blob: 9521aeb3c308c7e6a85efffa7af3c5ddf3099682 [file] [log] [blame]
Simon Glassb9d7f992016-11-23 06:34:43 -07001/*
2 * Copyright (c) 2016, Google Inc
3 *
4 * (C) Copyright 2002
5 * David Mueller, ELSOFT AG, d.mueller@elsoft.ch
6 *
7 * SPDX-License-Identifier: GPL-2.0+
8 */
9
10#include <common.h>
11#include <dm.h>
12#include <i2c.h>
13#include <asm/arch/clk.h>
14#include <asm/arch/cpu.h>
15#include <asm/arch/pinmux.h>
16#include "s3c24x0_i2c.h"
17
18DECLARE_GLOBAL_DATA_PTR;
19
20/* HSI2C-specific register description */
21
22/* I2C_CTL Register bits */
23#define HSI2C_FUNC_MODE_I2C (1u << 0)
24#define HSI2C_MASTER (1u << 3)
25#define HSI2C_RXCHON (1u << 6) /* Write/Send */
26#define HSI2C_TXCHON (1u << 7) /* Read/Receive */
27#define HSI2C_SW_RST (1u << 31)
28
29/* I2C_FIFO_CTL Register bits */
30#define HSI2C_RXFIFO_EN (1u << 0)
31#define HSI2C_TXFIFO_EN (1u << 1)
32#define HSI2C_TXFIFO_TRIGGER_LEVEL (0x20 << 16)
33#define HSI2C_RXFIFO_TRIGGER_LEVEL (0x20 << 4)
34
35/* I2C_TRAILING_CTL Register bits */
36#define HSI2C_TRAILING_COUNT (0xff)
37
38/* I2C_INT_EN Register bits */
39#define HSI2C_TX_UNDERRUN_EN (1u << 2)
40#define HSI2C_TX_OVERRUN_EN (1u << 3)
41#define HSI2C_RX_UNDERRUN_EN (1u << 4)
42#define HSI2C_RX_OVERRUN_EN (1u << 5)
43#define HSI2C_INT_TRAILING_EN (1u << 6)
44#define HSI2C_INT_I2C_EN (1u << 9)
45
46#define HSI2C_INT_ERROR_MASK (HSI2C_TX_UNDERRUN_EN |\
47 HSI2C_TX_OVERRUN_EN |\
48 HSI2C_RX_UNDERRUN_EN |\
49 HSI2C_RX_OVERRUN_EN |\
50 HSI2C_INT_TRAILING_EN)
51
52/* I2C_CONF Register bits */
53#define HSI2C_AUTO_MODE (1u << 31)
54#define HSI2C_10BIT_ADDR_MODE (1u << 30)
55#define HSI2C_HS_MODE (1u << 29)
56
57/* I2C_AUTO_CONF Register bits */
58#define HSI2C_READ_WRITE (1u << 16)
59#define HSI2C_STOP_AFTER_TRANS (1u << 17)
60#define HSI2C_MASTER_RUN (1u << 31)
61
62/* I2C_TIMEOUT Register bits */
63#define HSI2C_TIMEOUT_EN (1u << 31)
64
65/* I2C_TRANS_STATUS register bits */
66#define HSI2C_MASTER_BUSY (1u << 17)
67#define HSI2C_SLAVE_BUSY (1u << 16)
68#define HSI2C_TIMEOUT_AUTO (1u << 4)
69#define HSI2C_NO_DEV (1u << 3)
70#define HSI2C_NO_DEV_ACK (1u << 2)
71#define HSI2C_TRANS_ABORT (1u << 1)
72#define HSI2C_TRANS_SUCCESS (1u << 0)
73#define HSI2C_TRANS_ERROR_MASK (HSI2C_TIMEOUT_AUTO |\
74 HSI2C_NO_DEV | HSI2C_NO_DEV_ACK |\
75 HSI2C_TRANS_ABORT)
76#define HSI2C_TRANS_FINISHED_MASK (HSI2C_TRANS_ERROR_MASK | HSI2C_TRANS_SUCCESS)
77
78
79/* I2C_FIFO_STAT Register bits */
80#define HSI2C_RX_FIFO_EMPTY (1u << 24)
81#define HSI2C_RX_FIFO_FULL (1u << 23)
82#define HSI2C_TX_FIFO_EMPTY (1u << 8)
83#define HSI2C_TX_FIFO_FULL (1u << 7)
84#define HSI2C_RX_FIFO_LEVEL(x) (((x) >> 16) & 0x7f)
85#define HSI2C_TX_FIFO_LEVEL(x) ((x) & 0x7f)
86
87#define HSI2C_SLV_ADDR_MAS(x) ((x & 0x3ff) << 10)
88
89#define HSI2C_TIMEOUT_US 10000 /* 10 ms, finer granularity */
90
91/*
92 * Wait for transfer completion.
