blob: ff322805bc9da60df9f0f1ffed8417d9f84b27aa [file] [log] [blame]
Ramon Fried4b4bd492018-07-02 02:57:56 +03001// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (c) 2015, Sony Mobile Communications AB.
4 * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
5 * Copyright (c) 2018, Ramon Fried <ramon.fried@gmail.com>
6 */
7
8#include <common.h>
9#include <errno.h>
10#include <dm.h>
Simon Glass3ba929a2020-10-30 21:38:53 -060011#include <asm/global_data.h>
Simon Glass9bc15642020-02-03 07:36:16 -070012#include <dm/device_compat.h>
Simon Glassd66c5f72020-02-03 07:36:15 -070013#include <dm/devres.h>
Ramon Fried4b4bd492018-07-02 02:57:56 +030014#include <dm/of_access.h>
15#include <dm/of_addr.h>
16#include <asm/io.h>
Simon Glassc06c1be2020-05-10 11:40:08 -060017#include <linux/bug.h>
Simon Glassd66c5f72020-02-03 07:36:15 -070018#include <linux/err.h>
Ramon Fried4b4bd492018-07-02 02:57:56 +030019#include <linux/ioport.h>
20#include <linux/io.h>
21#include <smem.h>
22
23DECLARE_GLOBAL_DATA_PTR;
24
25/*
26 * The Qualcomm shared memory system is an allocate-only heap structure that
27 * consists of one of more memory areas that can be accessed by the processors
28 * in the SoC.
29 *
30 * All systems contains a global heap, accessible by all processors in the SoC,
31 * with a table of contents data structure (@smem_header) at the beginning of
32 * the main shared memory block.
33 *
34 * The global header contains meta data for allocations as well as a fixed list
35 * of 512 entries (@smem_global_entry) that can be initialized to reference
36 * parts of the shared memory space.
37 *
38 *
39 * In addition to this global heap, a set of "private" heaps can be set up at
40 * boot time with access restrictions so that only certain processor pairs can
41 * access the data.
42 *
43 * These partitions are referenced from an optional partition table
44 * (@smem_ptable), that is found 4kB from the end of the main smem region. The
45 * partition table entries (@smem_ptable_entry) lists the involved processors
46 * (or hosts) and their location in the main shared memory region.
47 *
48 * Each partition starts with a header (@smem_partition_header) that identifies
49 * the partition and holds properties for the two internal memory regions. The
50 * two regions are cached and non-cached memory respectively. Each region
51 * contain a link list of allocation headers (@smem_private_entry) followed by
52 * their data.
53 *
54 * Items in the non-cached region are allocated from the start of the partition
55 * while items in the cached region are allocated from the end. The free area
56 * is hence the region between the cached and non-cached offsets. The header of
57 * cached items comes after the data.
58 *
59 * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
60 * for the global heap. A new global partition is created from the global heap
61 * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
62 * set by the bootloader.
63 *
64 */
65
66/*
67 * The version member of the smem header contains an array of versions for the
68 * various software components in the SoC. We verify that the boot loader
69 * version is a valid version as a sanity check.
70 */
71#define SMEM_MASTER_SBL_VERSION_INDEX 7
72#define SMEM_GLOBAL_HEAP_VERSION 11
73#define SMEM_GLOBAL_PART_VERSION 12
74
75/*
76 * The first 8 items are only to be allocated by the boot loader while
77 * initializing the heap.
