blob: e53f341dcf81a2f809cc9532f8eb7b022f8474ea [file] [log] [blame]
Stefan Roesed4b75c42009-06-09 16:57:03 +02001/*
2 * Copyright 2004-2008 Freescale Semiconductor, Inc.
3 * Copyright 2009 Semihalf.
4 * (C) Copyright 2009 Stefan Roese <sr@denx.de>
5 *
6 * Based on original driver from Freescale Semiconductor
7 * written by John Rigby <jrigby@freescale.com> on basis
8 * of drivers/mtd/nand/mxc_nand.c. Reworked and extended
9 * Piotr Ziecik <kosmo@semihalf.com>.
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version 2
14 * of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
23 * MA 02110-1301, USA.
24 */
25
26#include <common.h>
27#include <malloc.h>
28
29#include <linux/mtd/mtd.h>
30#include <linux/mtd/nand.h>
31#include <linux/mtd/nand_ecc.h>
Mike Frysinger11d1a092012-04-09 13:39:55 +000032#include <linux/compat.h>
Stefan Roesed4b75c42009-06-09 16:57:03 +020033
34#include <asm/errno.h>
35#include <asm/io.h>
36#include <asm/processor.h>
37#include <nand.h>
38
39#define DRV_NAME "mpc5121_nfc"
40
41/* Timeouts */
42#define NFC_RESET_TIMEOUT 1000 /* 1 ms */
43#define NFC_TIMEOUT 2000 /* 2000 us */
44
45/* Addresses for NFC MAIN RAM BUFFER areas */
46#define NFC_MAIN_AREA(n) ((n) * 0x200)
47
48/* Addresses for NFC SPARE BUFFER areas */
49#define NFC_SPARE_BUFFERS 8
50#define NFC_SPARE_LEN 0x40
51#define NFC_SPARE_AREA(n) (0x1000 + ((n) * NFC_SPARE_LEN))
52
53/* MPC5121 NFC registers */
54#define NFC_BUF_ADDR 0x1E04
55#define NFC_FLASH_ADDR 0x1E06
56#define NFC_FLASH_CMD 0x1E08
57#define NFC_CONFIG 0x1E0A
58#define NFC_ECC_STATUS1 0x1E0C
59#define NFC_ECC_STATUS2 0x1E0E
60#define NFC_SPAS 0x1E10
61#define NFC_WRPROT 0x1E12
62#define NFC_NF_WRPRST 0x1E18
63#define NFC_CONFIG1 0x1E1A
64#define NFC_CONFIG2 0x1E1C
65#define NFC_UNLOCKSTART_BLK0 0x1E20
66#define NFC_UNLOCKEND_BLK0 0x1E22
67#define NFC_UNLOCKSTART_BLK1 0x1E24
68#define NFC_UNLOCKEND_BLK1 0x1E26
69#define NFC_UNLOCKSTART_BLK2 0x1E28
70#define NFC_UNLOCKEND_BLK2 0x1E2A
71#define NFC_UNLOCKSTART_BLK3 0x1E2C
72#define NFC_UNLOCKEND_BLK3 0x1E2E
73
74/* Bit Definitions: NFC_BUF_ADDR */
75#define NFC_RBA_MASK (7 << 0)
76#define NFC_ACTIVE_CS_SHIFT 5
77#define NFC_ACTIVE_CS_MASK (3 << NFC_ACTIVE_CS_SHIFT)
78
79/* Bit Definitions: NFC_CONFIG */
80#define NFC_BLS_UNLOCKED (1 << 1)
81
82/* Bit Definitions: NFC_CONFIG1 */
83#define NFC_ECC_4BIT (1 << 0)
84#define NFC_FULL_PAGE_DMA (1 << 1)
85#define NFC_SPARE_ONLY (1 << 2)
86#define NFC_ECC_ENABLE (1 << 3)
87#define NFC_INT_MASK (1 << 4)
88#define NFC_BIG_ENDIAN (1 << 5)
89#define NFC_RESET (1 << 6)
90#define NFC_CE (1 << 7)
91#define NFC_ONE_CYCLE (1 << 8)
92#define NFC_PPB_32 (0 << 9)
93#define NFC_PPB_64 (1 << 9)
94#define NFC_PPB_128 (2 << 9)
95#define NFC_PPB_256 (3 << 9)
96#define NFC_PPB_MASK (3 << 9)
97#define NFC_FULL_PAGE_INT (1 << 11)
98
99/* Bit Definitions: NFC_CONFIG2 */
100#define NFC_COMMAND (1 << 0)
