand_set_ecc_enabled(host, 0);
1841 brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
1842 mtd->writesize >> FC_SHIFT,
1843 NULL, (u8 *)chip->oob_poi);
1844 brcmnand_set_ecc_enabled(host, 1);
1845 return 0;
1846}
1847
1848static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
1849 u64 addr, const u32 *buf, u8 *oob)
1850{
1851 struct brcmnand_host *host = nand_get_controller_data(chip);
1852 struct brcmnand_controller *ctrl = host->ctrl;
1853 unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
1854 int status, ret = 0;
1855
1856 dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
1857
1858 if (unlikely((unsigned long)buf & 0x03)) {
1859 dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
1860 buf = (u32 *)((unsigned long)buf & ~0x03);
1861 }
1862
1863 brcmnand_wp(mtd, 0);
1864
1865 for (i = 0; i < ctrl->max_oob; i += 4)
1866 oob_reg_write(ctrl, i, 0xffffffff);
1867
1868#ifndef __UBOOT__
1869 if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
1870 if (brcmnand_dma_trans(host, addr, (u32 *)buf,
1871 mtd->writesize, CMD_PROGRAM_PAGE))
1872 ret = -EIO;
1873 goto out;
1874 }
1875#endif /* __UBOOT__ */
1876
1877 brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1878 (host->cs << 16) | ((addr >> 32) & 0xffff));
1879 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1880
1881 for (i = 0; i < trans; i++, addr += FC_BYTES) {
1882 /* full address MUST be set before populating FC */
1883 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1884 lower_32_bits(addr));
1885 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1886
1887 if (buf) {
1888 brcmnand_soc_data_bus_prepare(ctrl->soc, false);
1889
1890 for (j = 0; j < FC_WORDS; j++, buf++)
1891 brcmnand_write_fc(ctrl, j, *buf);
1892
1893 brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
1894 } else if (oob) {
1895 for (j = 0; j < FC_WORDS; j++)
1896 brcmnand_write_fc(ctrl, j, 0xffffffff);
1897 }
1898
1899 if (oob) {
1900 oob += write_oob_to_regs(ctrl, i, oob,
1901 mtd->oobsize / trans,
1902 host->hwcfg.sector_size_1k);
1903 }
1904
1905 /* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
1906 brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
1907 status = brcmnand_waitfunc(mtd, chip);
1908
1909 if (status & NAND_STATUS_FAIL) {
1910 dev_info(ctrl->dev, "program failed at %llx\n",
1911 (unsigned long long)addr);
1912 ret = -EIO;
1913 goto out;
1914 }
1915 }
1916out:
1917 brcmnand_wp(mtd, 1);
1918 return ret;
1919}
1920
1921static int brcmnand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1922 const uint8_t *buf, int oob_required, int page)
1923{
1924 struct brcmnand_host *host = nand_get_controller_data(chip);
1925 void *oob = oob_required ? chip->oob_poi : NULL;
1926
1927 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1928 brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
1929
1930 return nand_prog_page_end_op(chip);
1931}
1932
1933static int brcmnand_write_page_raw(struct mtd_info *mtd,
1934 struct nand_chip *chip, const uint8_t *buf,
1935 int oob_required, int page)
1936{
1937 struct brcmnand_host *host = nand_get_controller_data(chip);
1938 void *oob = oob_required ? chip->oob_poi : NULL;
1939
1940 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1941 brcmnand_set_ecc_enabled(host, 0);
1942 brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
1943 brcmnand_set_ecc_enabled(host, 1);
1944
1945 return nand_prog_page_end_op(chip);
1946}
1947
1948static int brcmnand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1949 int page)
1950{
1951 return brcmnand_write(mtd, chip, (u64)page << chip->page_shift,
1952 NULL, chip->oob_poi);
1953}
1954
1955static int brcmnand_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1956 int page)
1957{
1958 struct brcmnand_host *host = nand_get_controller_data(chip);
1959 int ret;
1960
1961 brcmnand_set_ecc_enabled(host, 0);
1962 ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
1963 (u8 *)chip->oob_poi);
1964 brcmnand_set_ecc_enabled(host, 1);
1965
1966 return ret;
1967}
1968
1969/***********************************************************************
1970 * Per-CS setup (1 NAND device)
1971 ***********************************************************************/
