Tien Fong Chee | 277f1f4 | 2022-06-10 19:18:00 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause |
Tien Fong Chee | f8e2eab | 2021-08-10 11:26:37 +0800 | [diff] [blame] | 2 | /* |
Tien Fong Chee | 277f1f4 | 2022-06-10 19:18:00 +0800 | [diff] [blame] | 3 | * Copyright (C) 2020-2022 Intel Corporation <www.intel.com> |
Tien Fong Chee | f8e2eab | 2021-08-10 11:26:37 +0800 | [diff] [blame] | 4 | * |
| 5 | */ |
| 6 | |
| 7 | #include <common.h> |
| 8 | #include <clk.h> |
| 9 | #include <div64.h> |
| 10 | #include <dm.h> |
| 11 | #include <errno.h> |
| 12 | #include <fdtdec.h> |
| 13 | #include <hang.h> |
| 14 | #include <ram.h> |
| 15 | #include <reset.h> |
| 16 | #include "sdram_soc64.h" |
| 17 | #include <wait_bit.h> |
| 18 | #include <asm/arch/firewall.h> |
| 19 | #include <asm/arch/handoff_soc64.h> |
| 20 | #include <asm/arch/misc.h> |
| 21 | #include <asm/arch/reset_manager.h> |
| 22 | #include <asm/arch/system_manager.h> |
| 23 | #include <asm/io.h> |
| 24 | #include <linux/err.h> |
| 25 | #include <linux/sizes.h> |
| 26 | |
| 27 | DECLARE_GLOBAL_DATA_PTR; |
| 28 | |
| 29 | /* MPFE NOC registers */ |
| 30 | #define FPGA2SDRAM_MGR_MAIN_SIDEBANDMGR_FLAGOUTSET0 0xF8024050 |
| 31 | |
| 32 | /* Memory reset manager */ |
| 33 | #define MEM_RST_MGR_STATUS 0x8 |
| 34 | |
| 35 | /* Register and bit in memory reset manager */ |
| 36 | #define MEM_RST_MGR_STATUS_RESET_COMPLETE BIT(0) |
| 37 | #define MEM_RST_MGR_STATUS_PWROKIN_STATUS BIT(1) |
| 38 | #define MEM_RST_MGR_STATUS_CONTROLLER_RST BIT(2) |
| 39 | #define MEM_RST_MGR_STATUS_AXI_RST BIT(3) |
| 40 | |
| 41 | #define TIMEOUT_200MS 200 |
| 42 | #define TIMEOUT_5000MS 5000 |
| 43 | |
| 44 | /* DDR4 umctl2 */ |
| 45 | #define DDR4_MSTR_OFFSET 0x0 |
| 46 | #define DDR4_FREQ_RATIO BIT(22) |
| 47 | |
| 48 | #define DDR4_STAT_OFFSET 0x4 |
| 49 | #define DDR4_STAT_SELFREF_TYPE GENMASK(5, 4) |
| 50 | #define DDR4_STAT_SELFREF_TYPE_SHIFT 4 |
| 51 | #define DDR4_STAT_OPERATING_MODE GENMASK(2, 0) |
| 52 | |
| 53 | #define DDR4_MRCTRL0_OFFSET 0x10 |
| 54 | #define DDR4_MRCTRL0_MR_TYPE BIT(0) |
| 55 | #define DDR4_MRCTRL0_MPR_EN BIT(1) |
| 56 | #define DDR4_MRCTRL0_MR_RANK GENMASK(5, 4) |
| 57 | #define DDR4_MRCTRL0_MR_RANK_SHIFT 4 |
| 58 | #define DDR4_MRCTRL0_MR_ADDR GENMASK(15, 12) |
| 59 | #define DDR4_MRCTRL0_MR_ADDR_SHIFT 12 |
| 60 | #define DDR4_MRCTRL0_MR_WR BIT(31) |
| 61 | |
| 62 | #define DDR4_MRCTRL1_OFFSET 0x14 |
| 63 | #define DDR4_MRCTRL1_MR_DATA 0x3FFFF |
| 64 | |
| 65 | #define DDR4_MRSTAT_OFFSET 0x18 |
| 66 | #define DDR4_MRSTAT_MR_WR_BUSY BIT(0) |
| 67 | |
| 68 | #define DDR4_MRCTRL2_OFFSET 0x1C |
| 69 | |
| 70 | #define DDR4_PWRCTL_OFFSET 0x30 |
| 71 | #define DDR4_PWRCTL_SELFREF_EN BIT(0) |
| 72 | #define DDR4_PWRCTL_POWERDOWN_EN BIT(1) |
| 73 | #define DDR4_PWRCTL_EN_DFI_DRAM_CLK_DISABLE BIT(3) |
| 74 | #define DDR4_PWRCTL_SELFREF_SW BIT(5) |
| 75 | |
| 76 | #define DDR4_PWRTMG_OFFSET 0x34 |
| 77 | #define DDR4_HWLPCTL_OFFSET 0x38 |
| 78 | #define DDR4_RFSHCTL0_OFFSET 0x50 |
| 79 | #define DDR4_RFSHCTL1_OFFSET 0x54 |
| 80 | |
| 81 | #define DDR4_RFSHCTL3_OFFSET 0x60 |
| 82 | #define DDR4_RFSHCTL3_DIS_AUTO_REFRESH BIT(0) |
| 83 | #define DDR4_RFSHCTL3_REFRESH_MODE GENMASK(6, 4) |
| 84 | #define DDR4_RFSHCTL3_REFRESH_MODE_SHIFT 4 |
| 85 | |
| 86 | #define DDR4_ECCCFG0_OFFSET 0x70 |
| 87 | #define DDR4_ECC_MODE GENMASK(2, 0) |
| 88 | #define DDR4_DIS_SCRUB BIT(4) |
| 89 | #define LPDDR4_ECCCFG0_ECC_REGION_MAP_GRANU_SHIFT 30 |
| 90 | #define LPDDR4_ECCCFG0_ECC_REGION_MAP_SHIFT 8 |
| 91 | |
| 92 | #define DDR4_ECCCFG1_OFFSET 0x74 |
| 93 | #define LPDDR4_ECCCFG1_ECC_REGIONS_PARITY_LOCK BIT(4) |
| 94 | |
| 95 | #define DDR4_CRCPARCTL0_OFFSET 0xC0 |
| 96 | #define DDR4_CRCPARCTL0_DFI_ALERT_ERR_INIT_CLR BIT(1) |
| 97 | |
| 98 | #define DDR4_CRCPARCTL1_OFFSET 0xC4 |
| 99 | #define DDR4_CRCPARCTL1_CRC_PARITY_RETRY_ENABLE BIT(8) |
| 100 | #define DDR4_CRCPARCTL1_ALERT_WAIT_FOR_SW BIT(9) |
| 101 | |
| 102 | #define DDR4_CRCPARSTAT_OFFSET 0xCC |
| 103 | #define DDR4_CRCPARSTAT_DFI_ALERT_ERR_INT BIT(16) |
| 104 | #define DDR4_CRCPARSTAT_DFI_ALERT_ERR_FATL_INT BIT(17) |
| 105 | #define DDR4_CRCPARSTAT_DFI_ALERT_ERR_NO_SW BIT(19) |
| 106 | #define DDR4_CRCPARSTAT_CMD_IN_ERR_WINDOW BIT(29) |
| 107 | |
| 108 | #define DDR4_INIT0_OFFSET 0xD0 |
| 109 | #define DDR4_INIT0_SKIP_RAM_INIT GENMASK(31, 30) |
| 110 | |
| 111 | #define DDR4_RANKCTL_OFFSET 0xF4 |
| 112 | #define DDR4_RANKCTL_DIFF_RANK_RD_GAP GENMASK(7, 4) |
| 113 | #define DDR4_RANKCTL_DIFF_RANK_WR_GAP GENMASK(11, 8) |
| 114 | #define DDR4_RANKCTL_DIFF_RANK_RD_GAP_MSB BIT(24) |
| 115 | #define DDR4_RANKCTL_DIFF_RANK_WR_GAP_MSB BIT(26) |
| 116 | #define DDR4_RANKCTL_DIFF_RANK_RD_GAP_SHIFT 4 |
| 117 | #define DDR4_RANKCTL_DIFF_RANK_WR_GAP_SHIFT 8 |
| 118 | #define DDR4_RANKCTL_DIFF_RANK_RD_GAP_MSB_SHIFT 24 |
| 119 | #define DDR4_RANKCTL_DIFF_RANK_WR_GAP_MSB_SHIFT 26 |
| 120 | |
| 121 | #define DDR4_RANKCTL1_OFFSET 0xF8 |
| 122 | #define DDR4_RANKCTL1_WR2RD_DR GENMASK(5, 0) |
| 123 | |
| 124 | #define DDR4_DRAMTMG2_OFFSET 0x108 |
| 125 | #define DDR4_DRAMTMG2_WR2RD GENMASK(5, 0) |
| 126 | #define DDR4_DRAMTMG2_RD2WR GENMASK(13, 8) |
| 127 | #define DDR4_DRAMTMG2_RD2WR_SHIFT 8 |
| 128 | |
| 129 | #define DDR4_DRAMTMG9_OFFSET 0x124 |
| 130 | #define DDR4_DRAMTMG9_W2RD_S GENMASK(5, 0) |
| 131 | |
| 132 | #define DDR4_DFITMG1_OFFSET 0x194 |
| 133 | #define DDR4_DFITMG1_DFI_T_WRDATA_DELAY GENMASK(20, 16) |
| 134 | #define DDR4_DFITMG1_DFI_T_WRDATA_SHIFT 16 |
| 135 | |
| 136 | #define DDR4_DFIMISC_OFFSET 0x1B0 |
| 137 | #define DDR4_DFIMISC_DFI_INIT_COMPLETE_EN BIT(0) |
| 138 | #define DDR4_DFIMISC_DFI_INIT_START BIT(5) |
| 139 | |
| 140 | #define DDR4_DFISTAT_OFFSET 0x1BC |
| 141 | #define DDR4_DFI_INIT_COMPLETE BIT(0) |
| 142 | |
| 143 | #define DDR4_DBG0_OFFSET 0x300 |
| 144 | |
| 145 | #define DDR4_DBG1_OFFSET 0x304 |
| 146 | #define DDR4_DBG1_DISDQ BIT(0) |
| 147 | #define DDR4_DBG1_DIS_HIF BIT(1) |
| 148 | |
| 149 | #define DDR4_DBGCAM_OFFSET 0x308 |
| 150 | #define DDR4_DBGCAM_DBG_RD_Q_EMPTY BIT(25) |
| 151 | #define DDR4_DBGCAM_DBG_WR_Q_EMPTY BIT(26) |
| 152 | #define DDR4_DBGCAM_RD_DATA_PIPELINE_EMPTY BIT(28) |
| 153 | #define DDR4_DBGCAM_WR_DATA_PIPELINE_EMPTY BIT(29) |
| 154 | |
| 155 | #define DDR4_SWCTL_OFFSET 0x320 |
| 156 | #define DDR4_SWCTL_SW_DONE BIT(0) |
| 157 | |
| 158 | #define DDR4_SWSTAT_OFFSET 0x324 |
| 159 | #define DDR4_SWSTAT_SW_DONE_ACK BIT(0) |
| 160 | |
| 161 | #define DDR4_PSTAT_OFFSET 0x3FC |
| 162 | #define DDR4_PSTAT_RD_PORT_BUSY_0 BIT(0) |
| 163 | #define DDR4_PSTAT_WR_PORT_BUSY_0 BIT(16) |
| 164 | |
| 165 | #define DDR4_PCTRL0_OFFSET 0x490 |
| 166 | #define DDR4_PCTRL0_PORT_EN BIT(0) |
| 167 | |
| 168 | #define DDR4_SBRCTL_OFFSET 0xF24 |
| 169 | #define DDR4_SBRCTL_SCRUB_INTERVAL 0x1FFF00 |
| 170 | #define DDR4_SBRCTL_SCRUB_EN BIT(0) |
| 171 | #define DDR4_SBRCTL_SCRUB_WRITE BIT(2) |
| 172 | #define DDR4_SBRCTL_SCRUB_BURST_1 BIT(4) |
| 173 | |
| 174 | #define DDR4_SBRSTAT_OFFSET 0xF28 |
| 175 | #define DDR4_SBRSTAT_SCRUB_BUSY BIT(0) |
| 176 | #define DDR4_SBRSTAT_SCRUB_DONE BIT(1) |
| 177 | |
| 178 | #define DDR4_SBRWDATA0_OFFSET 0xF2C |