78 */
79#define SMEM_ITEM_LAST_FIXED 8
80
81/* Highest accepted item number, for both global and private heaps */
82#define SMEM_ITEM_COUNT 512
83
84/* Processor/host identifier for the application processor */
85#define SMEM_HOST_APPS 0
86
87/* Processor/host identifier for the global partition */
88#define SMEM_GLOBAL_HOST 0xfffe
89
90/* Max number of processors/hosts in a system */
91#define SMEM_HOST_COUNT 10
92
93/**
94 * struct smem_proc_comm - proc_comm communication struct (legacy)
95 * @command: current command to be executed
96 * @status: status of the currently requested command
97 * @params: parameters to the command
98 */
99struct smem_proc_comm {
100 __le32 command;
101 __le32 status;
102 __le32 params[2];
103};
104
105/**
106 * struct smem_global_entry - entry to reference smem items on the heap
107 * @allocated: boolean to indicate if this entry is used
108 * @offset: offset to the allocated space
109 * @size: size of the allocated space, 8 byte aligned
110 * @aux_base: base address for the memory region used by this unit, or 0 for
111 * the default region. bits 0,1 are reserved
112 */
113struct smem_global_entry {
114 __le32 allocated;
115 __le32 offset;
116 __le32 size;
117 __le32 aux_base; /* bits 1:0 reserved */
118};
119#define AUX_BASE_MASK 0xfffffffc
120
121/**
122 * struct smem_header - header found in beginning of primary smem region
123 * @proc_comm: proc_comm communication interface (legacy)
124 * @version: array of versions for the various subsystems
125 * @initialized: boolean to indicate that smem is initialized
126 * @free_offset: index of the first unallocated byte in smem
127 * @available: number of bytes available for allocation
128 * @reserved: reserved field, must be 0
129 * toc: array of references to items
130 */
131struct smem_header {
132 struct smem_proc_comm proc_comm[4];
133 __le32 version[32];
134 __le32 initialized;
135 __le32 free_offset;
136 __le32 available;
137 __le32 reserved;
138 struct smem_global_entry toc[SMEM_ITEM_COUNT];
139};
140
141/**
142 * struct smem_ptable_entry - one entry in the @smem_ptable list
143 * @offset: offset, within the main shared memory region, of the partition
144 * @size: size of the partition
145 * @flags: flags for the partition (currently unused)
146 * @host0: first processor/host with access to this partition
147 * @host1: second processor/host with access to this partition
148 * @cacheline: alignment for "cached" entries
149 * @reserved: reserved entries for later use
150 */
151struct smem_ptable_entry {
152 __le32 offset;
153 __le32 size;
154 __le32 flags;
155 __le16 host0;
156 __le16 host1;
157 __le32 cacheline;
158 __le32 reserved[7];
159};
160
161/**
162 * struct smem_ptable - partition table for the private partitions
163 * @magic: magic number, must be SMEM_PTABLE_MAGIC
164 * @version: version of the partition table
165 * @num_entries: number of partitions in the table
166 * @reserved: for now reserved entries
167 * @entry: list of @smem_ptable_entry for the @num_entries partitions
168 */
169struct smem_ptable {
170 u8 magic[4];
171 __le32 version;
172 __le32 num_entries;
173 __le32 reserved[5];
174 struct smem_ptable_entry entry[];
175};
176
177static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
178
179/**
180 * struct smem_partition_header - header of the partitions
181 * @magic: magic number, must be SMEM_PART_MAGIC
182 * @host0: first processor/host with access to this partition
183 * @host1: second processor/host with access to this partition
184 * @size: size of the partition
185 * @offset_free_uncached: offset to the first free byte of uncached memory in
186 * this partition
187 * @offset_free_cached: offset to the first free byte of cached memory in this
188 * partition
189 * @reserved: for now reserved entries
190 */
191struct smem_partition_header {
192 u8 magic[4];
193 __le16 host0;
194 __le16 host1;
195 __le32 size;
196 __le32 offset_free_uncached;
197 __le32 offset_free_cached;
198 __le32 reserved[3];
199};
200
201static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
202
203/**
204 * struct smem_private_entry - header of each item in the private partition
205 * @canary: magic number, must be SMEM_PRIVATE_CANARY
206 * @item: identifying number of the smem item
207 * @size: size of the data, including padding bytes
208 * @padding_data: number of bytes of padding of data
209 * @padding_hdr: number of bytes of padding between the header and the data
210 * @reserved: for now reserved entry
211 */
212struct smem_private_entry {
213 u16 canary; /* bytes are the same so no swapping needed */
214 __le16 item;
215 __le32 size; /* includes padding bytes */
216 __le16 padding_data;
217 __le16 padding_hdr;