1972
1973static int brcmnand_set_cfg(struct brcmnand_host *host,
1974 struct brcmnand_cfg *cfg)
1975{
1976 struct brcmnand_controller *ctrl = host->ctrl;
1977 struct nand_chip *chip = &host->chip;
1978 u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
1979 u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
1980 BRCMNAND_CS_CFG_EXT);
1981 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1982 BRCMNAND_CS_ACC_CONTROL);
1983 u8 block_size = 0, page_size = 0, device_size = 0;
1984 u32 tmp;
1985
1986 if (ctrl->block_sizes) {
1987 int i, found;
1988
1989 for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
1990 if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
1991 block_size = i;
1992 found = 1;
1993 }
1994 if (!found) {
1995 dev_warn(ctrl->dev, "invalid block size %u\n",
1996 cfg->block_size);
1997 return -EINVAL;
1998 }
1999 } else {
2000 block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
2001 }
2002
2003 if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
2004 cfg->block_size > ctrl->max_block_size)) {
2005 dev_warn(ctrl->dev, "invalid block size %u\n",
2006 cfg->block_size);
2007 block_size = 0;
2008 }
2009
2010 if (ctrl->page_sizes) {
2011 int i, found;
2012
2013 for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
2014 if (ctrl->page_sizes[i] == cfg->page_size) {
2015 page_size = i;
2016 found = 1;
2017 }
2018 if (!found) {
2019 dev_warn(ctrl->dev, "invalid page size %u\n",
2020 cfg->page_size);
2021 return -EINVAL;
2022 }
2023 } else {
2024 page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2025 }
2026
2027 if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2028 cfg->page_size > ctrl->max_page_size)) {
2029 dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2030 return -EINVAL;
2031 }
2032
2033 if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2034 dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2035 (unsigned long long)cfg->device_size);
2036 return -EINVAL;
2037 }
2038 device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2039
2040 tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2041 (cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2042 (cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2043 (!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2044 (device_size << CFG_DEVICE_SIZE_SHIFT);
2045 if (cfg_offs == cfg_ext_offs) {
2046 tmp |= (page_size << CFG_PAGE_SIZE_SHIFT) |
2047 (block_size << CFG_BLK_SIZE_SHIFT);
2048 nand_writereg(ctrl, cfg_offs, tmp);
2049 } else {
2050 nand_writereg(ctrl, cfg_offs, tmp);
2051 tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2052 (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2053 nand_writereg(ctrl, cfg_ext_offs, tmp);
2054 }
2055
2056 tmp = nand_readreg(ctrl, acc_control_offs);
2057 tmp &= ~brcmnand_ecc_level_mask(ctrl);
2058 tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT;
2059 tmp &= ~brcmnand_spare_area_mask(ctrl);
2060 tmp |= cfg->spare_area_size;
2061 nand_writereg(ctrl, acc_control_offs, tmp);
2062
2063 brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2064
2065 /* threshold = ceil(BCH-level * 0.75) */
2066 brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2067
2068 return 0;
2069}
2070
2071static void brcmnand_print_cfg(struct brcmnand_host *host,
2072 char *buf, struct brcmnand_cfg *cfg)
2073{
2074 buf += sprintf(buf,
2075 "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2076 (unsigned long long)cfg->device_size >> 20,
2077 cfg->block_size >> 10,
2078 cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2079 cfg->page_size >= 1024 ? "KiB" : "B",
2080 cfg->spare_area_size, cfg->device_width);
2081
2082 /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2083 if (is_hamming_ecc(host->ctrl, cfg))
2084 sprintf(buf, ", Hamming ECC");
2085 else if (cfg->sector_size_1k)
2086 sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2087 else
2088 sprintf(buf, ", BCH-%u", cfg->ecc_level);
2089}
2090
2091/*
2092 * Minimum number of bytes to address a page. Calculated as:
2093 * roundup(log2(size / page-size) / 8)
2094 *
2095 * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2096 * OK because many other things will break if 'size' is irregular...