101#define NFC_ADDRESS (1 << 1)
102#define NFC_INPUT (1 << 2)
103#define NFC_OUTPUT (1 << 3)
104#define NFC_ID (1 << 4)
105#define NFC_STATUS (1 << 5)
106#define NFC_CMD_FAIL (1 << 15)
107#define NFC_INT (1 << 15)
108
109/* Bit Definitions: NFC_WRPROT */
110#define NFC_WPC_LOCK_TIGHT (1 << 0)
111#define NFC_WPC_LOCK (1 << 1)
112#define NFC_WPC_UNLOCK (1 << 2)
113
114struct mpc5121_nfc_prv {
115 struct mtd_info mtd;
116 struct nand_chip chip;
117 int irq;
118 void __iomem *regs;
119 struct clk *clk;
120 uint column;
121 int spareonly;
122 int chipsel;
123};
124
125int mpc5121_nfc_chip = 0;
126
127static void mpc5121_nfc_done(struct mtd_info *mtd);
128
129/* Read NFC register */
130static inline u16 nfc_read(struct mtd_info *mtd, uint reg)
131{
132 struct nand_chip *chip = mtd->priv;
133 struct mpc5121_nfc_prv *prv = chip->priv;
134
135 return in_be16(prv->regs + reg);
136}
137
138/* Write NFC register */
139static inline void nfc_write(struct mtd_info *mtd, uint reg, u16 val)
140{
141 struct nand_chip *chip = mtd->priv;
142 struct mpc5121_nfc_prv *prv = chip->priv;
143
144 out_be16(prv->regs + reg, val);
145}
146
147/* Set bits in NFC register */
148static inline void nfc_set(struct mtd_info *mtd, uint reg, u16 bits)
149{
150 nfc_write(mtd, reg, nfc_read(mtd, reg) | bits);
151}
152
153/* Clear bits in NFC register */
154static inline void nfc_clear(struct mtd_info *mtd, uint reg, u16 bits)
155{
156 nfc_write(mtd, reg, nfc_read(mtd, reg) & ~bits);
157}
158
159/* Invoke address cycle */
160static inline void mpc5121_nfc_send_addr(struct mtd_info *mtd, u16 addr)
161{
162 nfc_write(mtd, NFC_FLASH_ADDR, addr);
163 nfc_write(mtd, NFC_CONFIG2, NFC_ADDRESS);
164 mpc5121_nfc_done(mtd);
165}
166
167/* Invoke command cycle */
168static inline void mpc5121_nfc_send_cmd(struct mtd_info *mtd, u16 cmd)
169{
170 nfc_write(mtd, NFC_FLASH_CMD, cmd);
171 nfc_write(mtd, NFC_CONFIG2, NFC_COMMAND);
172 mpc5121_nfc_done(mtd);
173}
174
175/* Send data from NFC buffers to NAND flash */
176static inline void mpc5121_nfc_send_prog_page(struct mtd_info *mtd)
177{
178 nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK);
179 nfc_write(mtd, NFC_CONFIG2, NFC_INPUT);
180 mpc5121_nfc_done(mtd);
181}
182
183/* Receive data from NAND flash */
184static inline void mpc5121_nfc_send_read_page(struct mtd_info *mtd)
185{
186 nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK);
187 nfc_write(mtd, NFC_CONFIG2, NFC_OUTPUT);
188 mpc5121_nfc_done(mtd);
189}
190
191/* Receive ID from NAND flash */
192static inline void mpc5121_nfc_send_read_id(struct mtd_info *mtd)
193{
194 nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK);
195 nfc_write(mtd, NFC_CONFIG2, NFC_ID);
196 mpc5121_nfc_done(mtd);
197}
198
199/* Receive status from NAND flash */
200static inline void mpc5121_nfc_send_read_status(struct mtd_info *mtd)
201{
202 nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK);