| 179 | #define DDR4_SBRWDATA1_OFFSET 0xF30 |
| 180 | #define DDR4_SBRSTART0_OFFSET 0xF38 |
| 181 | #define DDR4_SBRSTART1_OFFSET 0xF3C |
| 182 | #define DDR4_SBRRANGE0_OFFSET 0xF40 |
| 183 | #define DDR4_SBRRANGE1_OFFSET 0xF44 |
| 184 | |
| 185 | /* DDR PHY */ |
| 186 | #define DDR_PHY_TXODTDRVSTREN_B0_P0 0x2009A |
| 187 | #define DDR_PHY_RXPBDLYTG0_R0 0x200D0 |
| 188 | #define DDR_PHY_DBYTE0_TXDQDLYTG0_U0_P0 0x201A0 |
| 189 | |
| 190 | #define DDR_PHY_DBYTE0_TXDQDLYTG0_U1_P0 0x203A0 |
| 191 | #define DDR_PHY_DBYTE1_TXDQDLYTG0_U0_P0 0x221A0 |
| 192 | #define DDR_PHY_DBYTE1_TXDQDLYTG0_U1_P0 0x223A0 |
| 193 | #define DDR_PHY_TXDQDLYTG0_COARSE_DELAY GENMASK(9, 6) |
| 194 | #define DDR_PHY_TXDQDLYTG0_COARSE_DELAY_SHIFT 6 |
| 195 | |
| 196 | #define DDR_PHY_CALRATE_OFFSET 0x40110 |
| 197 | #define DDR_PHY_CALZAP_OFFSET 0x40112 |
| 198 | #define DDR_PHY_SEQ0BDLY0_P0_OFFSET 0x40016 |
| 199 | #define DDR_PHY_SEQ0BDLY1_P0_OFFSET 0x40018 |
| 200 | #define DDR_PHY_SEQ0BDLY2_P0_OFFSET 0x4001A |
| 201 | #define DDR_PHY_SEQ0BDLY3_P0_OFFSET 0x4001C |
| 202 | |
| 203 | #define DDR_PHY_MEMRESETL_OFFSET 0x400C0 |
| 204 | #define DDR_PHY_MEMRESETL_VALUE BIT(0) |
| 205 | #define DDR_PHY_PROTECT_MEMRESET BIT(1) |
| 206 | |
| 207 | #define DDR_PHY_CALBUSY_OFFSET 0x4012E |
| 208 | #define DDR_PHY_CALBUSY BIT(0) |
| 209 | |
| 210 | #define DDR_PHY_TRAIN_IMEM_OFFSET 0xA0000 |
| 211 | #define DDR_PHY_TRAIN_DMEM_OFFSET 0xA8000 |
| 212 | |
| 213 | #define DMEM_MB_CDD_RR_1_0_OFFSET 0xA802C |
| 214 | #define DMEM_MB_CDD_RR_0_1_OFFSET 0xA8030 |
| 215 | #define DMEM_MB_CDD_WW_1_0_OFFSET 0xA8038 |
| 216 | #define DMEM_MB_CDD_WW_0_1_OFFSET 0xA803C |
| 217 | #define DMEM_MB_CDD_RW_1_1_OFFSET 0xA8046 |
| 218 | #define DMEM_MB_CDD_RW_1_0_OFFSET 0xA8048 |
| 219 | #define DMEM_MB_CDD_RW_0_1_OFFSET 0xA804A |
| 220 | #define DMEM_MB_CDD_RW_0_0_OFFSET 0xA804C |
| 221 | |
| 222 | #define DMEM_MB_CDD_CHA_RR_1_0_OFFSET 0xA8026 |
| 223 | #define DMEM_MB_CDD_CHA_RR_0_1_OFFSET 0xA8026 |
| 224 | #define DMEM_MB_CDD_CHB_RR_1_0_OFFSET 0xA8058 |
| 225 | #define DMEM_MB_CDD_CHB_RR_0_1_OFFSET 0xA805A |
| 226 | #define DMEM_MB_CDD_CHA_WW_1_0_OFFSET 0xA8030 |
| 227 | #define DMEM_MB_CDD_CHA_WW_0_1_OFFSET 0xA8030 |
| 228 | #define DMEM_MB_CDD_CHB_WW_1_0_OFFSET 0xA8062 |
| 229 | #define DMEM_MB_CDD_CHB_WW_0_1_OFFSET 0xA8064 |
| 230 | |
| 231 | #define DMEM_MB_CDD_CHA_RW_1_1_OFFSET 0xA8028 |
| 232 | #define DMEM_MB_CDD_CHA_RW_1_0_OFFSET 0xA8028 |
| 233 | #define DMEM_MB_CDD_CHA_RW_0_1_OFFSET 0xA802A |
| 234 | #define DMEM_MB_CDD_CHA_RW_0_0_OFFSET 0xA802A |
| 235 | |
| 236 | #define DMEM_MB_CDD_CHB_RW_1_1_OFFSET 0xA805A |
| 237 | #define DMEM_MB_CDD_CHB_RW_1_0_OFFSET 0xA805C |
| 238 | #define DMEM_MB_CDD_CHB_RW_0_1_OFFSET 0xA805c |
| 239 | #define DMEM_MB_CDD_CHB_RW_0_0_OFFSET 0xA805E |
| 240 | |
| 241 | #define DDR_PHY_SEQ0DISABLEFLAG0_OFFSET 0x120018 |
| 242 | #define DDR_PHY_SEQ0DISABLEFLAG1_OFFSET 0x12001A |
| 243 | #define DDR_PHY_SEQ0DISABLEFLAG2_OFFSET 0x12001C |
| 244 | #define DDR_PHY_SEQ0DISABLEFLAG3_OFFSET 0x12001E |
| 245 | #define DDR_PHY_SEQ0DISABLEFLAG4_OFFSET 0x120020 |
| 246 | #define DDR_PHY_SEQ0DISABLEFLAG5_OFFSET 0x120022 |
| 247 | #define DDR_PHY_SEQ0DISABLEFLAG6_OFFSET 0x120024 |
| 248 | #define DDR_PHY_SEQ0DISABLEFLAG7_OFFSET 0x120026 |
| 249 | |
| 250 | #define DDR_PHY_UCCLKHCLKENABLES_OFFSET 0x180100 |
| 251 | #define DDR_PHY_UCCLKHCLKENABLES_UCCLKEN BIT(0) |
| 252 | #define DDR_PHY_UCCLKHCLKENABLES_HCLKEN BIT(1) |
| 253 | |
| 254 | #define DDR_PHY_UCTWRITEPROT_OFFSET 0x180066 |
| 255 | #define DDR_PHY_UCTWRITEPROT BIT(0) |
| 256 | |
| 257 | #define DDR_PHY_APBONLY0_OFFSET 0x1A0000 |
| 258 | #define DDR_PHY_MICROCONTMUXSEL BIT(0) |
| 259 | |
| 260 | #define DDR_PHY_UCTSHADOWREGS_OFFSET 0x1A0008 |
| 261 | #define DDR_PHY_UCTSHADOWREGS_UCTWRITEPROTESHADOW BIT(0) |
| 262 | |
| 263 | #define DDR_PHY_DCTWRITEPROT_OFFSET 0x1A0062 |
| 264 | #define DDR_PHY_DCTWRITEPROT BIT(0) |
| 265 | |
| 266 | #define DDR_PHY_UCTWRITEONLYSHADOW_OFFSET 0x1A0064 |
| 267 | #define DDR_PHY_UCTDATWRITEONLYSHADOW_OFFSET 0x1A0068 |
| 268 | |
| 269 | #define DDR_PHY_MICRORESET_OFFSET 0x1A0132 |
| 270 | #define DDR_PHY_MICRORESET_STALL BIT(0) |
| 271 | #define DDR_PHY_MICRORESET_RESET BIT(3) |
| 272 | |
| 273 | #define DDR_PHY_TXODTDRVSTREN_B0_P1 0x22009A |
| 274 | |
| 275 | /* For firmware training */ |
| 276 | #define HW_DBG_TRACE_CONTROL_OFFSET 0x18 |
| 277 | #define FW_TRAINING_COMPLETED_STAT 0x07 |
| 278 | #define FW_TRAINING_FAILED_STAT 0xFF |
| 279 | #define FW_COMPLETION_MSG_ONLY_MODE 0xFF |
| 280 | #define FW_STREAMING_MSG_ID 0x08 |
| 281 | #define GET_LOWHW_DATA(x) ((x) & 0xFFFF) |
| 282 | #define GET_LOWB_DATA(x) ((x) & 0xFF) |
| 283 | #define GET_HIGHB_DATA(x) (((x) & 0xFF00) >> 8) |
| 284 | |
| 285 | /* Operating mode */ |
| 286 | #define OPM_INIT 0x000 |
| 287 | #define OPM_NORMAL 0x001 |
| 288 | #define OPM_PWR_D0WN 0x010 |
| 289 | #define OPM_SELF_SELFREF 0x011 |
| 290 | #define OPM_DDR4_DEEP_PWR_DOWN 0x100 |
| 291 | |
| 292 | /* Refresh mode */ |
| 293 | #define FIXED_1X 0 |
| 294 | #define FIXED_2X BIT(0) |
| 295 | #define FIXED_4X BIT(4) |
| 296 | |
| 297 | /* Address of mode register */ |
| 298 | #define MR0 0x0000 |
| 299 | #define MR1 0x0001 |
| 300 | #define MR2 0x0010 |
| 301 | #define MR3 0x0011 |
| 302 | #define MR4 0x0100 |
| 303 | #define MR5 0x0101 |
| 304 | #define MR6 0x0110 |
| 305 | #define MR7 0x0111 |
| 306 | |
| 307 | /* MR rank */ |
| 308 | #define RANK0 0x1 |
| 309 | #define RANK1 0x2 |
| 310 | #define ALL_RANK 0x3 |
| 311 | |
| 312 | #define MR5_BIT4 BIT(4) |
| 313 | |
| 314 | /* Value for ecc_region_map */ |
| 315 | #define ALL_PROTECTED 0x7F |
| 316 | |
| 317 | /* Region size for ECCCFG0.ecc_region_map */ |
| 318 | enum region_size { |
| 319 | ONE_EIGHT, |
| 320 | ONE_SIXTEENTH, |
| 321 | ONE_THIRTY_SECOND, |
| 322 | ONE_SIXTY_FOURTH |
| 323 | }; |
| 324 | |
| 325 | enum ddr_type { |
| 326 | DDRTYPE_LPDDR4_0, |
| 327 | DDRTYPE_LPDDR4_1, |
| 328 | DDRTYPE_DDR4, |
| 329 | DDRTYPE_UNKNOWN |
| 330 | }; |
| 331 | |
| 332 | /* Reset type */ |
| 333 | enum reset_type { |
| 334 | POR_RESET, |
| 335 | WARM_RESET, |
| 336 | COLD_RESET |
| 337 | }; |
| 338 | |
| 339 | /* DDR handoff structure */ |
| 340 | struct ddr_handoff { |
| 341 | /* Memory reset manager base */ |
| 342 | phys_addr_t mem_reset_base; |
| 343 | |
| 344 | /* First controller attributes */ |
| 345 | phys_addr_t cntlr_handoff_base; |
| 346 | phys_addr_t cntlr_base; |
| 347 | size_t cntlr_total_length; |
| 348 | enum ddr_type cntlr_t; |
| 349 | size_t cntlr_handoff_length; |
| 350 | |
| 351 | /* Second controller attributes*/ |
| 352 | phys_addr_t cntlr2_handoff_base; |
| 353 | phys_addr_t cntlr2_base; |
| 354 | size_t cntlr2_total_length; |
| 355 | enum ddr_type cntlr2_t; |
| 356 | size_t cntlr2_handoff_length; |
| 357 | |
| 358 | /* PHY attributes */ |
| 359 | phys_addr_t phy_handoff_base; |
| 360 | phys_addr_t phy_base; |
| 361 | size_t phy_total_length; |
| 362 | size_t phy_handoff_length; |
| 363 | |
| 364 | /* PHY engine attributes */ |
| 365 | phys_addr_t phy_engine_handoff_base; |
| 366 | size_t phy_engine_total_length; |
| 367 | size_t phy_engine_handoff_length; |