2097 */
2098static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2099{
2100 return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2101}
2102
2103static int brcmnand_setup_dev(struct brcmnand_host *host)
2104{
2105 struct mtd_info *mtd = nand_to_mtd(&host->chip);
2106 struct nand_chip *chip = &host->chip;
2107 struct brcmnand_controller *ctrl = host->ctrl;
2108 struct brcmnand_cfg *cfg = &host->hwcfg;
2109 char msg[128];
2110 u32 offs, tmp, oob_sector;
2111 int ret;
2112
2113 memset(cfg, 0, sizeof(*cfg));
2114
2115#ifndef __UBOOT__
2116 ret = of_property_read_u32(nand_get_flash_node(chip),
2117 "brcm,nand-oob-sector-size",
2118 &oob_sector);
2119#else
2120 ret = ofnode_read_u32(nand_get_flash_node(chip),
2121 "brcm,nand-oob-sector-size",
2122 &oob_sector);
2123#endif /* __UBOOT__ */
2124 if (ret) {
2125 /* Use detected size */
2126 cfg->spare_area_size = mtd->oobsize /
2127 (mtd->writesize >> FC_SHIFT);
2128 } else {
2129 cfg->spare_area_size = oob_sector;
2130 }
2131 if (cfg->spare_area_size > ctrl->max_oob)
2132 cfg->spare_area_size = ctrl->max_oob;
2133 /*
2134 * Set oobsize to be consistent with controller's spare_area_size, as
2135 * the rest is inaccessible.
2136 */
2137 mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2138
2139 cfg->device_size = mtd->size;
2140 cfg->block_size = mtd->erasesize;
2141 cfg->page_size = mtd->writesize;
2142 cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2143 cfg->col_adr_bytes = 2;
2144 cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2145
2146 if (chip->ecc.mode != NAND_ECC_HW) {
2147 dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2148 chip->ecc.mode);
2149 return -EINVAL;
2150 }
2151
2152 if (chip->ecc.algo == NAND_ECC_UNKNOWN) {
2153 if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2154 /* Default to Hamming for 1-bit ECC, if unspecified */
2155 chip->ecc.algo = NAND_ECC_HAMMING;
2156 else
2157 /* Otherwise, BCH */
2158 chip->ecc.algo = NAND_ECC_BCH;
2159 }
2160
2161 if (chip->ecc.algo == NAND_ECC_HAMMING && (chip->ecc.strength != 1 ||
2162 chip->ecc.size != 512)) {
2163 dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2164 chip->ecc.strength, chip->ecc.size);
2165 return -EINVAL;
2166 }
2167
2168 switch (chip->ecc.size) {
2169 case 512:
2170 if (chip->ecc.algo == NAND_ECC_HAMMING)
2171 cfg->ecc_level = 15;
2172 else
2173 cfg->ecc_level = chip->ecc.strength;
2174 cfg->sector_size_1k = 0;
2175 break;
2176 case 1024:
2177 if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2178 dev_err(ctrl->dev, "1KB sectors not supported\n");
2179 return -EINVAL;
2180 }
2181 if (chip->ecc.strength & 0x1) {
2182 dev_err(ctrl->dev,
2183 "odd ECC not supported with 1KB sectors\n");
2184 return -EINVAL;
2185 }
2186
2187 cfg->ecc_level = chip->ecc.strength >> 1;
2188 cfg->sector_size_1k = 1;
2189 break;
2190 default:
2191 dev_err(ctrl->dev, "unsupported ECC size: %d\n",
2192 chip->ecc.size);
2193 return -EINVAL;
2194 }
2195
2196 cfg->ful_adr_bytes = cfg->blk_adr_bytes;
2197 if (mtd->writesize > 512)
2198 cfg->ful_adr_bytes += cfg->col_adr_bytes;
2199 else
2200 cfg->ful_adr_bytes += 1;
2201
2202 ret = brcmnand_set_cfg(host, cfg);
2203 if (ret)
2204 return ret;
2205