93 *
94 * This function reads the interrupt status register waiting for the INT_I2C
95 * bit to be set, which indicates copletion of a transaction.
96 *
97 * @param i2c: pointer to the appropriate register bank
98 *
99 * @return: I2C_OK in case of successful completion, I2C_NOK_TIMEOUT in case
100 * the status bits do not get set in time, or an approrpiate error
101 * value in case of transfer errors.
102 */
103static int hsi2c_wait_for_trx(struct exynos5_hsi2c *i2c)
104{
105 int i = HSI2C_TIMEOUT_US;
106
107 while (i-- > 0) {
108 u32 int_status = readl(&i2c->usi_int_stat);
109
110 if (int_status & HSI2C_INT_I2C_EN) {
111 u32 trans_status = readl(&i2c->usi_trans_status);
112
113 /* Deassert pending interrupt. */
114 writel(int_status, &i2c->usi_int_stat);
115
116 if (trans_status & HSI2C_NO_DEV_ACK) {
117 debug("%s: no ACK from device\n", __func__);
118 return I2C_NACK;
119 }
120 if (trans_status & HSI2C_NO_DEV) {
121 debug("%s: no device\n", __func__);
122 return I2C_NOK;
123 }
124 if (trans_status & HSI2C_TRANS_ABORT) {
125 debug("%s: arbitration lost\n", __func__);
126 return I2C_NOK_LA;
127 }
128 if (trans_status & HSI2C_TIMEOUT_AUTO) {
129 debug("%s: device timed out\n", __func__);
130 return I2C_NOK_TOUT;
131 }
132 return I2C_OK;
133 }
134 udelay(1);
135 }
136 debug("%s: transaction timeout!\n", __func__);
137 return I2C_NOK_TOUT;
138}
139
140static int hsi2c_get_clk_details(struct s3c24x0_i2c_bus *i2c_bus)
141{
142 struct exynos5_hsi2c *hsregs = i2c_bus->hsregs;
143 ulong clkin;
144 unsigned int op_clk = i2c_bus->clock_frequency;
145 unsigned int i = 0, utemp0 = 0, utemp1 = 0;
146 unsigned int t_ftl_cycle;
147
148#if (defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5)
149 clkin = get_i2c_clk();
150#else
151 clkin = get_PCLK();
152#endif
153 /* FPCLK / FI2C =
154 * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + 2 * FLT_CYCLE
155 * uTemp0 = (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2)
156 * uTemp1 = (TSCLK_L + TSCLK_H + 2)
157 * uTemp2 = TSCLK_L + TSCLK_H
158 */
159 t_ftl_cycle = (readl(&hsregs->usi_conf) >> 16) & 0x7;
160 utemp0 = (clkin / op_clk) - 8 - 2 * t_ftl_cycle;
161
162 /* CLK_DIV max is 256 */
163 for (i = 0; i < 256; i++) {
164 utemp1 = utemp0 / (i + 1);
165 if ((utemp1 < 512) && (utemp1 > 4)) {
166 i2c_bus->clk_cycle = utemp1 - 2;
167 i2c_bus->clk_div = i;
168 return 0;
169 }
170 }
171 return -EINVAL;
172}
173
174static void hsi2c_ch_init(struct s3c24x0_i2c_bus *i2c_bus)
175{
176 struct exynos5_hsi2c *hsregs = i2c_bus->hsregs;
177 unsigned int t_sr_release;
178 unsigned int n_clkdiv;
179 unsigned int t_start_su, t_start_hd;
180 unsigned int t_stop_su;
181 unsigned int t_data_su, t_data_hd;
182 unsigned int t_scl_l, t_scl_h;
183 u32 i2c_timing_s1;
184 u32 i2c_timing_s2;
185 u32 i2c_timing_s3;
186 u32 i2c_timing_sla;
187
188 n_clkdiv = i2c_bus->clk_div;
189 t_scl_l = i2c_bus->clk_cycle / 2;
190 t_scl_h = i2c_bus->clk_cycle / 2;
191 t_start_su = t_scl_l;
192 t_start_hd = t_scl_l;
193 t_stop_su = t_scl_l;
194 t_data_su = t_scl_l / 2;
195 t_data_hd = t_scl_l / 2;
196 t_sr_release = i2c_bus->clk_cycle;
197
198 i2c_timing_s1 = t_start_su << 24 | t_start_hd << 16 | t_stop_su << 8;
199 i2c_timing_s2 = t_data_su << 24 | t_scl_l << 8 | t_scl_h << 0;
200 i2c_timing_s3 = n_clkdiv << 16 | t_sr_release << 0;
201 i2c_timing_sla = t_data_hd << 0;
202
203 writel(HSI2C_TRAILING_COUNT, &hsregs->usi_trailing_ctl);
204