| 368 | |
| 369 | /* Calibration attributes */ |
| 370 | phys_addr_t train_imem_base; |
| 371 | phys_addr_t train_dmem_base; |
| 372 | size_t train_imem_length; |
| 373 | size_t train_dmem_length; |
| 374 | }; |
| 375 | |
| 376 | /* Message mode */ |
| 377 | enum message_mode { |
| 378 | MAJOR_MESSAGE, |
| 379 | STREAMING_MESSAGE |
| 380 | }; |
| 381 | |
| 382 | static int clr_ca_parity_error_status(phys_addr_t umctl2_base) |
| 383 | { |
| 384 | int ret; |
| 385 | |
| 386 | debug("%s: Clear C/A parity error status in MR5[4]\n", __func__); |
| 387 | |
| 388 | /* Set mode register MRS */ |
| 389 | clrbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET, DDR4_MRCTRL0_MPR_EN); |
| 390 | |
| 391 | /* Set mode register to write operation */ |
| 392 | setbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET, DDR4_MRCTRL0_MR_TYPE); |
| 393 | |
| 394 | /* Set the address of mode rgister to 0x101(MR5) */ |
| 395 | setbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET, |
| 396 | (MR5 << DDR4_MRCTRL0_MR_ADDR_SHIFT) & |
| 397 | DDR4_MRCTRL0_MR_ADDR); |
| 398 | |
| 399 | /* Set MR rank to rank 1 */ |
| 400 | setbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET, |
| 401 | (RANK1 << DDR4_MRCTRL0_MR_RANK_SHIFT) & |
| 402 | DDR4_MRCTRL0_MR_RANK); |
| 403 | |
| 404 | /* Clear C/A parity error status in MR5[4] */ |
| 405 | clrbits_le32(umctl2_base + DDR4_MRCTRL1_OFFSET, MR5_BIT4); |
| 406 | |
| 407 | /* Trigger mode register read or write operation */ |
| 408 | setbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET, DDR4_MRCTRL0_MR_WR); |
| 409 | |
| 410 | /* Wait for retry done */ |
| 411 | ret = wait_for_bit_le32((const void *)(umctl2_base + |
| 412 | DDR4_MRSTAT_OFFSET), DDR4_MRSTAT_MR_WR_BUSY, |
| 413 | false, TIMEOUT_200MS, false); |
| 414 | if (ret) { |
| 415 | debug("%s: Timeout while waiting for", __func__); |
| 416 | debug(" no outstanding MR transaction\n"); |
| 417 | return ret; |
| 418 | } |
| 419 | |
| 420 | return 0; |
| 421 | } |
| 422 | |
| 423 | static int ddr_retry_software_sequence(phys_addr_t umctl2_base) |
| 424 | { |
| 425 | u32 value; |
| 426 | int ret; |
| 427 | |
| 428 | /* Check software can perform MRS/MPR/PDA? */ |
| 429 | value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) & |
| 430 | DDR4_CRCPARSTAT_DFI_ALERT_ERR_NO_SW; |
| 431 | |
| 432 | if (value) { |
| 433 | /* Clear interrupt bit for DFI alert error */ |
| 434 | setbits_le32(umctl2_base + DDR4_CRCPARCTL0_OFFSET, |
| 435 | DDR4_CRCPARCTL0_DFI_ALERT_ERR_INIT_CLR); |
| 436 | } |
| 437 | |
| 438 | debug("%s: Software can perform MRS/MPR/PDA\n", __func__); |
| 439 | |
| 440 | ret = wait_for_bit_le32((const void *)(umctl2_base + |
| 441 | DDR4_MRSTAT_OFFSET), |
| 442 | DDR4_MRSTAT_MR_WR_BUSY, |
| 443 | false, TIMEOUT_200MS, false); |
| 444 | if (ret) { |
| 445 | debug("%s: Timeout while waiting for", __func__); |
| 446 | debug(" no outstanding MR transaction\n"); |
| 447 | return ret; |
| 448 | } |
| 449 | |
| 450 | ret = clr_ca_parity_error_status(umctl2_base); |
| 451 | if (ret) |
| 452 | return ret; |
| 453 | |
| 454 | if (!value) { |
| 455 | /* Clear interrupt bit for DFI alert error */ |
| 456 | setbits_le32(umctl2_base + DDR4_CRCPARCTL0_OFFSET, |
| 457 | DDR4_CRCPARCTL0_DFI_ALERT_ERR_INIT_CLR); |
| 458 | } |
| 459 | |
| 460 | return 0; |
| 461 | } |
| 462 | |
| 463 | static int ensure_retry_procedure_complete(phys_addr_t umctl2_base) |
| 464 | { |
| 465 | u32 value; |
| 466 | u32 start = get_timer(0); |
| 467 | int ret; |
| 468 | |
| 469 | /* Check parity/crc/error window is emptied ? */ |
| 470 | value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) & |
| 471 | DDR4_CRCPARSTAT_CMD_IN_ERR_WINDOW; |
| 472 | |
| 473 | /* Polling until parity/crc/error window is emptied */ |
| 474 | while (value) { |
| 475 | if (get_timer(start) > TIMEOUT_200MS) { |
| 476 | debug("%s: Timeout while waiting for", |
| 477 | __func__); |
| 478 | debug(" parity/crc/error window empty\n"); |
| 479 | return -ETIMEDOUT; |
| 480 | } |
| 481 | |
| 482 | /* Check software intervention is enabled? */ |
| 483 | value = readl(umctl2_base + DDR4_CRCPARCTL1_OFFSET) & |
| 484 | DDR4_CRCPARCTL1_ALERT_WAIT_FOR_SW; |
| 485 | if (value) { |
| 486 | debug("%s: Software intervention is enabled\n", |
| 487 | __func__); |
| 488 | |
| 489 | /* Check dfi alert error interrupt is set? */ |
| 490 | value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) & |
| 491 | DDR4_CRCPARSTAT_DFI_ALERT_ERR_INT; |
| 492 | |
| 493 | if (value) { |
| 494 | ret = ddr_retry_software_sequence(umctl2_base); |
| 495 | debug("%s: DFI alert error interrupt ", |
| 496 | __func__); |
| 497 | debug("is set\n"); |
| 498 | |
| 499 | if (ret) |
| 500 | return ret; |
| 501 | } |
| 502 | |
| 503 | /* |
| 504 | * Check fatal parity error interrupt is set? |
| 505 | */ |
| 506 | value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) & |
| 507 | DDR4_CRCPARSTAT_DFI_ALERT_ERR_FATL_INT; |
| 508 | if (value) { |
| 509 | printf("%s: Fatal parity error ", |
| 510 | __func__); |
| 511 | printf("interrupt is set, Hang it!!\n"); |
| 512 | hang(); |
| 513 | } |
| 514 | } |
| 515 | |
| 516 | value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) & |
| 517 | DDR4_CRCPARSTAT_CMD_IN_ERR_WINDOW; |
| 518 | |
| 519 | udelay(1); |
Stefan Roese | 80877fa | 2022-09-02 14:10:46 +0200 | [diff] [blame] | 520 | schedule(); |
Tien Fong Chee | f8e2eab | 2021-08-10 11:26:37 +0800 | [diff] [blame] | 521 | } |
| 522 | |
| 523 | return 0; |
| 524 | } |
| 525 | |
| 526 | static int enable_quasi_dynamic_reg_grp3(phys_addr_t umctl2_base, |
| 527 | enum ddr_type umctl2_type) |
| 528 | { |
| 529 | u32 i, value, backup; |
| 530 | int ret = 0; |
| 531 | |
| 532 | /* Disable input traffic per port */ |
| 533 | clrbits_le32(umctl2_base + DDR4_PCTRL0_OFFSET, DDR4_PCTRL0_PORT_EN); |
| 534 | |
| 535 | /* Polling AXI port until idle */ |
| 536 | ret = wait_for_bit_le32((const void *)(umctl2_base + |
| 537 | DDR4_PSTAT_OFFSET), |
| 538 | DDR4_PSTAT_WR_PORT_BUSY_0 | |
| 539 | DDR4_PSTAT_RD_PORT_BUSY_0, false, |
| 540 | TIMEOUT_200MS, false); |
| 541 | if (ret) { |
| 542 | debug("%s: Timeout while waiting for", __func__); |
| 543 | debug(" controller idle\n"); |
| 544 | return ret; |
| 545 | } |
| 546 | |
| 547 | /* Backup user setting */ |
| 548 | backup = readl(umctl2_base + DDR4_DBG1_OFFSET); |
| 549 | |
| 550 | /* Disable input traffic to the controller */ |
| 551 | setbits_le32(umctl2_base + DDR4_DBG1_OFFSET, DDR4_DBG1_DIS_HIF); |
| 552 | |
| 553 | /* |
| 554 | * Ensure CAM/data pipelines are empty. |
| 555 | * Poll until CAM/data pipelines are set at least twice, |
| 556 | * timeout at 200ms |
| 557 | */ |
| 558 | for (i = 0; i < 2; i++) { |
| 559 | ret = wait_for_bit_le32((const void *)(umctl2_base + |
| 560 | DDR4_DBGCAM_OFFSET), |
| 561 | DDR4_DBGCAM_WR_DATA_PIPELINE_EMPTY | |
| 562 | DDR4_DBGCAM_RD_DATA_PIPELINE_EMPTY | |
| 563 | DDR4_DBGCAM_DBG_WR_Q_EMPTY | |
| 564 | DDR4_DBGCAM_DBG_RD_Q_EMPTY, true, |
| 565 | TIMEOUT_200MS, false); |
| 566 | if (ret) { |
| 567 | debug("%s: loop(%u): Timeout while waiting for", |
| 568 | __func__, i + 1); |
| 569 | debug(" CAM/data pipelines are empty\n"); |