2206 brcmnand_set_ecc_enabled(host, 1);
2207
2208 brcmnand_print_cfg(host, msg, cfg);
2209 dev_info(ctrl->dev, "detected %s\n", msg);
2210
2211 /* Configure ACC_CONTROL */
2212 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
2213 tmp = nand_readreg(ctrl, offs);
2214 tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
2215 tmp &= ~ACC_CONTROL_RD_ERASED;
2216
2217 /* We need to turn on Read from erased paged protected by ECC */
2218 if (ctrl->nand_version >= 0x0702)
2219 tmp |= ACC_CONTROL_RD_ERASED;
2220 tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
2221 if (ctrl->features & BRCMNAND_HAS_PREFETCH)
2222 tmp &= ~ACC_CONTROL_PREFETCH;
2223
2224 nand_writereg(ctrl, offs, tmp);
2225
2226 return 0;
2227}
2228
2229#ifndef __UBOOT__
2230static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn)
2231#else
2232static int brcmnand_init_cs(struct brcmnand_host *host, ofnode dn)
2233#endif
2234{
2235 struct brcmnand_controller *ctrl = host->ctrl;
2236#ifndef __UBOOT__
2237 struct platform_device *pdev = host->pdev;
2238#else
2239 struct udevice *pdev = host->pdev;
2240#endif /* __UBOOT__ */
2241 struct mtd_info *mtd;
2242 struct nand_chip *chip;
2243 int ret;
2244 u16 cfg_offs;
2245
2246#ifndef __UBOOT__
2247 ret = of_property_read_u32(dn, "reg", &host->cs);
2248#else
2249 ret = ofnode_read_s32(dn, "reg", &host->cs);
2250#endif
2251 if (ret) {
Sean Anderson4b5aa002020-09-15 10:44:50 -04002252 dev_err(pdev, "can't get chip-select\n");
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01002253 return -ENXIO;
2254 }
2255
2256 mtd = nand_to_mtd(&host->chip);
2257 chip = &host->chip;
2258
2259 nand_set_flash_node(chip, dn);
2260 nand_set_controller_data(chip, host);
2261#ifndef __UBOOT__
2262 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d",
2263 host->cs);
2264#else
2265 mtd->name = devm_kasprintf(pdev, GFP_KERNEL, "brcmnand.%d",
2266 host->cs);
2267#endif /* __UBOOT__ */
2268 if (!mtd->name)
2269 return -ENOMEM;
2270
2271 mtd->owner = THIS_MODULE;
2272#ifndef __UBOOT__
2273 mtd->dev.parent = &pdev->dev;
2274#else
2275 mtd->dev->parent = pdev;
2276#endif /* __UBOOT__ */
2277
2278 chip->IO_ADDR_R = (void __iomem *)0xdeadbeef;
2279 chip->IO_ADDR_W = (void __iomem *)0xdeadbeef;
2280
2281 chip->cmd_ctrl = brcmnand_cmd_ctrl;
2282 chip->cmdfunc = brcmnand_cmdfunc;
2283 chip->waitfunc = brcmnand_waitfunc;
2284 chip->read_byte = brcmnand_read_byte;
2285 chip->read_buf = brcmnand_read_buf;
2286 chip->write_buf = brcmnand_write_buf;
2287
2288 chip->ecc.mode = NAND_ECC_HW;
2289 chip->ecc.read_page = brcmnand_read_page;
2290 chip->ecc.write_page = brcmnand_write_page;
2291 chip->ecc.read_page_raw = brcmnand_read_page_raw;
2292 chip->ecc.write_page_raw = brcmnand_write_page_raw;
2293 chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
2294 chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
2295 chip->ecc.read_oob = brcmnand_read_oob;
2296 chip->ecc.write_oob = brcmnand_write_oob;
2297
2298 chip->controller = &ctrl->controller;
2299
2300 /*
2301 * The bootloader might have configured 16bit mode but
2302 * NAND READID command only works in 8bit mode. We force
2303 * 8bit mode here to ensure that NAND READID commands works.