218 __le32 reserved;
219};
220#define SMEM_PRIVATE_CANARY 0xa5a5
221
222/**
223 * struct smem_info - smem region info located after the table of contents
224 * @magic: magic number, must be SMEM_INFO_MAGIC
225 * @size: size of the smem region
226 * @base_addr: base address of the smem region
227 * @reserved: for now reserved entry
228 * @num_items: highest accepted item number
229 */
230struct smem_info {
231 u8 magic[4];
232 __le32 size;
233 __le32 base_addr;
234 __le32 reserved;
235 __le16 num_items;
236};
237
238static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
239
240/**
241 * struct smem_region - representation of a chunk of memory used for smem
242 * @aux_base: identifier of aux_mem base
243 * @virt_base: virtual base address of memory with this aux_mem identifier
244 * @size: size of the memory region
245 */
246struct smem_region {
247 u32 aux_base;
248 void __iomem *virt_base;
249 size_t size;
250};
251
252/**
253 * struct qcom_smem - device data for the smem device
254 * @dev: device pointer
255 * @global_partition: pointer to global partition when in use
256 * @global_cacheline: cacheline size for global partition
257 * @partitions: list of pointers to partitions affecting the current
258 * processor/host
259 * @cacheline: list of cacheline sizes for each host
260 * @item_count: max accepted item number
261 * @num_regions: number of @regions
262 * @regions: list of the memory regions defining the shared memory
263 */
264struct qcom_smem {
265 struct udevice *dev;
266
267 struct smem_partition_header *global_partition;
268 size_t global_cacheline;
269 struct smem_partition_header *partitions[SMEM_HOST_COUNT];
270 size_t cacheline[SMEM_HOST_COUNT];
271 u32 item_count;
272
273 unsigned int num_regions;
274 struct smem_region regions[0];
275};
276
277static struct smem_private_entry *
278phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
279{
280 void *p = phdr;
281
282 return p + le32_to_cpu(phdr->offset_free_uncached);
283}
284
285static void *phdr_to_first_cached_entry(struct smem_partition_header *phdr,
286 size_t cacheline)
287{
288 void *p = phdr;
289
290 return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*phdr), cacheline);
291}
292
293static void *phdr_to_last_cached_entry(struct smem_partition_header *phdr)
294{
295 void *p = phdr;
296
297 return p + le32_to_cpu(phdr->offset_free_cached);
298}
299
300static struct smem_private_entry *
301phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
302{
303 void *p = phdr;
304
305 return p + sizeof(*phdr);
306}
307
308static struct smem_private_entry *
309uncached_entry_next(struct smem_private_entry *e)
310{
311 void *p = e;
312
313 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
314 le32_to_cpu(e->size);
315}
316
317static struct smem_private_entry *
318cached_entry_next(struct smem_private_entry *e, size_t cacheline)
319{
320 void *p = e;
321
322 return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
323}
324
325static void *uncached_entry_to_item(struct smem_private_entry *e)
326{
327 void *p = e;
328
329 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
330}
331
332static void *cached_entry_to_item(struct smem_private_entry *e)
333{
334 void *p = e;
335
336 return p - le32_to_cpu(e->size);
337}
338
339/* Pointer to the one and only smem handle */
340static struct qcom_smem *__smem;
341
342static int qcom_smem_alloc_private(struct qcom_smem *smem,
343 struct smem_partition_header *phdr,
344 unsigned int item,
345 size_t size)
346{
347 struct smem_private_entry *hdr, *end;
348 size_t alloc_size;
349 void *cached;
350
351 hdr = phdr_to_first_uncached_entry(phdr);
352 end = phdr_to_last_uncached_entry(phdr);
353 cached = phdr_to_last_cached_entry(phdr);
354
355 while (hdr < end) {
356 if (hdr->canary != SMEM_PRIVATE_CANARY) {
357 dev_err(smem->dev,
358 "Found invalid canary in hosts %d:%d partition\n",
359 phdr->host0, phdr->host1);
360 return -EINVAL;
361 }
362
363 if (le16_to_cpu(hdr->item) == item)
364 return -EEXIST;
365
366 hdr = uncached_entry_next(hdr);
367 }
368
369 /* Check that we don't grow into the cached region */
370 alloc_size = sizeof(*hdr) + ALIGN(size, 8);
371 if ((void *)hdr + alloc_size >= cached) {
372 dev_err(smem->dev, "Out of memory\n");
373 return -ENOSPC;
374 }
375
376 hdr->canary = SMEM_PRIVATE_CANARY;
377 hdr->item = cpu_to_le16(item);
378 hdr->size = cpu_to_le32(ALIGN(size, 8));
379 hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
380 hdr->padding_hdr = 0;
381
382 /*
383 * Ensure the header is written before we advance the free offset, so
384 * that remote processors that does not take the remote spinlock still
385 * gets a consistent view of the linked list.