| 570 | |
| 571 | goto out; |
| 572 | } |
| 573 | } |
| 574 | |
| 575 | if (umctl2_type == DDRTYPE_DDR4) { |
| 576 | /* Check DDR4 retry is enabled ? */ |
| 577 | value = readl(umctl2_base + DDR4_CRCPARCTL1_OFFSET) & |
| 578 | DDR4_CRCPARCTL1_CRC_PARITY_RETRY_ENABLE; |
| 579 | |
| 580 | if (value) { |
| 581 | debug("%s: DDR4 retry is enabled\n", __func__); |
| 582 | |
| 583 | ret = ensure_retry_procedure_complete(umctl2_base); |
| 584 | if (ret) { |
| 585 | debug("%s: Timeout while waiting for", |
| 586 | __func__); |
| 587 | debug(" retry procedure complete\n"); |
| 588 | |
| 589 | goto out; |
| 590 | } |
| 591 | } |
| 592 | } |
| 593 | |
| 594 | debug("%s: Quasi-dynamic group 3 registers are enabled\n", __func__); |
| 595 | |
| 596 | out: |
| 597 | /* Restore user setting */ |
| 598 | writel(backup, umctl2_base + DDR4_DBG1_OFFSET); |
| 599 | |
| 600 | return ret; |
| 601 | } |
| 602 | |
| 603 | static enum ddr_type get_ddr_type(phys_addr_t ddr_type_location) |
| 604 | { |
| 605 | u32 ddr_type_magic = readl(ddr_type_location); |
| 606 | |
| 607 | if (ddr_type_magic == SOC64_HANDOFF_DDR_UMCTL2_DDR4_TYPE) |
| 608 | return DDRTYPE_DDR4; |
| 609 | |
| 610 | if (ddr_type_magic == SOC64_HANDOFF_DDR_UMCTL2_LPDDR4_0_TYPE) |
| 611 | return DDRTYPE_LPDDR4_0; |
| 612 | |
| 613 | if (ddr_type_magic == SOC64_HANDOFF_DDR_UMCTL2_LPDDR4_1_TYPE) |
| 614 | return DDRTYPE_LPDDR4_1; |
| 615 | |
| 616 | return DDRTYPE_UNKNOWN; |
| 617 | } |
| 618 | |
| 619 | static void use_lpddr4_interleaving(bool set) |
| 620 | { |
| 621 | if (set) { |
| 622 | printf("Starting LPDDR4 interleaving configuration ...\n"); |
| 623 | setbits_le32(FPGA2SDRAM_MGR_MAIN_SIDEBANDMGR_FLAGOUTSET0, |
| 624 | BIT(5)); |
| 625 | } else { |
| 626 | printf("Starting LPDDR4 non-interleaving configuration ...\n"); |
| 627 | clrbits_le32(FPGA2SDRAM_MGR_MAIN_SIDEBANDMGR_FLAGOUTSET0, |
| 628 | BIT(5)); |
| 629 | } |
| 630 | } |
| 631 | |
| 632 | static void use_ddr4(enum ddr_type type) |
| 633 | { |
| 634 | if (type == DDRTYPE_DDR4) { |
| 635 | printf("Starting DDR4 configuration ...\n"); |
| 636 | setbits_le32(socfpga_get_sysmgr_addr() + SYSMGR_SOC64_DDR_MODE, |
| 637 | SYSMGR_SOC64_DDR_MODE_MSK); |
| 638 | } else if (type == DDRTYPE_LPDDR4_0) { |
| 639 | printf("Starting LPDDR4 configuration ...\n"); |
| 640 | clrbits_le32(socfpga_get_sysmgr_addr() + SYSMGR_SOC64_DDR_MODE, |
| 641 | SYSMGR_SOC64_DDR_MODE_MSK); |
| 642 | |
| 643 | use_lpddr4_interleaving(false); |
| 644 | } |
| 645 | } |
| 646 | |
| 647 | static int scrubber_ddr_config(phys_addr_t umctl2_base, |
| 648 | enum ddr_type umctl2_type) |
| 649 | { |
| 650 | u32 backup[9]; |
| 651 | int ret; |
| 652 | |
| 653 | /* Reset to default value, prevent scrubber stop due to lower power */ |
| 654 | writel(0, umctl2_base + DDR4_PWRCTL_OFFSET); |
| 655 | |
| 656 | /* Backup user settings */ |
| 657 | backup[0] = readl(umctl2_base + DDR4_SBRCTL_OFFSET); |
| 658 | backup[1] = readl(umctl2_base + DDR4_SBRWDATA0_OFFSET); |
| 659 | backup[2] = readl(umctl2_base + DDR4_SBRSTART0_OFFSET); |
| 660 | if (umctl2_type == DDRTYPE_DDR4) { |
| 661 | backup[3] = readl(umctl2_base + DDR4_SBRWDATA1_OFFSET); |
| 662 | backup[4] = readl(umctl2_base + DDR4_SBRSTART1_OFFSET); |
| 663 | } |
| 664 | backup[5] = readl(umctl2_base + DDR4_SBRRANGE0_OFFSET); |
| 665 | backup[6] = readl(umctl2_base + DDR4_SBRRANGE1_OFFSET); |
| 666 | backup[7] = readl(umctl2_base + DDR4_ECCCFG0_OFFSET); |
| 667 | backup[8] = readl(umctl2_base + DDR4_ECCCFG1_OFFSET); |
| 668 | |
| 669 | if (umctl2_type != DDRTYPE_DDR4) { |
| 670 | /* Lock ECC region, ensure this regions is not being accessed */ |
| 671 | setbits_le32(umctl2_base + DDR4_ECCCFG1_OFFSET, |
| 672 | LPDDR4_ECCCFG1_ECC_REGIONS_PARITY_LOCK); |
| 673 | } |
| 674 | /* Disable input traffic per port */ |
| 675 | clrbits_le32(umctl2_base + DDR4_PCTRL0_OFFSET, DDR4_PCTRL0_PORT_EN); |
| 676 | /* Disables scrubber */ |
| 677 | clrbits_le32(umctl2_base + DDR4_SBRCTL_OFFSET, DDR4_SBRCTL_SCRUB_EN); |
| 678 | /* Polling all scrub writes data have been sent */ |
| 679 | ret = wait_for_bit_le32((const void *)(umctl2_base + |
| 680 | DDR4_SBRSTAT_OFFSET), DDR4_SBRSTAT_SCRUB_BUSY, |
| 681 | false, TIMEOUT_5000MS, false); |
| 682 | if (ret) { |
| 683 | debug("%s: Timeout while waiting for", __func__); |
| 684 | debug(" sending all scrub data\n"); |
| 685 | return ret; |
| 686 | } |
| 687 | |
| 688 | /* LPDDR4 supports inline ECC only */ |
| 689 | if (umctl2_type != DDRTYPE_DDR4) { |
| 690 | /* |
| 691 | * Setting all regions for protected, this is required for |
| 692 | * srubber to init whole LPDDR4 expect ECC region |
| 693 | */ |
| 694 | writel(((ONE_EIGHT << |
| 695 | LPDDR4_ECCCFG0_ECC_REGION_MAP_GRANU_SHIFT) | |
| 696 | (ALL_PROTECTED << LPDDR4_ECCCFG0_ECC_REGION_MAP_SHIFT)), |
| 697 | umctl2_base + DDR4_ECCCFG0_OFFSET); |
| 698 | } |
| 699 | |
| 700 | /* Scrub_burst = 1, scrub_mode = 1(performs writes) */ |
| 701 | writel(DDR4_SBRCTL_SCRUB_BURST_1 | DDR4_SBRCTL_SCRUB_WRITE, |
| 702 | umctl2_base + DDR4_SBRCTL_OFFSET); |
| 703 | |
| 704 | /* Zeroing whole DDR */ |
| 705 | writel(0, umctl2_base + DDR4_SBRWDATA0_OFFSET); |
| 706 | writel(0, umctl2_base + DDR4_SBRSTART0_OFFSET); |
| 707 | if (umctl2_type == DDRTYPE_DDR4) { |
| 708 | writel(0, umctl2_base + DDR4_SBRWDATA1_OFFSET); |
| 709 | writel(0, umctl2_base + DDR4_SBRSTART1_OFFSET); |
| 710 | } |
| 711 | writel(0, umctl2_base + DDR4_SBRRANGE0_OFFSET); |
| 712 | writel(0, umctl2_base + DDR4_SBRRANGE1_OFFSET); |
| 713 | |
| 714 | /* Enables scrubber */ |
| 715 | setbits_le32(umctl2_base + DDR4_SBRCTL_OFFSET, DDR4_SBRCTL_SCRUB_EN); |
| 716 | /* Polling all scrub writes commands have been sent */ |
| 717 | ret = wait_for_bit_le32((const void *)(umctl2_base + |
| 718 | DDR4_SBRSTAT_OFFSET), DDR4_SBRSTAT_SCRUB_DONE, |
| 719 | true, TIMEOUT_5000MS, false); |
| 720 | if (ret) { |
| 721 | debug("%s: Timeout while waiting for", __func__); |
| 722 | debug(" sending all scrub commands\n"); |
| 723 | return ret; |
| 724 | } |
| 725 | |
| 726 | /* Polling all scrub writes data have been sent */ |
| 727 | ret = wait_for_bit_le32((const void *)(umctl2_base + |
| 728 | DDR4_SBRSTAT_OFFSET), DDR4_SBRSTAT_SCRUB_BUSY, |
| 729 | false, TIMEOUT_5000MS, false); |
| 730 | if (ret) { |
| 731 | printf("%s: Timeout while waiting for", __func__); |
| 732 | printf(" sending all scrub data\n"); |
| 733 | return ret; |
| 734 | } |
| 735 | |
| 736 | /* Disables scrubber */ |
| 737 | clrbits_le32(umctl2_base + DDR4_SBRCTL_OFFSET, DDR4_SBRCTL_SCRUB_EN); |
| 738 | |
| 739 | /* Restore user settings */ |
| 740 | writel(backup[0], umctl2_base + DDR4_SBRCTL_OFFSET); |
| 741 | writel(backup[1], umctl2_base + DDR4_SBRWDATA0_OFFSET); |
| 742 | writel(backup[2], umctl2_base + DDR4_SBRSTART0_OFFSET); |
| 743 | if (umctl2_type == DDRTYPE_DDR4) { |
| 744 | writel(backup[3], umctl2_base + DDR4_SBRWDATA1_OFFSET); |
| 745 | writel(backup[4], umctl2_base + DDR4_SBRSTART1_OFFSET); |
| 746 | } |
| 747 | writel(backup[5], umctl2_base + DDR4_SBRRANGE0_OFFSET); |
| 748 | writel(backup[6], umctl2_base + DDR4_SBRRANGE1_OFFSET); |