2304 */
2305 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2306 nand_writereg(ctrl, cfg_offs,
2307 nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
2308
2309 ret = nand_scan_ident(mtd, 1, NULL);
2310 if (ret)
2311 return ret;
2312
2313 chip->options |= NAND_NO_SUBPAGE_WRITE;
2314 /*
2315 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2316 * to/from, and have nand_base pass us a bounce buffer instead, as
2317 * needed.
2318 */
2319 chip->options |= NAND_USE_BOUNCE_BUFFER;
2320
2321 if (chip->bbt_options & NAND_BBT_USE_FLASH)
2322 chip->bbt_options |= NAND_BBT_NO_OOB;
2323
2324 if (brcmnand_setup_dev(host))
2325 return -ENXIO;
2326
2327 chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2328 /* only use our internal HW threshold */
2329 mtd->bitflip_threshold = 1;
2330
William Zhang1100e492019-09-04 10:51:13 -07002331 chip->ecc.layout = brcmstb_choose_ecc_layout(host);
2332 if (!chip->ecc.layout)
2333 return -ENXIO;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01002334
2335 ret = nand_scan_tail(mtd);
2336 if (ret)
2337 return ret;
2338
2339#ifndef __UBOOT__
2340 ret = mtd_device_register(mtd, NULL, 0);
2341 if (ret)
2342 nand_cleanup(chip);
2343#else
2344 ret = nand_register(0, mtd);
2345#endif /* __UBOOT__ */
2346
2347 return ret;
2348}
2349
2350#ifndef __UBOOT__
2351static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2352 int restore)
2353{
2354 struct brcmnand_controller *ctrl = host->ctrl;
2355 u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2356 u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2357 BRCMNAND_CS_CFG_EXT);
2358 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2359 BRCMNAND_CS_ACC_CONTROL);
2360 u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2361 u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2362
2363 if (restore) {
2364 nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2365 if (cfg_offs != cfg_ext_offs)
2366 nand_writereg(ctrl, cfg_ext_offs,
2367 host->hwcfg.config_ext);
2368 nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2369 nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2370 nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2371 } else {
2372 host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2373 if (cfg_offs != cfg_ext_offs)
2374 host->hwcfg.config_ext =
2375 nand_readreg(ctrl, cfg_ext_offs);
2376 host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2377 host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2378 host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2379 }
2380}
2381
2382static int brcmnand_suspend(struct device *dev)
2383{
2384 struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2385 struct brcmnand_host *host;
2386
2387 list_for_each_entry(host, &ctrl->host_list, node)
2388 brcmnand_save_restore_cs_config(host, 0);
2389
2390 ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2391 ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2392 ctrl->corr_stat_threshold =
2393 brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2394
2395 if (has_flash_dma(ctrl))
2396 ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2397
2398 return 0;
2399}
2400
2401static int brcmnand_resume(struct device *dev)
2402{
2403 struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2404 struct brcmnand_host *host;
2405
2406 if (has_flash_dma(ctrl)) {
2407 flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2408 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2409 }
2410
2411 brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2412 brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2413 brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2414 ctrl->corr_stat_threshold);
2415 if (ctrl->soc) {
2416 /* Clear/re-enable interrupt */
2417 ctrl->soc->ctlrdy_ack(ctrl->soc);