386 */
387 dmb();
388 le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
389
390 return 0;
391}
392
393static int qcom_smem_alloc_global(struct qcom_smem *smem,
394 unsigned int item,
395 size_t size)
396{
397 struct smem_global_entry *entry;
398 struct smem_header *header;
399
400 header = smem->regions[0].virt_base;
401 entry = &header->toc[item];
402 if (entry->allocated)
403 return -EEXIST;
404
405 size = ALIGN(size, 8);
406 if (WARN_ON(size > le32_to_cpu(header->available)))
407 return -ENOMEM;
408
409 entry->offset = header->free_offset;
410 entry->size = cpu_to_le32(size);
411
412 /*
413 * Ensure the header is consistent before we mark the item allocated,
414 * so that remote processors will get a consistent view of the item
415 * even though they do not take the spinlock on read.
416 */
417 dmb();
418 entry->allocated = cpu_to_le32(1);
419
420 le32_add_cpu(&header->free_offset, size);
421 le32_add_cpu(&header->available, -size);
422
423 return 0;
424}
425
426/**
427 * qcom_smem_alloc() - allocate space for a smem item
428 * @host: remote processor id, or -1
429 * @item: smem item handle
430 * @size: number of bytes to be allocated
431 *
432 * Allocate space for a given smem item of size @size, given that the item is
433 * not yet allocated.
434 */
435static int qcom_smem_alloc(unsigned int host, unsigned int item, size_t size)
436{
437 struct smem_partition_header *phdr;
438 int ret;
439
440 if (!__smem)
441 return -EPROBE_DEFER;
442
443 if (item < SMEM_ITEM_LAST_FIXED) {
444 dev_err(__smem->dev,
445 "Rejecting allocation of static entry %d\n", item);
446 return -EINVAL;
447 }
448
449 if (WARN_ON(item >= __smem->item_count))
450 return -EINVAL;
451
452 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
453 phdr = __smem->partitions[host];
454 ret = qcom_smem_alloc_private(__smem, phdr, item, size);
455 } else if (__smem->global_partition) {
456 phdr = __smem->global_partition;
457 ret = qcom_smem_alloc_private(__smem, phdr, item, size);
458 } else {
459 ret = qcom_smem_alloc_global(__smem, item, size);
460 }
461
462 return ret;
463}
464
465static void *qcom_smem_get_global(struct qcom_smem *smem,
466 unsigned int item,
467 size_t *size)
468{
469 struct smem_header *header;
470 struct smem_region *area;
471 struct smem_global_entry *entry;
472 u32 aux_base;
473 unsigned int i;
474
475 header = smem->regions[0].virt_base;
476 entry = &header->toc[item];
477 if (!entry->allocated)
478 return ERR_PTR(-ENXIO);
479
480 aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
481
482 for (i = 0; i < smem->num_regions; i++) {
483 area = &smem->regions[i];
484
485 if (area->aux_base == aux_base || !aux_base) {
486 if (size != NULL)
487 *size = le32_to_cpu(entry->size);
488 return area->virt_base + le32_to_cpu(entry->offset);
489 }
490 }
491
492 return ERR_PTR(-ENOENT);
493}
494
495static void *qcom_smem_get_private(struct qcom_smem *smem,
496 struct smem_partition_header *phdr,
497 size_t cacheline,
498 unsigned int item,
499 size_t *size)
500{
501 struct smem_private_entry *e, *end;
502
503 e = phdr_to_first_uncached_entry(phdr);
504 end = phdr_to_last_uncached_entry(phdr);
505
506 while (e < end) {
507 if (e->canary != SMEM_PRIVATE_CANARY)
508 goto invalid_canary;
509
510 if (le16_to_cpu(e->item) == item) {
511 if (size != NULL)
512 *size = le32_to_cpu(e->size) -
513 le16_to_cpu(e->padding_data);
514
515 return uncached_entry_to_item(e);
516 }
517
518 e = uncached_entry_next(e);
519 }
520
521 /* Item was not found in the uncached list, search the cached list */
522
523 e = phdr_to_first_cached_entry(phdr, cacheline);
524 end = phdr_to_last_cached_entry(phdr);
525
526 while (e > end) {
527 if (e->canary != SMEM_PRIVATE_CANARY)
528 goto invalid_canary;
529
530 if (le16_to_cpu(e->item) == item) {
531 if (size != NULL)
532 *size = le32_to_cpu(e->size) -
533 le16_to_cpu(e->padding_data);
534
535 return cached_entry_to_item(e);
536 }
537
538 e = cached_entry_next(e, cacheline);
539 }
540
541 return ERR_PTR(-ENOENT);
542
543invalid_canary:
544 dev_err(smem->dev, "Found invalid canary in hosts %d:%d partition\n",
545 phdr->host0, phdr->host1);
546
547 return ERR_PTR(-EINVAL);
548}
549
550/**
551 * qcom_smem_get() - resolve ptr of size of a smem item
552 * @host: the remote processor, or -1
553 * @item: smem item handle
554 * @size: pointer to be filled out with size of the item
555 *
556 * Looks up smem item and returns pointer to it. Size of smem
557 * item is returned in @size.