| 749 | writel(backup[7], umctl2_base + DDR4_ECCCFG0_OFFSET); |
| 750 | writel(backup[8], umctl2_base + DDR4_ECCCFG1_OFFSET); |
| 751 | |
| 752 | /* Enables ECC scrub on scrubber */ |
| 753 | if (!(readl(umctl2_base + DDR4_SBRCTL_OFFSET) & |
| 754 | DDR4_SBRCTL_SCRUB_WRITE)) { |
| 755 | /* Enables scrubber */ |
| 756 | setbits_le32(umctl2_base + DDR4_SBRCTL_OFFSET, |
| 757 | DDR4_SBRCTL_SCRUB_EN); |
| 758 | } |
| 759 | |
| 760 | return 0; |
| 761 | } |
| 762 | |
| 763 | static void handoff_process(struct ddr_handoff *ddr_handoff_info, |
| 764 | phys_addr_t handoff_base, size_t length, |
| 765 | phys_addr_t base) |
| 766 | { |
| 767 | u32 handoff_table[length]; |
| 768 | u32 i, value = 0; |
| 769 | |
| 770 | /* Execute configuration handoff */ |
| 771 | socfpga_handoff_read((void *)handoff_base, handoff_table, length); |
| 772 | |
| 773 | for (i = 0; i < length; i = i + 2) { |
| 774 | debug("%s: wr = 0x%08x ", __func__, handoff_table[i + 1]); |
| 775 | if (ddr_handoff_info && base == ddr_handoff_info->phy_base) { |
| 776 | /* |
| 777 | * Convert PHY odd offset to even offset that |
| 778 | * supported by ARM processor. |
| 779 | */ |
| 780 | value = handoff_table[i] << 1; |
| 781 | |
| 782 | writew(handoff_table[i + 1], |
| 783 | (uintptr_t)(value + base)); |
| 784 | debug("rd = 0x%08x ", |
| 785 | readw((uintptr_t)(value + base))); |
| 786 | debug("PHY offset: 0x%08x ", handoff_table[i + 1]); |
| 787 | } else { |
| 788 | value = handoff_table[i]; |
| 789 | writel(handoff_table[i + 1], (uintptr_t)(value + |
| 790 | base)); |
| 791 | debug("rd = 0x%08x ", |
| 792 | readl((uintptr_t)(value + base))); |
| 793 | } |
| 794 | |
| 795 | debug("Absolute addr: 0x%08llx, APB offset: 0x%08x\n", |
| 796 | value + base, value); |
| 797 | } |
| 798 | } |
| 799 | |
| 800 | static int init_umctl2(phys_addr_t umctl2_handoff_base, |
| 801 | phys_addr_t umctl2_base, enum ddr_type umctl2_type, |
| 802 | size_t umctl2_handoff_length, |
| 803 | u32 *user_backup) |
| 804 | { |
| 805 | int ret; |
| 806 | |
| 807 | if (umctl2_type == DDRTYPE_DDR4) |
| 808 | printf("Initializing DDR4 controller ...\n"); |
| 809 | else if (umctl2_type == DDRTYPE_LPDDR4_0) |
| 810 | printf("Initializing LPDDR4_0 controller ...\n"); |
| 811 | else if (umctl2_type == DDRTYPE_LPDDR4_1) |
| 812 | printf("Initializing LPDDR4_1 controller ...\n"); |
| 813 | |
| 814 | /* Prevent controller from issuing read/write to SDRAM */ |
| 815 | setbits_le32(umctl2_base + DDR4_DBG1_OFFSET, DDR4_DBG1_DISDQ); |
| 816 | |
| 817 | /* Put SDRAM into self-refresh */ |
| 818 | setbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET, DDR4_PWRCTL_SELFREF_EN); |
| 819 | |
| 820 | /* Enable quasi-dynamic programing of the controller registers */ |
| 821 | clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); |
| 822 | |
| 823 | /* Ensure the controller is in initialization mode */ |
| 824 | ret = wait_for_bit_le32((const void *)(umctl2_base + DDR4_STAT_OFFSET), |
| 825 | DDR4_STAT_OPERATING_MODE, false, TIMEOUT_200MS, |
| 826 | false); |
| 827 | if (ret) { |
| 828 | debug("%s: Timeout while waiting for", __func__); |
| 829 | debug(" init operating mode\n"); |
| 830 | return ret; |
| 831 | } |
| 832 | |
| 833 | debug("%s: UMCTL2 handoff base address = 0x%p table length = 0x%08x\n", |
| 834 | __func__, (u32 *)umctl2_handoff_base, |
| 835 | (u32)umctl2_handoff_length); |
| 836 | |
| 837 | handoff_process(NULL, umctl2_handoff_base, umctl2_handoff_length, |
| 838 | umctl2_base); |
| 839 | |
| 840 | /* Backup user settings, restore after DDR up running */ |
| 841 | *user_backup = readl(umctl2_base + DDR4_PWRCTL_OFFSET); |
| 842 | |
| 843 | /* Disable self resfresh */ |
| 844 | clrbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET, DDR4_PWRCTL_SELFREF_EN); |
| 845 | |
| 846 | if (umctl2_type == DDRTYPE_LPDDR4_0 || |
| 847 | umctl2_type == DDRTYPE_LPDDR4_1) { |
| 848 | /* Setting selfref_sw to 1, based on lpddr4 requirement */ |
| 849 | setbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET, |
| 850 | DDR4_PWRCTL_SELFREF_SW); |
| 851 | |
| 852 | /* Backup user settings, restore after DDR up running */ |
| 853 | user_backup++; |
| 854 | *user_backup = readl(umctl2_base + DDR4_INIT0_OFFSET) & |
| 855 | DDR4_INIT0_SKIP_RAM_INIT; |
| 856 | |
| 857 | /* |
| 858 | * Setting INIT0.skip_dram_init to 0x3, based on lpddr4 |
| 859 | * requirement |
| 860 | */ |
| 861 | setbits_le32(umctl2_base + DDR4_INIT0_OFFSET, |
| 862 | DDR4_INIT0_SKIP_RAM_INIT); |
| 863 | } |
| 864 | |
| 865 | /* Complete quasi-dynamic register programming */ |
| 866 | setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); |
| 867 | |
| 868 | /* Enable controller from issuing read/write to SDRAM */ |
| 869 | clrbits_le32(umctl2_base + DDR4_DBG1_OFFSET, DDR4_DBG1_DISDQ); |
| 870 | |
| 871 | return 0; |
| 872 | } |
| 873 | |
| 874 | static int phy_pre_handoff_config(phys_addr_t umctl2_base, |
| 875 | enum ddr_type umctl2_type) |
| 876 | { |
| 877 | int ret; |
| 878 | u32 value; |
| 879 | |
| 880 | if (umctl2_type == DDRTYPE_DDR4) { |
| 881 | /* Check DDR4 retry is enabled ? */ |
| 882 | value = readl(umctl2_base + DDR4_CRCPARCTL1_OFFSET) & |
| 883 | DDR4_CRCPARCTL1_CRC_PARITY_RETRY_ENABLE; |
| 884 | |
| 885 | if (value) { |
| 886 | debug("%s: DDR4 retry is enabled\n", __func__); |
| 887 | debug("%s: Disable auto refresh is not supported\n", |
| 888 | __func__); |
| 889 | } else { |
| 890 | /* Disable auto refresh */ |
| 891 | setbits_le32(umctl2_base + DDR4_RFSHCTL3_OFFSET, |
| 892 | DDR4_RFSHCTL3_DIS_AUTO_REFRESH); |
| 893 | } |
| 894 | } |
| 895 | |
| 896 | /* Disable selfref_en & powerdown_en, nvr disable dfi dram clk */ |
| 897 | clrbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET, |
| 898 | DDR4_PWRCTL_EN_DFI_DRAM_CLK_DISABLE | |
| 899 | DDR4_PWRCTL_POWERDOWN_EN | DDR4_PWRCTL_SELFREF_EN); |
| 900 | |
| 901 | /* Enable quasi-dynamic programing of the controller registers */ |
| 902 | clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); |
| 903 | |
| 904 | ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type); |
| 905 | if (ret) |
| 906 | return ret; |
| 907 | |
| 908 | /* Masking dfi init complete */ |
| 909 | clrbits_le32(umctl2_base + DDR4_DFIMISC_OFFSET, |
| 910 | DDR4_DFIMISC_DFI_INIT_COMPLETE_EN); |
| 911 | |
| 912 | /* Complete quasi-dynamic register programming */ |
| 913 | setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); |
| 914 | |
| 915 | /* Polling programming done */ |
| 916 | ret = wait_for_bit_le32((const void *)(umctl2_base + |
| 917 | DDR4_SWSTAT_OFFSET), DDR4_SWSTAT_SW_DONE_ACK, |
| 918 | true, TIMEOUT_200MS, false); |
| 919 | if (ret) { |
| 920 | debug("%s: Timeout while waiting for", __func__); |
| 921 | debug(" programming done\n"); |
| 922 | } |
| 923 | |
| 924 | return ret; |
| 925 | } |
| 926 | |
| 927 | static int init_phy(struct ddr_handoff *ddr_handoff_info) |
| 928 | { |
| 929 | int ret; |
| 930 | |
| 931 | printf("Initializing DDR PHY ...\n"); |
| 932 | |
| 933 | if (ddr_handoff_info->cntlr_t == DDRTYPE_DDR4 || |
| 934 | ddr_handoff_info->cntlr_t == DDRTYPE_LPDDR4_0) { |
| 935 | ret = phy_pre_handoff_config(ddr_handoff_info->cntlr_base, |