2418 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2419 }
2420
2421 list_for_each_entry(host, &ctrl->host_list, node) {
2422 struct nand_chip *chip = &host->chip;
2423
2424 brcmnand_save_restore_cs_config(host, 1);
2425
2426 /* Reset the chip, required by some chips after power-up */
2427 nand_reset_op(chip);
2428 }
2429
2430 return 0;
2431}
2432
2433const struct dev_pm_ops brcmnand_pm_ops = {
2434 .suspend = brcmnand_suspend,
2435 .resume = brcmnand_resume,
2436};
2437EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
2438
2439static const struct of_device_id brcmnand_of_match[] = {
2440 { .compatible = "brcm,brcmnand-v4.0" },
2441 { .compatible = "brcm,brcmnand-v5.0" },
2442 { .compatible = "brcm,brcmnand-v6.0" },
2443 { .compatible = "brcm,brcmnand-v6.1" },
2444 { .compatible = "brcm,brcmnand-v6.2" },
2445 { .compatible = "brcm,brcmnand-v7.0" },
2446 { .compatible = "brcm,brcmnand-v7.1" },
2447 { .compatible = "brcm,brcmnand-v7.2" },
2448 {},
2449};
2450MODULE_DEVICE_TABLE(of, brcmnand_of_match);
2451#endif /* __UBOOT__ */
2452
2453/***********************************************************************
2454 * Platform driver setup (per controller)
2455 ***********************************************************************/
2456
2457#ifndef __UBOOT__
2458int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
2459#else
2460int brcmnand_probe(struct udevice *dev, struct brcmnand_soc *soc)
2461#endif /* __UBOOT__ */
2462{
2463#ifndef __UBOOT__
2464 struct device *dev = &pdev->dev;
2465 struct device_node *dn = dev->of_node, *child;
2466#else
2467 ofnode child;
2468 struct udevice *pdev = dev;
2469#endif /* __UBOOT__ */
2470 struct brcmnand_controller *ctrl;
2471#ifndef __UBOOT__
2472 struct resource *res;
2473#else
2474 struct resource res;
2475#endif /* __UBOOT__ */
2476 int ret;
2477
2478#ifndef __UBOOT__
2479 /* We only support device-tree instantiation */
2480 if (!dn)
2481 return -ENODEV;
2482
2483 if (!of_match_node(brcmnand_of_match, dn))
2484 return -ENODEV;
2485#endif /* __UBOOT__ */
2486
2487 ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
2488 if (!ctrl)
2489 return -ENOMEM;
2490
2491#ifndef __UBOOT__
2492 dev_set_drvdata(dev, ctrl);
2493#else
2494 /*
2495 * in u-boot, the data for the driver is allocated before probing
2496 * so to keep the reference to ctrl, we store it in the variable soc
2497 */
2498 soc->ctrl = ctrl;
2499#endif /* __UBOOT__ */
2500 ctrl->dev = dev;
2501
2502 init_completion(&ctrl->done);
2503 init_completion(&ctrl->dma_done);
2504 nand_hw_control_init(&ctrl->controller);
2505 INIT_LIST_HEAD(&ctrl->host_list);
2506
Philippe Reynes7f28cf62019-03-15 15:14:37 +01002507 /* Is parameter page in big endian ? */
2508 ctrl->parameter_page_big_endian =
2509 dev_read_u32_default(dev, "parameter-page-big-endian", 1);
2510
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01002511 /* NAND register range */
2512#ifndef __UBOOT__
2513 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2514 ctrl->nand_base = devm_ioremap_resource(dev, res);
2515#else
2516 dev_read_resource(pdev, 0, &res);
2517 ctrl->nand_base = devm_ioremap(pdev, res.start, resource_size(&res));
2518#endif
2519 if (IS_ERR(ctrl->nand_base))
2520 return PTR_ERR(ctrl->nand_base);
2521
2522 /* Enable clock before using NAND registers */
2523 ctrl->clk = devm_clk_get(dev, "nand");
2524 if (!IS_ERR(ctrl->clk)) {
2525 ret = clk_prepare_enable(ctrl->clk);
2526 if (ret)
2527 return ret;
2528 } else {
Simon Glass7ca47bc2021-01-24 14:32:41 -07002529 /* Ignore PTR_ERR(ctrl->clk) */
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01002530 ctrl->clk = NULL;
2531 }
2532
2533 /* Initialize NAND revision */
2534 ret = brcmnand_revision_init(ctrl);
2535 if (ret)
2536 goto err;
2537
2538 /*
2539 * Most chips have this cache at a fixed offset within 'nand' block.