203 nfc_write(mtd, NFC_CONFIG2, NFC_STATUS);
204 mpc5121_nfc_done(mtd);
205}
206
207static void mpc5121_nfc_done(struct mtd_info *mtd)
208{
209 int max_retries = NFC_TIMEOUT;
210
211 while (1) {
212 max_retries--;
213 if (nfc_read(mtd, NFC_CONFIG2) & NFC_INT)
214 break;
215 udelay(1);
216 }
217
218 if (max_retries <= 0)
219 printk(KERN_WARNING DRV_NAME
220 ": Timeout while waiting for completion.\n");
221}
222
223/* Do address cycle(s) */
224static void mpc5121_nfc_addr_cycle(struct mtd_info *mtd, int column, int page)
225{
226 struct nand_chip *chip = mtd->priv;
227 u32 pagemask = chip->pagemask;
228
229 if (column != -1) {
230 mpc5121_nfc_send_addr(mtd, column);
231 if (mtd->writesize > 512)
232 mpc5121_nfc_send_addr(mtd, column >> 8);
233 }
234
235 if (page != -1) {
236 do {
237 mpc5121_nfc_send_addr(mtd, page & 0xFF);
238 page >>= 8;
239 pagemask >>= 8;
240 } while (pagemask);
241 }
242}
243
244/* Control chip select signals */
245
246/*
247 * Selecting the active device:
248 *
249 * This is different than the linux version. Switching between chips
250 * is done via board_nand_select_device(). The Linux select_chip
251 * function used here in U-Boot has only 2 valid chip numbers:
252 * 0 select
253 * -1 deselect
254 */
255
256/*
257 * Implement it as a weak default, so that boards with a specific
258 * chip-select routine can use their own function.
259 */
260void __mpc5121_nfc_select_chip(struct mtd_info *mtd, int chip)
261{
262 if (chip < 0) {
263 nfc_clear(mtd, NFC_CONFIG1, NFC_CE);
264 return;
265 }
266
267 nfc_clear(mtd, NFC_BUF_ADDR, NFC_ACTIVE_CS_MASK);
268 nfc_set(mtd, NFC_BUF_ADDR, (chip << NFC_ACTIVE_CS_SHIFT) &
269 NFC_ACTIVE_CS_MASK);
270 nfc_set(mtd, NFC_CONFIG1, NFC_CE);
271}
272void mpc5121_nfc_select_chip(struct mtd_info *mtd, int chip)
273 __attribute__((weak, alias("__mpc5121_nfc_select_chip")));
274
275void board_nand_select_device(struct nand_chip *nand, int chip)
276{
277 /*
278 * Only save this chip number in global variable here. This
279 * will be used later in mpc5121_nfc_select_chip().
280 */
281 mpc5121_nfc_chip = chip;
282}
283
284/* Read NAND Ready/Busy signal */
285static int mpc5121_nfc_dev_ready(struct mtd_info *mtd)
286{
287 /*
288 * NFC handles ready/busy signal internally. Therefore, this function
289 * always returns status as ready.
290 */
291 return 1;
292}
293
294/* Write command to NAND flash */
295static void mpc5121_nfc_command(struct mtd_info *mtd, unsigned command,
296 int column, int page)
297{
298 struct nand_chip *chip = mtd->priv;
299 struct mpc5121_nfc_prv *prv = chip->priv;
300
301 prv->column = (column >= 0) ? column : 0;
302 prv->spareonly = 0;
303
304 switch (command) {
305 case NAND_CMD_PAGEPROG:
306 mpc5121_nfc_send_prog_page(mtd);
307 break;
308 /*
309 * NFC does not support sub-page reads and writes,
310 * so emulate them using full page transfers.