205 /* Clear to enable Timeout */
206 clrsetbits_le32(&hsregs->usi_timeout, HSI2C_TIMEOUT_EN, 0);
207
208 /* set AUTO mode */
209 writel(readl(&hsregs->usi_conf) | HSI2C_AUTO_MODE, &hsregs->usi_conf);
210
211 /* Enable completion conditions' reporting. */
212 writel(HSI2C_INT_I2C_EN, &hsregs->usi_int_en);
213
214 /* Enable FIFOs */
215 writel(HSI2C_RXFIFO_EN | HSI2C_TXFIFO_EN, &hsregs->usi_fifo_ctl);
216
217 /* Currently operating in Fast speed mode. */
218 writel(i2c_timing_s1, &hsregs->usi_timing_fs1);
219 writel(i2c_timing_s2, &hsregs->usi_timing_fs2);
220 writel(i2c_timing_s3, &hsregs->usi_timing_fs3);
221 writel(i2c_timing_sla, &hsregs->usi_timing_sla);
222}
223
224/* SW reset for the high speed bus */
225static void exynos5_i2c_reset(struct s3c24x0_i2c_bus *i2c_bus)
226{
227 struct exynos5_hsi2c *i2c = i2c_bus->hsregs;
228 u32 i2c_ctl;
229
230 /* Set and clear the bit for reset */
231 i2c_ctl = readl(&i2c->usi_ctl);
232 i2c_ctl |= HSI2C_SW_RST;
233 writel(i2c_ctl, &i2c->usi_ctl);
234
235 i2c_ctl = readl(&i2c->usi_ctl);
236 i2c_ctl &= ~HSI2C_SW_RST;
237 writel(i2c_ctl, &i2c->usi_ctl);
238
239 /* Initialize the configure registers */
240 hsi2c_ch_init(i2c_bus);
241}
242
243/*
244 * Poll the appropriate bit of the fifo status register until the interface is
245 * ready to process the next byte or timeout expires.
246 *
247 * In addition to the FIFO status register this function also polls the
248 * interrupt status register to be able to detect unexpected transaction
249 * completion.
250 *
251 * When FIFO is ready to process the next byte, this function returns I2C_OK.
252 * If in course of polling the INT_I2C assertion is detected, the function
253 * returns I2C_NOK. If timeout happens before any of the above conditions is
254 * met - the function returns I2C_NOK_TOUT;
255
256 * @param i2c: pointer to the appropriate i2c register bank.
257 * @param rx_transfer: set to True if the receive transaction is in progress.
258 * @return: as described above.
259 */
260static unsigned hsi2c_poll_fifo(struct exynos5_hsi2c *i2c, bool rx_transfer)
261{
262 u32 fifo_bit = rx_transfer ? HSI2C_RX_FIFO_EMPTY : HSI2C_TX_FIFO_FULL;
263 int i = HSI2C_TIMEOUT_US;
264
265 while (readl(&i2c->usi_fifo_stat) & fifo_bit) {
266 if (readl(&i2c->usi_int_stat) & HSI2C_INT_I2C_EN) {
267 /*
268 * There is a chance that assertion of
269 * HSI2C_INT_I2C_EN and deassertion of
270 * HSI2C_RX_FIFO_EMPTY happen simultaneously. Let's
271 * give FIFO status priority and check it one more
272 * time before reporting interrupt. The interrupt will
273 * be reported next time this function is called.
274 */
275 if (rx_transfer &&
276 !(readl(&i2c->usi_fifo_stat) & fifo_bit))
277 break;
278 return I2C_NOK;
279 }
280 if (!i--) {
281 debug("%s: FIFO polling timeout!\n", __func__);
282 return I2C_NOK_TOUT;
283 }
284 udelay(1);
285 }
286 return I2C_OK;
287}
288
289/*
290 * Preapre hsi2c transaction, either read or write.
291 *
292 * Set up transfer as described in section 27.5.1.2 'I2C Channel Auto Mode' of
293 * the 5420 UM.
294 *
295 * @param i2c: pointer to the appropriate i2c register bank.
296 * @param chip: slave address on the i2c bus (with read/write bit exlcuded)
297 * @param len: number of bytes expected to be sent or received
298 * @param rx_transfer: set to true for receive transactions
299 * @param: issue_stop: set to true if i2c stop condition should be generated
300 * after this transaction.