558 */
559static void *qcom_smem_get(unsigned int host, unsigned int item, size_t *size)
560{
561 struct smem_partition_header *phdr;
562 size_t cacheln;
563 void *ptr = ERR_PTR(-EPROBE_DEFER);
564
565 if (!__smem)
566 return ptr;
567
568 if (WARN_ON(item >= __smem->item_count))
569 return ERR_PTR(-EINVAL);
570
571 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
572 phdr = __smem->partitions[host];
573 cacheln = __smem->cacheline[host];
574 ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
575 } else if (__smem->global_partition) {
576 phdr = __smem->global_partition;
577 cacheln = __smem->global_cacheline;
578 ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
579 } else {
580 ptr = qcom_smem_get_global(__smem, item, size);
581 }
582
583 return ptr;
584
585}
586
587/**
588 * qcom_smem_get_free_space() - retrieve amount of free space in a partition
589 * @host: the remote processor identifying a partition, or -1
590 *
591 * To be used by smem clients as a quick way to determine if any new
592 * allocations has been made.
593 */
594static int qcom_smem_get_free_space(unsigned int host)
595{
596 struct smem_partition_header *phdr;
597 struct smem_header *header;
598 unsigned int ret;
599
600 if (!__smem)
601 return -EPROBE_DEFER;
602
603 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
604 phdr = __smem->partitions[host];
605 ret = le32_to_cpu(phdr->offset_free_cached) -
606 le32_to_cpu(phdr->offset_free_uncached);
607 } else if (__smem->global_partition) {
608 phdr = __smem->global_partition;
609 ret = le32_to_cpu(phdr->offset_free_cached) -
610 le32_to_cpu(phdr->offset_free_uncached);
611 } else {
612 header = __smem->regions[0].virt_base;
613 ret = le32_to_cpu(header->available);
614 }
615
616 return ret;
617}
618
619static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
620{
621 struct smem_header *header;
622 __le32 *versions;
623
624 header = smem->regions[0].virt_base;
625 versions = header->version;
626
627 return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
628}
629
630static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
631{
632 struct smem_ptable *ptable;
633 u32 version;
634
635 ptable = smem->regions[0].virt_base + smem->regions[0].size - SZ_4K;
636 if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
637 return ERR_PTR(-ENOENT);
638
639 version = le32_to_cpu(ptable->version);
640 if (version != 1) {
641 dev_err(smem->dev,
642 "Unsupported partition header version %d\n", version);
643 return ERR_PTR(-EINVAL);
644 }
645 return ptable;
646}
647
648static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
649{
650 struct smem_ptable *ptable;
651 struct smem_info *info;
652
653 ptable = qcom_smem_get_ptable(smem);
654 if (IS_ERR_OR_NULL(ptable))
655 return SMEM_ITEM_COUNT;
656
657 info = (struct smem_info *)&ptable->entry[ptable->num_entries];
658 if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
659 return SMEM_ITEM_COUNT;
660
661 return le16_to_cpu(info->num_items);
662}
663
664static int qcom_smem_set_global_partition(struct qcom_smem *smem)
665{
666 struct smem_partition_header *header;
667 struct smem_ptable_entry *entry = NULL;
668 struct smem_ptable *ptable;
669 u32 host0, host1, size;
670 int i;
671
672 ptable = qcom_smem_get_ptable(smem);
673 if (IS_ERR(ptable))
674 return PTR_ERR(ptable);
675
676 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