| 936 | ddr_handoff_info->cntlr_t); |
| 937 | if (ret) |
| 938 | return ret; |
| 939 | } |
| 940 | |
| 941 | if (ddr_handoff_info->cntlr2_t == DDRTYPE_LPDDR4_1) { |
| 942 | ret = phy_pre_handoff_config |
| 943 | (ddr_handoff_info->cntlr2_base, |
| 944 | ddr_handoff_info->cntlr2_t); |
| 945 | if (ret) |
| 946 | return ret; |
| 947 | } |
| 948 | |
| 949 | /* Execute PHY configuration handoff */ |
| 950 | handoff_process(ddr_handoff_info, ddr_handoff_info->phy_handoff_base, |
| 951 | ddr_handoff_info->phy_handoff_length, |
| 952 | ddr_handoff_info->phy_base); |
| 953 | |
| 954 | printf("DDR PHY configuration is completed\n"); |
| 955 | |
| 956 | return 0; |
| 957 | } |
| 958 | |
| 959 | static void phy_init_engine(struct ddr_handoff *handoff) |
| 960 | { |
| 961 | printf("Load PHY Init Engine ...\n"); |
| 962 | |
| 963 | /* Execute PIE production code handoff */ |
| 964 | handoff_process(handoff, handoff->phy_engine_handoff_base, |
| 965 | handoff->phy_engine_handoff_length, handoff->phy_base); |
| 966 | |
| 967 | printf("End of loading PHY Init Engine\n"); |
| 968 | } |
| 969 | |
| 970 | int populate_ddr_handoff(struct ddr_handoff *handoff) |
| 971 | { |
| 972 | phys_addr_t next_section_header; |
| 973 | |
| 974 | /* DDR handoff */ |
| 975 | handoff->mem_reset_base = SOC64_HANDOFF_DDR_MEMRESET_BASE; |
| 976 | debug("%s: DDR memory reset base = 0x%x\n", __func__, |
| 977 | (u32)handoff->mem_reset_base); |
| 978 | debug("%s: DDR memory reset address = 0x%x\n", __func__, |
| 979 | readl(handoff->mem_reset_base)); |
| 980 | |
| 981 | /* Beginning of DDR controller handoff */ |
| 982 | handoff->cntlr_handoff_base = SOC64_HANDOFF_DDR_UMCTL2_SECTION; |
| 983 | debug("%s: cntlr handoff base = 0x%x\n", __func__, |
| 984 | (u32)handoff->cntlr_handoff_base); |
| 985 | |
| 986 | /* Get 1st DDR type */ |
| 987 | handoff->cntlr_t = get_ddr_type(handoff->cntlr_handoff_base + |
| 988 | SOC64_HANDOFF_DDR_UMCTL2_TYPE_OFFSET); |
| 989 | if (handoff->cntlr_t == DDRTYPE_LPDDR4_1 || |
| 990 | handoff->cntlr_t == DDRTYPE_UNKNOWN) { |
| 991 | debug("%s: Wrong DDR handoff format, the 1st DDR ", __func__); |
| 992 | debug("type must be DDR4 or LPDDR4_0\n"); |
| 993 | return -ENOEXEC; |
| 994 | } |
| 995 | |
| 996 | /* 1st cntlr base physical address */ |
| 997 | handoff->cntlr_base = readl(handoff->cntlr_handoff_base + |
| 998 | SOC64_HANDOFF_DDR_UMCTL2_BASE_ADDR_OFFSET); |
| 999 | debug("%s: cntlr base = 0x%x\n", __func__, (u32)handoff->cntlr_base); |
| 1000 | |
| 1001 | /* Get the total length of DDR cntlr handoff section */ |
| 1002 | handoff->cntlr_total_length = readl(handoff->cntlr_handoff_base + |
| 1003 | SOC64_HANDOFF_OFFSET_LENGTH); |
| 1004 | debug("%s: Umctl2 total length in byte = 0x%x\n", __func__, |
| 1005 | (u32)handoff->cntlr_total_length); |
| 1006 | |
| 1007 | /* Get the length of user setting data in DDR cntlr handoff section */ |
| 1008 | handoff->cntlr_handoff_length = socfpga_get_handoff_size((void *) |
| 1009 | handoff->cntlr_handoff_base); |
| 1010 | debug("%s: Umctl2 handoff length in word(32-bit) = 0x%x\n", __func__, |
| 1011 | (u32)handoff->cntlr_handoff_length); |
| 1012 | |
| 1013 | /* Wrong format on user setting data */ |
| 1014 | if (handoff->cntlr_handoff_length < 0) { |
| 1015 | debug("%s: Wrong format on user setting data\n", __func__); |
| 1016 | return -ENOEXEC; |
| 1017 | } |
| 1018 | |
| 1019 | /* Get the next handoff section address */ |
| 1020 | next_section_header = handoff->cntlr_handoff_base + |
| 1021 | handoff->cntlr_total_length; |
| 1022 | debug("%s: Next handoff section header location = 0x%llx\n", __func__, |
| 1023 | next_section_header); |
| 1024 | |
| 1025 | /* |
| 1026 | * Checking next section handoff is cntlr or PHY, and changing |
| 1027 | * subsequent implementation accordingly |
| 1028 | */ |
| 1029 | if (readl(next_section_header) == SOC64_HANDOFF_DDR_UMCTL2_MAGIC) { |
| 1030 | /* Get the next cntlr handoff section address */ |
| 1031 | handoff->cntlr2_handoff_base = next_section_header; |
| 1032 | debug("%s: umctl2 2nd handoff base = 0x%x\n", __func__, |
| 1033 | (u32)handoff->cntlr2_handoff_base); |
| 1034 | |
| 1035 | /* Get 2nd DDR type */ |
| 1036 | handoff->cntlr2_t = get_ddr_type(handoff->cntlr2_handoff_base + |
| 1037 | SOC64_HANDOFF_DDR_UMCTL2_TYPE_OFFSET); |
| 1038 | if (handoff->cntlr2_t == DDRTYPE_LPDDR4_0 || |
| 1039 | handoff->cntlr2_t == DDRTYPE_UNKNOWN) { |
| 1040 | debug("%s: Wrong DDR handoff format, the 2nd DDR ", |
| 1041 | __func__); |
| 1042 | debug("type must be LPDDR4_1\n"); |
| 1043 | return -ENOEXEC; |
| 1044 | } |
| 1045 | |
| 1046 | /* 2nd umctl2 base physical address */ |
| 1047 | handoff->cntlr2_base = |
| 1048 | readl(handoff->cntlr2_handoff_base + |
| 1049 | SOC64_HANDOFF_DDR_UMCTL2_BASE_ADDR_OFFSET); |
| 1050 | debug("%s: cntlr2 base = 0x%x\n", __func__, |
| 1051 | (u32)handoff->cntlr2_base); |
| 1052 | |
| 1053 | /* Get the total length of 2nd DDR umctl2 handoff section */ |
| 1054 | handoff->cntlr2_total_length = |
| 1055 | readl(handoff->cntlr2_handoff_base + |
| 1056 | SOC64_HANDOFF_OFFSET_LENGTH); |
| 1057 | debug("%s: Umctl2_2nd total length in byte = 0x%x\n", __func__, |
| 1058 | (u32)handoff->cntlr2_total_length); |
| 1059 | |
| 1060 | /* |
| 1061 | * Get the length of user setting data in DDR umctl2 handoff |
| 1062 | * section |
| 1063 | */ |
| 1064 | handoff->cntlr2_handoff_length = |
| 1065 | socfpga_get_handoff_size((void *) |
| 1066 | handoff->cntlr2_handoff_base); |
| 1067 | debug("%s: cntlr2 handoff length in word(32-bit) = 0x%x\n", |
| 1068 | __func__, |
| 1069 | (u32)handoff->cntlr2_handoff_length); |
| 1070 | |
| 1071 | /* Wrong format on user setting data */ |
| 1072 | if (handoff->cntlr2_handoff_length < 0) { |
| 1073 | debug("%s: Wrong format on umctl2 user setting data\n", |
| 1074 | __func__); |
| 1075 | return -ENOEXEC; |
| 1076 | } |
| 1077 | |
| 1078 | /* Get the next handoff section address */ |
| 1079 | next_section_header = handoff->cntlr2_handoff_base + |
| 1080 | handoff->cntlr2_total_length; |
| 1081 | debug("%s: Next handoff section header location = 0x%llx\n", |
| 1082 | __func__, next_section_header); |
| 1083 | } |
| 1084 | |
| 1085 | /* Checking next section handoff is PHY ? */ |
| 1086 | if (readl(next_section_header) == SOC64_HANDOFF_DDR_PHY_MAGIC) { |
| 1087 | /* DDR PHY handoff */ |
| 1088 | handoff->phy_handoff_base = next_section_header; |
| 1089 | debug("%s: PHY handoff base = 0x%x\n", __func__, |
| 1090 | (u32)handoff->phy_handoff_base); |
| 1091 | |
| 1092 | /* PHY base physical address */ |
| 1093 | handoff->phy_base = readl(handoff->phy_handoff_base + |
| 1094 | SOC64_HANDOFF_DDR_PHY_BASE_OFFSET); |
| 1095 | debug("%s: PHY base = 0x%x\n", __func__, |
| 1096 | (u32)handoff->phy_base); |
| 1097 | |
| 1098 | /* Get the total length of PHY handoff section */ |
| 1099 | handoff->phy_total_length = readl(handoff->phy_handoff_base + |
| 1100 | SOC64_HANDOFF_OFFSET_LENGTH); |
| 1101 | debug("%s: PHY total length in byte = 0x%x\n", __func__, |
| 1102 | (u32)handoff->phy_total_length); |
| 1103 | |
| 1104 | /* |
| 1105 | * Get the length of user setting data in DDR PHY handoff |