301 * @return: I2C_NOK_TOUT in case the bus remained busy for HSI2C_TIMEOUT_US,
302 * I2C_OK otherwise.
303 */
304static int hsi2c_prepare_transaction(struct exynos5_hsi2c *i2c,
305 u8 chip,
306 u16 len,
307 bool rx_transfer,
308 bool issue_stop)
309{
310 u32 conf;
311
312 conf = len | HSI2C_MASTER_RUN;
313
314 if (issue_stop)
315 conf |= HSI2C_STOP_AFTER_TRANS;
316
317 /* Clear to enable Timeout */
318 writel(readl(&i2c->usi_timeout) & ~HSI2C_TIMEOUT_EN, &i2c->usi_timeout);
319
320 /* Set slave address */
321 writel(HSI2C_SLV_ADDR_MAS(chip), &i2c->i2c_addr);
322
323 if (rx_transfer) {
324 /* i2c master, read transaction */
325 writel((HSI2C_RXCHON | HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
326 &i2c->usi_ctl);
327
328 /* read up to len bytes, stop after transaction is finished */
329 writel(conf | HSI2C_READ_WRITE, &i2c->usi_auto_conf);
330 } else {
331 /* i2c master, write transaction */
332 writel((HSI2C_TXCHON | HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
333 &i2c->usi_ctl);
334
335 /* write up to len bytes, stop after transaction is finished */
336 writel(conf, &i2c->usi_auto_conf);
337 }
338
339 /* Reset all pending interrupt status bits we care about, if any */
340 writel(HSI2C_INT_I2C_EN, &i2c->usi_int_stat);
341
342 return I2C_OK;
343}
344
345/*
346 * Wait while i2c bus is settling down (mostly stop gets completed).
347 */
348static int hsi2c_wait_while_busy(struct exynos5_hsi2c *i2c)
349{
350 int i = HSI2C_TIMEOUT_US;
351
352 while (readl(&i2c->usi_trans_status) & HSI2C_MASTER_BUSY) {
353 if (!i--) {
354 debug("%s: bus busy\n", __func__);
355 return I2C_NOK_TOUT;
356 }
357 udelay(1);
358 }
359 return I2C_OK;
360}
361
362static int hsi2c_write(struct exynos5_hsi2c *i2c,
363 unsigned char chip,
364 unsigned char addr[],
365 unsigned char alen,
366 unsigned char data[],
367 unsigned short len,
368 bool issue_stop)
369{
370 int i, rv = 0;
371
372 if (!(len + alen)) {
373 /* Writes of zero length not supported in auto mode. */
374 debug("%s: zero length writes not supported\n", __func__);
375 return I2C_NOK;
376 }
377
378 rv = hsi2c_prepare_transaction
379 (i2c, chip, len + alen, false, issue_stop);
380 if (rv != I2C_OK)
381 return rv;
382
383 /* Move address, if any, and the data, if any, into the FIFO. */
384 for (i = 0; i < alen; i++) {
385 rv = hsi2c_poll_fifo(i2c, false);
386 if (rv != I2C_OK) {
387 debug("%s: address write failed\n", __func__);
388 goto write_error;
389 }
390 writel(addr[i], &i2c->usi_txdata);
391 }
392
393 for (i = 0; i < len; i++) {
394 rv = hsi2c_poll_fifo(i2c, false);
395 if (rv != I2C_OK) {
396 debug("%s: data write failed\n", __func__);
397 goto write_error;
398 }
399 writel(data[i], &i2c->usi_txdata);
400 }
401
402 rv = hsi2c_wait_for_trx(i2c);
403
404 write_error:
405 if (issue_stop) {
406 int tmp_ret = hsi2c_wait_while_busy(i2c);
407 if (rv == I2C_OK)
408 rv = tmp_ret;
409 }
410
411 writel(HSI2C_FUNC_MODE_I2C, &i2c->usi_ctl); /* done */
412 return rv;
413}
414
415static int hsi2c_read(struct exynos5_hsi2c *i2c,
416 unsigned char chip,
417 unsigned char addr[],
418 unsigned char alen,
419 unsigned char data[],
420 unsigned short len)
421{
422 int i, rv, tmp_ret;
423 bool drop_data = false;
424
425 if (!len) {
426 /* Reads of zero length not supported in auto mode. */
427 debug("%s: zero length read adjusted\n", __func__);