677 entry = &ptable->entry[i];
678 host0 = le16_to_cpu(entry->host0);
679 host1 = le16_to_cpu(entry->host1);
680
681 if (host0 == SMEM_GLOBAL_HOST && host0 == host1)
682 break;
683 }
684
685 if (!entry) {
686 dev_err(smem->dev, "Missing entry for global partition\n");
687 return -EINVAL;
688 }
689
690 if (!le32_to_cpu(entry->offset) || !le32_to_cpu(entry->size)) {
691 dev_err(smem->dev, "Invalid entry for global partition\n");
692 return -EINVAL;
693 }
694
695 if (smem->global_partition) {
696 dev_err(smem->dev, "Already found the global partition\n");
697 return -EINVAL;
698 }
699
700 header = smem->regions[0].virt_base + le32_to_cpu(entry->offset);
701 host0 = le16_to_cpu(header->host0);
702 host1 = le16_to_cpu(header->host1);
703
704 if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
705 dev_err(smem->dev, "Global partition has invalid magic\n");
706 return -EINVAL;
707 }
708
709 if (host0 != SMEM_GLOBAL_HOST && host1 != SMEM_GLOBAL_HOST) {
710 dev_err(smem->dev, "Global partition hosts are invalid\n");
711 return -EINVAL;
712 }
713
714 if (le32_to_cpu(header->size) != le32_to_cpu(entry->size)) {
715 dev_err(smem->dev, "Global partition has invalid size\n");
716 return -EINVAL;
717 }
718
719 size = le32_to_cpu(header->offset_free_uncached);
720 if (size > le32_to_cpu(header->size)) {
721 dev_err(smem->dev,
722 "Global partition has invalid free pointer\n");
723 return -EINVAL;
724 }
725
726 smem->global_partition = header;
727 smem->global_cacheline = le32_to_cpu(entry->cacheline);
728
729 return 0;
730}
731
732static int qcom_smem_enumerate_partitions(struct qcom_smem *smem,
733 unsigned int local_host)
734{
735 struct smem_partition_header *header;
736 struct smem_ptable_entry *entry;
737 struct smem_ptable *ptable;
738 unsigned int remote_host;
739 u32 host0, host1;
740 int i;
741
742 ptable = qcom_smem_get_ptable(smem);
743 if (IS_ERR(ptable))
744 return PTR_ERR(ptable);
745
746 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
747 entry = &ptable->entry[i];
748 host0 = le16_to_cpu(entry->host0);
749 host1 = le16_to_cpu(entry->host1);
750
751 if (host0 != local_host && host1 != local_host)
752 continue;
753
754 if (!le32_to_cpu(entry->offset))
755 continue;
756
757 if (!le32_to_cpu(entry->size))
758 continue;
759
760 if (host0 == local_host)
761 remote_host = host1;
762 else
763 remote_host = host0;
764
765 if (remote_host >= SMEM_HOST_COUNT) {
766 dev_err(smem->dev,
767 "Invalid remote host %d\n",
768 remote_host);
769 return -EINVAL;
770 }
771
772 if (smem->partitions[remote_host]) {
773 dev_err(smem->dev,
774 "Already found a partition for host %d\n",
775 remote_host);
776 return -EINVAL;
777 }
778
779 header = smem->regions[0].virt_base + le32_to_cpu(entry->offset);
780 host0 = le16_to_cpu(header->host0);
781 host1 = le16_to_cpu(header->host1);
782
783 if (memcmp(header->magic, SMEM_PART_MAGIC,
784 sizeof(header->magic))) {
785 dev_err(smem->dev,
786 "Partition %d has invalid magic\n", i);
787 return -EINVAL;
788 }
789
790 if (host0 != local_host && host1 != local_host) {
791 dev_err(smem->dev,
792 "Partition %d hosts are invalid\n", i);
793 return -EINVAL;
794 }
795
796 if (host0 != remote_host && host1 != remote_host) {
797 dev_err(smem->dev,
798 "Partition %d hosts are invalid\n", i);
799 return -EINVAL;
800 }
801
802 if (le32_to_cpu(header->size) != le32_to_cpu(entry->size)) {
803 dev_err(smem->dev,