| 1106 | * section |
| 1107 | */ |
| 1108 | handoff->phy_handoff_length = socfpga_get_handoff_size((void *) |
| 1109 | handoff->phy_handoff_base); |
| 1110 | debug("%s: PHY handoff length in word(32-bit) = 0x%x\n", |
| 1111 | __func__, (u32)handoff->phy_handoff_length); |
| 1112 | |
| 1113 | /* Wrong format on PHY user setting data */ |
| 1114 | if (handoff->phy_handoff_length < 0) { |
| 1115 | debug("%s: Wrong format on PHY user setting data\n", |
| 1116 | __func__); |
| 1117 | return -ENOEXEC; |
| 1118 | } |
| 1119 | |
| 1120 | /* Get the next handoff section address */ |
| 1121 | next_section_header = handoff->phy_handoff_base + |
| 1122 | handoff->phy_total_length; |
| 1123 | debug("%s: Next handoff section header location = 0x%llx\n", |
| 1124 | __func__, next_section_header); |
| 1125 | } else { |
| 1126 | debug("%s: Wrong format for DDR handoff, expect PHY", |
| 1127 | __func__); |
| 1128 | debug(" handoff section after umctl2 handoff section\n"); |
| 1129 | return -ENOEXEC; |
| 1130 | } |
| 1131 | |
| 1132 | /* Checking next section handoff is PHY init Engine ? */ |
| 1133 | if (readl(next_section_header) == |
| 1134 | SOC64_HANDOFF_DDR_PHY_INIT_ENGINE_MAGIC) { |
| 1135 | /* DDR PHY Engine handoff */ |
| 1136 | handoff->phy_engine_handoff_base = next_section_header; |
| 1137 | debug("%s: PHY init engine handoff base = 0x%x\n", __func__, |
| 1138 | (u32)handoff->phy_engine_handoff_base); |
| 1139 | |
| 1140 | /* Get the total length of PHY init engine handoff section */ |
| 1141 | handoff->phy_engine_total_length = |
| 1142 | readl(handoff->phy_engine_handoff_base + |
| 1143 | SOC64_HANDOFF_OFFSET_LENGTH); |
| 1144 | debug("%s: PHY engine total length in byte = 0x%x\n", __func__, |
| 1145 | (u32)handoff->phy_engine_total_length); |
| 1146 | |
| 1147 | /* |
| 1148 | * Get the length of user setting data in DDR PHY init engine |
| 1149 | * handoff section |
| 1150 | */ |
| 1151 | handoff->phy_engine_handoff_length = |
| 1152 | socfpga_get_handoff_size((void *) |
| 1153 | handoff->phy_engine_handoff_base); |
| 1154 | debug("%s: PHY engine handoff length in word(32-bit) = 0x%x\n", |
| 1155 | __func__, (u32)handoff->phy_engine_handoff_length); |
| 1156 | |
| 1157 | /* Wrong format on PHY init engine setting data */ |
| 1158 | if (handoff->phy_engine_handoff_length < 0) { |
| 1159 | debug("%s: Wrong format on PHY init engine ", |
| 1160 | __func__); |
| 1161 | debug("user setting data\n"); |
| 1162 | return -ENOEXEC; |
| 1163 | } |
| 1164 | } else { |
| 1165 | debug("%s: Wrong format for DDR handoff, expect PHY", |
| 1166 | __func__); |
| 1167 | debug(" init engine handoff section after PHY handoff\n"); |
| 1168 | debug(" section\n"); |
| 1169 | return -ENOEXEC; |
| 1170 | } |
| 1171 | |
| 1172 | handoff->train_imem_base = handoff->phy_base + |
| 1173 | DDR_PHY_TRAIN_IMEM_OFFSET; |
| 1174 | debug("%s: PHY train IMEM base = 0x%x\n", |
| 1175 | __func__, (u32)handoff->train_imem_base); |
| 1176 | |
| 1177 | handoff->train_dmem_base = handoff->phy_base + |
| 1178 | DDR_PHY_TRAIN_DMEM_OFFSET; |
| 1179 | debug("%s: PHY train DMEM base = 0x%x\n", |
| 1180 | __func__, (u32)handoff->train_dmem_base); |
| 1181 | |
| 1182 | handoff->train_imem_length = SOC64_HANDOFF_DDR_TRAIN_IMEM_LENGTH; |
| 1183 | debug("%s: PHY train IMEM length = 0x%x\n", |
| 1184 | __func__, (u32)handoff->train_imem_length); |
| 1185 | |
| 1186 | handoff->train_dmem_length = SOC64_HANDOFF_DDR_TRAIN_DMEM_LENGTH; |
| 1187 | debug("%s: PHY train DMEM length = 0x%x\n", |
| 1188 | __func__, (u32)handoff->train_dmem_length); |
| 1189 | |
| 1190 | return 0; |
| 1191 | } |
| 1192 | |
| 1193 | int enable_ddr_clock(struct udevice *dev) |
| 1194 | { |
| 1195 | struct clk *ddr_clk; |
| 1196 | int ret; |
| 1197 | |
| 1198 | /* Enable clock before init DDR */ |
| 1199 | ddr_clk = devm_clk_get(dev, "mem_clk"); |
| 1200 | if (!IS_ERR(ddr_clk)) { |
| 1201 | ret = clk_enable(ddr_clk); |
| 1202 | if (ret) { |
| 1203 | printf("%s: Failed to enable DDR clock\n", __func__); |
| 1204 | return ret; |
| 1205 | } |
| 1206 | } else { |
| 1207 | ret = PTR_ERR(ddr_clk); |
| 1208 | debug("%s: Failed to get DDR clock from dts\n", __func__); |
| 1209 | return ret; |
| 1210 | } |
| 1211 | |
| 1212 | printf("%s: DDR clock is enabled\n", __func__); |
| 1213 | |
| 1214 | return 0; |
| 1215 | } |
| 1216 | |
| 1217 | static int ddr_start_dfi_init(phys_addr_t umctl2_base, |
| 1218 | enum ddr_type umctl2_type) |
| 1219 | { |
| 1220 | int ret; |
| 1221 | |
| 1222 | debug("%s: Start DFI init\n", __func__); |
| 1223 | |
| 1224 | /* Enable quasi-dynamic programing of controller registers */ |
| 1225 | clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); |
| 1226 | |
| 1227 | ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type); |
| 1228 | if (ret) |
| 1229 | return ret; |
| 1230 | |
| 1231 | /* Start DFI init sequence */ |
| 1232 | setbits_le32(umctl2_base + DDR4_DFIMISC_OFFSET, |
| 1233 | DDR4_DFIMISC_DFI_INIT_START); |
| 1234 | |
| 1235 | /* Complete quasi-dynamic register programming */ |
| 1236 | setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); |
| 1237 | |
| 1238 | /* Polling programming done */ |
| 1239 | ret = wait_for_bit_le32((const void *)(umctl2_base + |
| 1240 | DDR4_SWSTAT_OFFSET), |
| 1241 | DDR4_SWSTAT_SW_DONE_ACK, true, |
| 1242 | TIMEOUT_200MS, false); |
| 1243 | if (ret) { |
| 1244 | debug("%s: Timeout while waiting for", __func__); |
| 1245 | debug(" programming done\n"); |
| 1246 | } |
| 1247 | |
| 1248 | return ret; |
| 1249 | } |
| 1250 | |
| 1251 | static int ddr_check_dfi_init_complete(phys_addr_t umctl2_base, |
| 1252 | enum ddr_type umctl2_type) |
| 1253 | { |
| 1254 | int ret; |
| 1255 | |
| 1256 | /* Polling DFI init complete */ |
| 1257 | ret = wait_for_bit_le32((const void *)(umctl2_base + |
| 1258 | DDR4_DFISTAT_OFFSET), |
| 1259 | DDR4_DFI_INIT_COMPLETE, true, |
| 1260 | TIMEOUT_200MS, false); |
| 1261 | if (ret) { |
| 1262 | debug("%s: Timeout while waiting for", __func__); |
| 1263 | debug(" DFI init done\n"); |
| 1264 | return ret; |
| 1265 | } |
| 1266 | |
| 1267 | debug("%s: DFI init completed.\n", __func__); |
| 1268 | |
| 1269 | /* Enable quasi-dynamic programing of controller registers */ |
| 1270 | clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); |
| 1271 | |
| 1272 | ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type); |
| 1273 | if (ret) |
| 1274 | return ret; |
| 1275 | |
| 1276 | /* Stop DFI init sequence */ |
| 1277 | clrbits_le32(umctl2_base + DDR4_DFIMISC_OFFSET, |
| 1278 | DDR4_DFIMISC_DFI_INIT_START); |
| 1279 | |
| 1280 | /* Complete quasi-dynamic register programming */ |
| 1281 | setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); |
| 1282 | |
| 1283 | /* Polling programming done */ |
| 1284 | ret = wait_for_bit_le32((const void *)(umctl2_base + |
| 1285 | DDR4_SWSTAT_OFFSET), |
| 1286 | DDR4_SWSTAT_SW_DONE_ACK, true, |
| 1287 | TIMEOUT_200MS, false); |
| 1288 | if (ret) { |
| 1289 | debug("%s: Timeout while waiting for", __func__); |
| 1290 | debug(" programming done\n"); |
| 1291 | return ret; |
| 1292 | } |
| 1293 | |
| 1294 | debug("%s:DDR programming done\n", __func__); |