311 */
312 case NAND_CMD_READ0:
313 column = 0;
314 break;
315
316 case NAND_CMD_READ1:
317 prv->column += 256;
318 command = NAND_CMD_READ0;
319 column = 0;
320 break;
321
322 case NAND_CMD_READOOB:
323 prv->spareonly = 1;
324 command = NAND_CMD_READ0;
325 column = 0;
326 break;
327
328 case NAND_CMD_SEQIN:
329 mpc5121_nfc_command(mtd, NAND_CMD_READ0, column, page);
330 column = 0;
331 break;
332
333 case NAND_CMD_ERASE1:
334 case NAND_CMD_ERASE2:
335 case NAND_CMD_READID:
336 case NAND_CMD_STATUS:
Paul Gibsone4596ff2009-09-16 10:05:00 +1000337 case NAND_CMD_RESET:
Stefan Roesed4b75c42009-06-09 16:57:03 +0200338 break;
339
340 default:
341 return;
342 }
343
344 mpc5121_nfc_send_cmd(mtd, command);
345 mpc5121_nfc_addr_cycle(mtd, column, page);
346
347 switch (command) {
348 case NAND_CMD_READ0:
349 if (mtd->writesize > 512)
350 mpc5121_nfc_send_cmd(mtd, NAND_CMD_READSTART);
351 mpc5121_nfc_send_read_page(mtd);
352 break;
353
354 case NAND_CMD_READID:
355 mpc5121_nfc_send_read_id(mtd);
356 break;
357
358 case NAND_CMD_STATUS:
359 mpc5121_nfc_send_read_status(mtd);
360 if (chip->options & NAND_BUSWIDTH_16)
361 prv->column = 1;
362 else
363 prv->column = 0;
364 break;
365 }
366}
367
368/* Copy data from/to NFC spare buffers. */
369static void mpc5121_nfc_copy_spare(struct mtd_info *mtd, uint offset,
370 u8 * buffer, uint size, int wr)
371{
372 struct nand_chip *nand = mtd->priv;
373 struct mpc5121_nfc_prv *prv = nand->priv;
374 uint o, s, sbsize, blksize;
375
376 /*
377 * NAND spare area is available through NFC spare buffers.
378 * The NFC divides spare area into (page_size / 512) chunks.
379 * Each chunk is placed into separate spare memory area, using
380 * first (spare_size / num_of_chunks) bytes of the buffer.
381 *
382 * For NAND device in which the spare area is not divided fully
383 * by the number of chunks, number of used bytes in each spare
384 * buffer is rounded down to the nearest even number of bytes,
385 * and all remaining bytes are added to the last used spare area.
386 *
387 * For more information read section 26.6.10 of MPC5121e
388 * Microcontroller Reference Manual, Rev. 3.
389 */
390
391 /* Calculate number of valid bytes in each spare buffer */
392 sbsize = (mtd->oobsize / (mtd->writesize / 512)) & ~1;
393
394 while (size) {
395 /* Calculate spare buffer number */
396 s = offset / sbsize;
397 if (s > NFC_SPARE_BUFFERS - 1)
398 s = NFC_SPARE_BUFFERS - 1;
399
400 /*
401 * Calculate offset to requested data block in selected spare
402 * buffer and its size.
403 */
404 o = offset - (s * sbsize);
405 blksize = min(sbsize - o, size);
406
407 if (wr)
408 memcpy_toio(prv->regs + NFC_SPARE_AREA(s) + o,
409 buffer, blksize);
410 else
411 memcpy_fromio(buffer,
412 prv->regs + NFC_SPARE_AREA(s) + o,
413 blksize);
414
415 buffer += blksize;
416 offset += blksize;
417 size -= blksize;
418 };
419}
420
421/* Copy data from/to NFC main and spare buffers */
422static void mpc5121_nfc_buf_copy(struct mtd_info *mtd, u_char * buf, int len,
423 int wr)
424{
425 struct nand_chip *chip = mtd->priv;
426 struct mpc5121_nfc_prv *prv = chip->priv;
427 uint c = prv->column;
428 uint l;
429
430 /* Handle spare area access */
431 if (prv->spareonly || c >= mtd->writesize) {
432 /* Calculate offset from beginning of spare area */
433 if (c >= mtd->writesize)
434 c -= mtd->writesize;
435
436 prv->column += len;
437 mpc5121_nfc_copy_spare(mtd, c, buf, len, wr);
438 return;
439 }
440
441 /*
442 * Handle main area access - limit copy length to prevent
443 * crossing main/spare boundary.