2540 * Some must specify this region separately.
2541 */
2542#ifndef __UBOOT__
2543 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
2544 if (res) {
2545 ctrl->nand_fc = devm_ioremap_resource(dev, res);
2546 if (IS_ERR(ctrl->nand_fc)) {
2547 ret = PTR_ERR(ctrl->nand_fc);
2548 goto err;
2549 }
2550 } else {
2551 ctrl->nand_fc = ctrl->nand_base +
2552 ctrl->reg_offsets[BRCMNAND_FC_BASE];
2553 }
2554#else
2555 if (!dev_read_resource_byname(pdev, "nand-cache", &res)) {
2556 ctrl->nand_fc = devm_ioremap(dev, res.start,
2557 resource_size(&res));
2558 if (IS_ERR(ctrl->nand_fc)) {
2559 ret = PTR_ERR(ctrl->nand_fc);
2560 goto err;
2561 }
2562 } else {
2563 ctrl->nand_fc = ctrl->nand_base +
2564 ctrl->reg_offsets[BRCMNAND_FC_BASE];
2565 }
2566#endif
2567
2568#ifndef __UBOOT__
2569 /* FLASH_DMA */
2570 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
2571 if (res) {
2572 ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
2573 if (IS_ERR(ctrl->flash_dma_base)) {
2574 ret = PTR_ERR(ctrl->flash_dma_base);
2575 goto err;
2576 }
2577
2578 flash_dma_writel(ctrl, FLASH_DMA_MODE, 1); /* linked-list */
2579 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2580
2581 /* Allocate descriptor(s) */
2582 ctrl->dma_desc = dmam_alloc_coherent(dev,
2583 sizeof(*ctrl->dma_desc),
2584 &ctrl->dma_pa, GFP_KERNEL);
2585 if (!ctrl->dma_desc) {
2586 ret = -ENOMEM;
2587 goto err;
2588 }
2589
2590 ctrl->dma_irq = platform_get_irq(pdev, 1);
2591 if ((int)ctrl->dma_irq < 0) {
2592 dev_err(dev, "missing FLASH_DMA IRQ\n");
2593 ret = -ENODEV;
2594 goto err;
2595 }
2596
2597 ret = devm_request_irq(dev, ctrl->dma_irq,
2598 brcmnand_dma_irq, 0, DRV_NAME,
2599 ctrl);
2600 if (ret < 0) {
2601 dev_err(dev, "can't allocate IRQ %d: error %d\n",
2602 ctrl->dma_irq, ret);
2603 goto err;
2604 }
2605
2606 dev_info(dev, "enabling FLASH_DMA\n");
2607 }
2608#endif /* __UBOOT__ */
2609
2610 /* Disable automatic device ID config, direct addressing */
2611 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
2612 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
2613 /* Disable XOR addressing */
2614 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
2615
Philippe Reynes77669af2019-03-15 15:14:38 +01002616 /* Read the write-protect configuration in the device tree */
2617 wp_on = dev_read_u32_default(dev, "write-protect", wp_on);
2618
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01002619 if (ctrl->features & BRCMNAND_HAS_WP) {
2620 /* Permanently disable write protection */
2621 if (wp_on == 2)
2622 brcmnand_set_wp(ctrl, false);
2623 } else {
2624 wp_on = 0;
2625 }
2626
2627#ifndef __UBOOT__
2628 /* IRQ */
2629 ctrl->irq = platform_get_irq(pdev, 0);
2630 if ((int)ctrl->irq < 0) {
2631 dev_err(dev, "no IRQ defined\n");
2632 ret = -ENODEV;
2633 goto err;
2634 }
2635
2636 /*
2637 * Some SoCs integrate this controller (e.g., its interrupt bits) in
2638 * interesting ways
2639 */
2640 if (soc) {
2641 ctrl->soc = soc;
2642