428 drop_data = true;
429 len = 1;
430 }
431
432 if (alen) {
433 /* Internal register adress needs to be written first. */
434 rv = hsi2c_write(i2c, chip, addr, alen, NULL, 0, false);
435 if (rv != I2C_OK)
436 return rv;
437 }
438
439 rv = hsi2c_prepare_transaction(i2c, chip, len, true, true);
440
441 if (rv != I2C_OK)
442 return rv;
443
444 for (i = 0; i < len; i++) {
445 rv = hsi2c_poll_fifo(i2c, true);
446 if (rv != I2C_OK)
447 goto read_err;
448 if (drop_data)
449 continue;
450 data[i] = readl(&i2c->usi_rxdata);
451 }
452
453 rv = hsi2c_wait_for_trx(i2c);
454
455 read_err:
456 tmp_ret = hsi2c_wait_while_busy(i2c);
457 if (rv == I2C_OK)
458 rv = tmp_ret;
459
460 writel(HSI2C_FUNC_MODE_I2C, &i2c->usi_ctl); /* done */
461 return rv;
462}
463
464static int exynos_hs_i2c_xfer(struct udevice *dev, struct i2c_msg *msg,
465 int nmsgs)
466{
467 struct s3c24x0_i2c_bus *i2c_bus = dev_get_priv(dev);
468 struct exynos5_hsi2c *hsregs = i2c_bus->hsregs;
469 int ret;
470
471 for (; nmsgs > 0; nmsgs--, msg++) {
472 if (msg->flags & I2C_M_RD) {
473 ret = hsi2c_read(hsregs, msg->addr, 0, 0, msg->buf,
474 msg->len);
475 } else {
476 ret = hsi2c_write(hsregs, msg->addr, 0, 0, msg->buf,
477 msg->len, true);
478 }
479 if (ret) {
480 exynos5_i2c_reset(i2c_bus);
481 return -EREMOTEIO;
482 }
483 }
484
485 return 0;
486}
487
488static int s3c24x0_i2c_set_bus_speed(struct udevice *dev, unsigned int speed)
489{
490 struct s3c24x0_i2c_bus *i2c_bus = dev_get_priv(dev);
491
492 i2c_bus->clock_frequency = speed;
493
494 if (hsi2c_get_clk_details(i2c_bus))
495 return -EFAULT;
496 hsi2c_ch_init(i2c_bus);
497
498 return 0;
499}
500
501static int s3c24x0_i2c_probe(struct udevice *dev, uint chip, uint chip_flags)
502{
503 struct s3c24x0_i2c_bus *i2c_bus = dev_get_priv(dev);
504 uchar buf[1];
505 int ret;
506
507 buf[0] = 0;
508
509 /*
510 * What is needed is to send the chip address and verify that the
511 * address was <ACK>ed (i.e. there was a chip at that address which
512 * drove the data line low).
513 */
514 ret = hsi2c_read(i2c_bus->hsregs, chip, 0, 0, buf, 1);
515
516 return ret != I2C_OK;
517}
518
519static int s3c_i2c_ofdata_to_platdata(struct udevice *dev)
520{
521 const void *blob = gd->fdt_blob;
522 struct s3c24x0_i2c_bus *i2c_bus = dev_get_priv(dev);
523 int node;
524
525 node = dev->of_offset;
526
527 i2c_bus->hsregs = (struct exynos5_hsi2c *)dev_get_addr(dev);
528
529 i2c_bus->id = pinmux_decode_periph_id(blob, node);
530
531 i2c_bus->clock_frequency = fdtdec_get_int(blob, node,
532 "clock-frequency", 100000);
533 i2c_bus->node = node;
534 i2c_bus->bus_num = dev->seq;
535
536 exynos_pinmux_config(i2c_bus->id, PINMUX_FLAG_HS_MODE);
537
538 i2c_bus->active = true;
539
540 return 0;
541}
542
543static const struct dm_i2c_ops exynos_hs_i2c_ops = {
544 .xfer = exynos_hs_i2c_xfer,
545 .probe_chip = s3c24x0_i2c_probe,
546 .set_bus_speed = s3c24x0_i2c_set_bus_speed,
547};
548
549static const struct udevice_id exynos_hs_i2c_ids[] = {
550 { .compatible = "samsung,exynos5-hsi2c" },
551 { }
552};
553
554U_BOOT_DRIVER(hs_i2c) = {
555 .name = "i2c_s3c_hs",
556 .id = UCLASS_I2C,
557 .of_match = exynos_hs_i2c_ids,
558 .ofdata_to_platdata = s3c_i2c_ofdata_to_platdata,
559 .priv_auto_alloc_size = sizeof(struct s3c24x0_i2c_bus),
560 .ops = &exynos_hs_i2c_ops,
561};