444 */
445 l = min((uint) len, mtd->writesize - c);
446 prv->column += l;
447
448 if (wr)
449 memcpy_toio(prv->regs + NFC_MAIN_AREA(0) + c, buf, l);
450 else
451 memcpy_fromio(buf, prv->regs + NFC_MAIN_AREA(0) + c, l);
452
453 /* Handle crossing main/spare boundary */
454 if (l != len) {
455 buf += l;
456 len -= l;
457 mpc5121_nfc_buf_copy(mtd, buf, len, wr);
458 }
459}
460
461/* Read data from NFC buffers */
462static void mpc5121_nfc_read_buf(struct mtd_info *mtd, u_char * buf, int len)
463{
464 mpc5121_nfc_buf_copy(mtd, buf, len, 0);
465}
466
467/* Write data to NFC buffers */
468static void mpc5121_nfc_write_buf(struct mtd_info *mtd,
469 const u_char * buf, int len)
470{
471 mpc5121_nfc_buf_copy(mtd, (u_char *) buf, len, 1);
472}
473
474/* Compare buffer with NAND flash */
475static int mpc5121_nfc_verify_buf(struct mtd_info *mtd,
476 const u_char * buf, int len)
477{
478 u_char tmp[256];
479 uint bsize;
480
481 while (len) {
482 bsize = min(len, 256);
483 mpc5121_nfc_read_buf(mtd, tmp, bsize);
484
485 if (memcmp(buf, tmp, bsize))
486 return 1;
487
488 buf += bsize;
489 len -= bsize;
490 }
491
492 return 0;
493}
494
495/* Read byte from NFC buffers */
496static u8 mpc5121_nfc_read_byte(struct mtd_info *mtd)
497{
498 u8 tmp;
499
500 mpc5121_nfc_read_buf(mtd, &tmp, sizeof(tmp));
501
502 return tmp;
503}
504
505/* Read word from NFC buffers */
506static u16 mpc5121_nfc_read_word(struct mtd_info *mtd)
507{
508 u16 tmp;
509
510 mpc5121_nfc_read_buf(mtd, (u_char *) & tmp, sizeof(tmp));
511
512 return tmp;
513}
514
515/*
516 * Read NFC configuration from Reset Config Word
517 *
518 * NFC is configured during reset in basis of information stored
519 * in Reset Config Word. There is no other way to set NAND block
520 * size, spare size and bus width.
521 */
522static int mpc5121_nfc_read_hw_config(struct mtd_info *mtd)
523{
524 immap_t *im = (immap_t *)CONFIG_SYS_IMMR;
525 struct nand_chip *chip = mtd->priv;
526 uint rcw_pagesize = 0;
527 uint rcw_sparesize = 0;
528 uint rcw_width;
529 uint rcwh;
530 uint romloc, ps;
531
532 rcwh = in_be32(&(im->reset.rcwh));
533
534 /* Bit 6: NFC bus width */
535 rcw_width = ((rcwh >> 6) & 0x1) ? 2 : 1;
536
537 /* Bit 7: NFC Page/Spare size */
538 ps = (rcwh >> 7) & 0x1;
539
540 /* Bits [22:21]: ROM Location */
541 romloc = (rcwh >> 21) & 0x3;
542
543 /* Decode RCW bits */
544 switch ((ps << 2) | romloc) {
545 case 0x00:
546 case 0x01:
547 rcw_pagesize = 512;
548 rcw_sparesize = 16;
549 break;
550 case 0x02:
551 case 0x03:
552 rcw_pagesize = 4096;
553 rcw_sparesize = 128;
554 break;
555 case 0x04:
556 case 0x05:
557 rcw_pagesize = 2048;
558 rcw_sparesize = 64;
559 break;
560 case 0x06:
561 case 0x07:
562 rcw_pagesize = 4096;
563 rcw_sparesize = 218;
564 break;
565 }
566
567 mtd->writesize = rcw_pagesize;
568 mtd->oobsize = rcw_sparesize;
569 if (rcw_width == 2)
570 chip->options |= NAND_BUSWIDTH_16;
571
572 debug(KERN_NOTICE DRV_NAME ": Configured for "
573 "%u-bit NAND, page size %u with %u spare.\n",
574 rcw_width * 8, rcw_pagesize, rcw_sparesize);
575 return 0;
576}
577
578int board_nand_init(struct nand_chip *chip)
579{
580 struct mpc5121_nfc_prv *prv;
581 struct mtd_info *mtd;
582 int resettime = 0;
583 int retval = 0;
584 int rev;
585 static int chip_nr = 0;
586
587 /*
588 * Check SoC revision. This driver supports only NFC
589 * in MPC5121 revision 2.