2643 ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
2644 DRV_NAME, ctrl);
2645
2646 /* Enable interrupt */
2647 ctrl->soc->ctlrdy_ack(ctrl->soc);
2648 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2649 } else {
2650 /* Use standard interrupt infrastructure */
2651 ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
2652 DRV_NAME, ctrl);
2653 }
2654 if (ret < 0) {
2655 dev_err(dev, "can't allocate IRQ %d: error %d\n",
2656 ctrl->irq, ret);
2657 goto err;
2658 }
2659#endif /* __UBOOT__ */
2660
2661#ifndef __UBOOT__
2662 for_each_available_child_of_node(dn, child) {
2663 if (of_device_is_compatible(child, "brcm,nandcs")) {
2664 struct brcmnand_host *host;
2665
2666 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2667 if (!host) {
2668 of_node_put(child);
2669 ret = -ENOMEM;
2670 goto err;
2671 }
2672 host->pdev = pdev;
2673 host->ctrl = ctrl;
2674
2675 ret = brcmnand_init_cs(host, child);
2676 if (ret) {
2677 devm_kfree(dev, host);
2678 continue; /* Try all chip-selects */
2679 }
2680
2681 list_add_tail(&host->node, &ctrl->host_list);
2682 }
2683 }
2684#else
2685 ofnode_for_each_subnode(child, dev_ofnode(dev)) {
2686 if (ofnode_device_is_compatible(child, "brcm,nandcs")) {
2687 struct brcmnand_host *host;
2688
2689 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2690 if (!host) {
2691 ret = -ENOMEM;
2692 goto err;
2693 }
2694 host->pdev = pdev;
2695 host->ctrl = ctrl;
2696
2697 ret = brcmnand_init_cs(host, child);
2698 if (ret) {
2699 devm_kfree(dev, host);
2700 continue; /* Try all chip-selects */
2701 }
2702
2703 list_add_tail(&host->node, &ctrl->host_list);
2704 }
2705 }
2706#endif /* __UBOOT__ */
2707
Álvaro Fernández Rojasd8ae8752020-04-02 10:37:52 +02002708 /* No chip-selects could initialize properly */
2709 if (list_empty(&ctrl->host_list)) {
2710 ret = -ENODEV;
2711 goto err;
2712 }
2713
2714 return 0;
2715
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01002716err:
2717#ifndef __UBOOT__
2718 clk_disable_unprepare(ctrl->clk);
2719#else
2720 if (ctrl->clk)
2721 clk_disable(ctrl->clk);
2722#endif /* __UBOOT__ */
2723 return ret;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01002724}
2725EXPORT_SYMBOL_GPL(brcmnand_probe);
2726
2727#ifndef __UBOOT__
2728int brcmnand_remove(struct platform_device *pdev)
2729{
2730 struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
2731 struct brcmnand_host *host;
2732
2733 list_for_each_entry(host, &ctrl->host_list, node)
2734 nand_release(nand_to_mtd(&host->chip));
2735
2736 clk_disable_unprepare(ctrl->clk);
2737
2738 dev_set_drvdata(&pdev->dev, NULL);
2739
2740 return 0;
2741}
2742#else
2743int brcmnand_remove(struct udevice *pdev)
2744{
2745 return 0;
2746}
2747#endif /* __UBOOT__ */
2748EXPORT_SYMBOL_GPL(brcmnand_remove);
2749
2750MODULE_LICENSE("GPL v2");
2751MODULE_AUTHOR("Kevin Cernekee");
2752MODULE_AUTHOR("Brian Norris");
2753MODULE_DESCRIPTION("NAND driver for Broadcom chips");
2754MODULE_ALIAS("platform:brcmnand");