804 "Partition %d has invalid size\n", i);
805 return -EINVAL;
806 }
807
808 if (le32_to_cpu(header->offset_free_uncached) > le32_to_cpu(header->size)) {
809 dev_err(smem->dev,
810 "Partition %d has invalid free pointer\n", i);
811 return -EINVAL;
812 }
813
814 smem->partitions[remote_host] = header;
815 smem->cacheline[remote_host] = le32_to_cpu(entry->cacheline);
816 }
817
818 return 0;
819}
820
821static int qcom_smem_map_memory(struct qcom_smem *smem, struct udevice *dev,
822 const char *name, int i)
823{
824 struct fdt_resource r;
825 int ret;
826 int node = dev_of_offset(dev);
827
828 ret = fdtdec_lookup_phandle(gd->fdt_blob, node, name);
829 if (ret < 0) {
830 dev_err(dev, "No %s specified\n", name);
831 return -EINVAL;
832 }
833
834 ret = fdt_get_resource(gd->fdt_blob, ret, "reg", 0, &r);
835 if (ret)
836 return ret;
837
838 smem->regions[i].aux_base = (u32)r.start;
839 smem->regions[i].size = fdt_resource_size(&r);
840 smem->regions[i].virt_base = devm_ioremap(dev, r.start, fdt_resource_size(&r));
841 if (!smem->regions[i].virt_base)
842 return -ENOMEM;
843
844 return 0;
845}
846
847static int qcom_smem_probe(struct udevice *dev)
848{
849 struct smem_header *header;
850 struct qcom_smem *smem;
851 size_t array_size;
852 int num_regions;
853 u32 version;
854 int ret;
855 int node = dev_of_offset(dev);
856
857 num_regions = 1;
858 if (fdtdec_lookup_phandle(gd->fdt_blob, node, "qcomrpm-msg-ram") >= 0)
859 num_regions++;
860
861 array_size = num_regions * sizeof(struct smem_region);
862 smem = devm_kzalloc(dev, sizeof(*smem) + array_size, GFP_KERNEL);
863 if (!smem)
864 return -ENOMEM;
865
866 smem->dev = dev;
867 smem->num_regions = num_regions;
868
869 ret = qcom_smem_map_memory(smem, dev, "memory-region", 0);
870 if (ret)
871 return ret;
872
873 if (num_regions > 1) {
874 ret = qcom_smem_map_memory(smem, dev,
875 "qcom,rpm-msg-ram", 1);
876 if (ret)
877 return ret;
878 }
879
880 header = smem->regions[0].virt_base;
881 if (le32_to_cpu(header->initialized) != 1 ||
882 le32_to_cpu(header->reserved)) {
Sean Anderson68eca302020-09-15 10:45:10 -0400883 dev_err(dev, "SMEM is not initialized by SBL\n");
Ramon Fried4b4bd492018-07-02 02:57:56 +0300884 return -EINVAL;
885 }
886
887 version = qcom_smem_get_sbl_version(smem);
888 switch (version >> 16) {
889 case SMEM_GLOBAL_PART_VERSION:
890 ret = qcom_smem_set_global_partition(smem);
891 if (ret < 0)
892 return ret;
893 smem->item_count = qcom_smem_get_item_count(smem);
894 break;
895 case SMEM_GLOBAL_HEAP_VERSION:
896 smem->item_count = SMEM_ITEM_COUNT;
897 break;
898 default:
899 dev_err(dev, "Unsupported SMEM version 0x%x\n", version);
900 return -EINVAL;
901 }
902
903 ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
904 if (ret < 0 && ret != -ENOENT)
905 return ret;
906
907 __smem = smem;
908
909 return 0;
910}
911
912static int qcom_smem_remove(struct udevice *dev)
913{
914 __smem = NULL;
915
916 return 0;
917}
918
919const struct udevice_id qcom_smem_of_match[] = {
920 { .compatible = "qcom,smem" },
921 { }
922};
923
924static const struct smem_ops msm_smem_ops = {
925 .alloc = qcom_smem_alloc,
926 .get = qcom_smem_get,
927 .get_free_space = qcom_smem_get_free_space,
928};
929
930U_BOOT_DRIVER(qcom_smem) = {
931 .name = "qcom_smem",
932 .id = UCLASS_SMEM,
933 .of_match = qcom_smem_of_match,
934 .ops = &msm_smem_ops,
935 .probe = qcom_smem_probe,
936 .remove = qcom_smem_remove,
937};