590 */
591 rev = (mfspr(SPRN_SVR) >> 4) & 0xF;
592 if (rev != 2) {
593 printk(KERN_ERR DRV_NAME
594 ": SoC revision %u is not supported!\n", rev);
595 return -ENXIO;
596 }
597
598 prv = malloc(sizeof(*prv));
599 if (!prv) {
600 printk(KERN_ERR DRV_NAME ": Memory exhausted!\n");
601 return -ENOMEM;
602 }
603
604 mtd = &nand_info[chip_nr++];
605 mtd->priv = chip;
606 chip->priv = prv;
607
608 /* Read NFC configuration from Reset Config Word */
609 retval = mpc5121_nfc_read_hw_config(mtd);
610 if (retval) {
611 printk(KERN_ERR DRV_NAME ": Unable to read NFC config!\n");
612 return retval;
613 }
614
615 prv->regs = (void __iomem *)CONFIG_SYS_NAND_BASE;
616 chip->dev_ready = mpc5121_nfc_dev_ready;
617 chip->cmdfunc = mpc5121_nfc_command;
618 chip->read_byte = mpc5121_nfc_read_byte;
619 chip->read_word = mpc5121_nfc_read_word;
620 chip->read_buf = mpc5121_nfc_read_buf;
621 chip->write_buf = mpc5121_nfc_write_buf;
622 chip->verify_buf = mpc5121_nfc_verify_buf;
623 chip->select_chip = mpc5121_nfc_select_chip;
Sergey Lapin3a38a552013-01-14 03:46:50 +0000624 chip->bbt_options = NAND_BBT_USE_FLASH;
Stefan Roesed4b75c42009-06-09 16:57:03 +0200625 chip->ecc.mode = NAND_ECC_SOFT;
626
627 /* Reset NAND Flash controller */
628 nfc_set(mtd, NFC_CONFIG1, NFC_RESET);
629 while (nfc_read(mtd, NFC_CONFIG1) & NFC_RESET) {
630 if (resettime++ >= NFC_RESET_TIMEOUT) {
631 printk(KERN_ERR DRV_NAME
632 ": Timeout while resetting NFC!\n");
633 retval = -EINVAL;
634 goto error;
635 }
636
637 udelay(1);
638 }
639
640 /* Enable write to NFC memory */
641 nfc_write(mtd, NFC_CONFIG, NFC_BLS_UNLOCKED);
642
643 /* Enable write to all NAND pages */
644 nfc_write(mtd, NFC_UNLOCKSTART_BLK0, 0x0000);
645 nfc_write(mtd, NFC_UNLOCKEND_BLK0, 0xFFFF);
646 nfc_write(mtd, NFC_WRPROT, NFC_WPC_UNLOCK);
647
648 /*
649 * Setup NFC:
650 * - Big Endian transfers,
651 * - Interrupt after full page read/write.
652 */
653 nfc_write(mtd, NFC_CONFIG1, NFC_BIG_ENDIAN | NFC_INT_MASK |
654 NFC_FULL_PAGE_INT);
655
656 /* Set spare area size */
657 nfc_write(mtd, NFC_SPAS, mtd->oobsize >> 1);
658
659 /* Detect NAND chips */
660 if (nand_scan(mtd, 1)) {
661 printk(KERN_ERR DRV_NAME ": NAND Flash not found !\n");
662 retval = -ENXIO;
663 goto error;
664 }
665
666 /* Set erase block size */
667 switch (mtd->erasesize / mtd->writesize) {
668 case 32:
669 nfc_set(mtd, NFC_CONFIG1, NFC_PPB_32);
670 break;
671
672 case 64:
673 nfc_set(mtd, NFC_CONFIG1, NFC_PPB_64);
674 break;
675
676 case 128:
677 nfc_set(mtd, NFC_CONFIG1, NFC_PPB_128);
678 break;
679
680 case 256:
681 nfc_set(mtd, NFC_CONFIG1, NFC_PPB_256);
682 break;
683
684 default:
685 printk(KERN_ERR DRV_NAME ": Unsupported NAND flash!\n");
686 retval = -ENXIO;
687 goto error;
688 }
689
690 return 0;
691error:
692 return retval;
693}