| 1295 | |
| 1296 | return ret; |
| 1297 | } |
| 1298 | |
| 1299 | static int ddr_trigger_sdram_init(phys_addr_t umctl2_base, |
| 1300 | enum ddr_type umctl2_type) |
| 1301 | { |
| 1302 | int ret; |
| 1303 | |
| 1304 | /* Enable quasi-dynamic programing of controller registers */ |
| 1305 | clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); |
| 1306 | |
| 1307 | ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type); |
| 1308 | if (ret) |
| 1309 | return ret; |
| 1310 | |
| 1311 | /* Unmasking dfi init complete */ |
| 1312 | setbits_le32(umctl2_base + DDR4_DFIMISC_OFFSET, |
| 1313 | DDR4_DFIMISC_DFI_INIT_COMPLETE_EN); |
| 1314 | |
| 1315 | /* Software exit from self-refresh */ |
| 1316 | clrbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET, DDR4_PWRCTL_SELFREF_SW); |
| 1317 | |
| 1318 | /* Complete quasi-dynamic register programming */ |
| 1319 | setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); |
| 1320 | |
| 1321 | /* Polling programming done */ |
| 1322 | ret = wait_for_bit_le32((const void *)(umctl2_base + |
| 1323 | DDR4_SWSTAT_OFFSET), |
| 1324 | DDR4_SWSTAT_SW_DONE_ACK, true, |
| 1325 | TIMEOUT_200MS, false); |
| 1326 | if (ret) { |
| 1327 | debug("%s: Timeout while waiting for", __func__); |
| 1328 | debug(" programming done\n"); |
| 1329 | return ret; |
| 1330 | } |
| 1331 | |
| 1332 | debug("%s:DDR programming done\n", __func__); |
| 1333 | return ret; |
| 1334 | } |
| 1335 | |
| 1336 | static int ddr_post_handoff_config(phys_addr_t umctl2_base, |
| 1337 | enum ddr_type umctl2_type) |
| 1338 | { |
| 1339 | int ret = 0; |
| 1340 | u32 value; |
| 1341 | u32 start = get_timer(0); |
| 1342 | |
| 1343 | do { |
| 1344 | if (get_timer(start) > TIMEOUT_200MS) { |
| 1345 | debug("%s: Timeout while waiting for", |
| 1346 | __func__); |
| 1347 | debug(" DDR enters normal operating mode\n"); |
| 1348 | return -ETIMEDOUT; |
| 1349 | } |
| 1350 | |
| 1351 | udelay(1); |
Stefan Roese | 80877fa | 2022-09-02 14:10:46 +0200 | [diff] [blame] | 1352 | schedule(); |
Tien Fong Chee | f8e2eab | 2021-08-10 11:26:37 +0800 | [diff] [blame] | 1353 | |
| 1354 | /* Polling until SDRAM entered normal operating mode */ |
| 1355 | value = readl(umctl2_base + DDR4_STAT_OFFSET) & |
| 1356 | DDR4_STAT_OPERATING_MODE; |
| 1357 | } while (value != OPM_NORMAL); |
| 1358 | |
| 1359 | printf("DDR entered normal operating mode\n"); |
| 1360 | |
| 1361 | /* Enabling auto refresh */ |
| 1362 | clrbits_le32(umctl2_base + DDR4_RFSHCTL3_OFFSET, |
| 1363 | DDR4_RFSHCTL3_DIS_AUTO_REFRESH); |
| 1364 | |
| 1365 | /* Checking ECC is enabled? */ |
| 1366 | value = readl(umctl2_base + DDR4_ECCCFG0_OFFSET) & DDR4_ECC_MODE; |
| 1367 | if (value) { |
| 1368 | printf("ECC is enabled\n"); |
| 1369 | ret = scrubber_ddr_config(umctl2_base, umctl2_type); |
| 1370 | if (ret) |
| 1371 | printf("Failed to enable ECC\n"); |
| 1372 | } |
| 1373 | |
| 1374 | return ret; |
| 1375 | } |
| 1376 | |
| 1377 | static int configure_training_firmware(struct ddr_handoff *ddr_handoff_info, |
| 1378 | const void *train_imem, |
| 1379 | const void *train_dmem) |
| 1380 | { |
| 1381 | int ret = 0; |
| 1382 | |
| 1383 | printf("Configuring training firmware ...\n"); |
| 1384 | |
| 1385 | /* Reset SDRAM */ |
| 1386 | writew(DDR_PHY_PROTECT_MEMRESET, |
| 1387 | (uintptr_t)(ddr_handoff_info->phy_base + |
| 1388 | DDR_PHY_MEMRESETL_OFFSET)); |
| 1389 | |
| 1390 | /* Enable access to the PHY configuration registers */ |
| 1391 | clrbits_le16(ddr_handoff_info->phy_base + DDR_PHY_APBONLY0_OFFSET, |
| 1392 | DDR_PHY_MICROCONTMUXSEL); |
| 1393 | |
| 1394 | /* Copy train IMEM bin */ |
| 1395 | memcpy((void *)ddr_handoff_info->train_imem_base, train_imem, |
| 1396 | ddr_handoff_info->train_imem_length); |
| 1397 | |
| 1398 | ret = memcmp((void *)ddr_handoff_info->train_imem_base, train_imem, |
| 1399 | ddr_handoff_info->train_imem_length); |
| 1400 | if (ret) { |
| 1401 | debug("%s: Failed to copy train IMEM binary\n", __func__); |
| 1402 | /* Isolate the APB access from internal CSRs */ |
| 1403 | setbits_le16(ddr_handoff_info->phy_base + |
| 1404 | DDR_PHY_APBONLY0_OFFSET, DDR_PHY_MICROCONTMUXSEL); |
| 1405 | return ret; |
| 1406 | } |
| 1407 | |
| 1408 | memcpy((void *)ddr_handoff_info->train_dmem_base, train_dmem, |
| 1409 | ddr_handoff_info->train_dmem_length); |
| 1410 | |
| 1411 | ret = memcmp((void *)ddr_handoff_info->train_dmem_base, train_dmem, |
| 1412 | ddr_handoff_info->train_dmem_length); |
| 1413 | if (ret) |
| 1414 | debug("%s: Failed to copy train DMEM binary\n", __func__); |
| 1415 | |
| 1416 | /* Isolate the APB access from internal CSRs */ |
| 1417 | setbits_le16(ddr_handoff_info->phy_base + DDR_PHY_APBONLY0_OFFSET, |
| 1418 | DDR_PHY_MICROCONTMUXSEL); |
| 1419 | |
| 1420 | return ret; |
| 1421 | } |
| 1422 | |
| 1423 | static void calibrating_sdram(struct ddr_handoff *ddr_handoff_info) |
| 1424 | { |
| 1425 | /* Init mailbox protocol - set 1 to DCTWRITEPROT[0] */ |
| 1426 | setbits_le16(ddr_handoff_info->phy_base + DDR_PHY_DCTWRITEPROT_OFFSET, |
| 1427 | DDR_PHY_DCTWRITEPROT); |
| 1428 | |
| 1429 | /* Init mailbox protocol - set 1 to UCTWRITEPROT[0] */ |
| 1430 | setbits_le16(ddr_handoff_info->phy_base + DDR_PHY_UCTWRITEPROT_OFFSET, |
| 1431 | DDR_PHY_UCTWRITEPROT); |
| 1432 | |
| 1433 | /* Reset and stalling ARC processor */ |
| 1434 | setbits_le16(ddr_handoff_info->phy_base + DDR_PHY_MICRORESET_OFFSET, |
| 1435 | DDR_PHY_MICRORESET_RESET | DDR_PHY_MICRORESET_STALL); |
| 1436 | |
| 1437 | /* Release ARC processor */ |
| 1438 | clrbits_le16(ddr_handoff_info->phy_base + DDR_PHY_MICRORESET_OFFSET, |
| 1439 | DDR_PHY_MICRORESET_RESET); |
| 1440 | |
| 1441 | /* Starting PHY firmware execution */ |
| 1442 | clrbits_le16(ddr_handoff_info->phy_base + DDR_PHY_MICRORESET_OFFSET, |
| 1443 | DDR_PHY_MICRORESET_STALL); |
| 1444 | } |
| 1445 | |
| 1446 | static int get_mail(struct ddr_handoff *handoff, enum message_mode mode, |
| 1447 | u32 *message_id) |
| 1448 | { |
| 1449 | int ret; |
| 1450 | |
| 1451 | /* Polling major messages from PMU */ |
| 1452 | ret = wait_for_bit_le16((const void *)(handoff->phy_base + |
| 1453 | DDR_PHY_UCTSHADOWREGS_OFFSET), |
| 1454 | DDR_PHY_UCTSHADOWREGS_UCTWRITEPROTESHADOW, |
| 1455 | false, TIMEOUT_200MS, false); |
| 1456 | if (ret) { |
| 1457 | debug("%s: Timeout while waiting for", |
| 1458 | __func__); |
| 1459 | debug(" major messages from PMU\n"); |
| 1460 | return ret; |
| 1461 | } |
| 1462 | |
| 1463 | *message_id = readw((uintptr_t)(handoff->phy_base + |
| 1464 | DDR_PHY_UCTWRITEONLYSHADOW_OFFSET)); |
| 1465 | |
| 1466 | if (mode == STREAMING_MESSAGE) |
| 1467 | *message_id |= readw((uintptr_t)((handoff->phy_base + |
| 1468 | DDR_PHY_UCTDATWRITEONLYSHADOW_OFFSET))) << |
| 1469 | SZ_16; |
| 1470 | |
| 1471 | /* Ack the receipt of the major message */ |
| 1472 | clrbits_le16(handoff->phy_base + DDR_PHY_DCTWRITEPROT_OFFSET, |
| 1473 | DDR_PHY_DCTWRITEPROT); |
| 1474 | |
| 1475 | ret = wait_for_bit_le16((const void *)(handoff->phy_base + |
| 1476 | DDR_PHY_UCTSHADOWREGS_OFFSET), |
| 1477 | DDR_PHY_UCTSHADOWREGS_UCTWRITEPROTESHADOW, |
| 1478 | true, TIMEOUT_200MS, false); |
| 1479 | if (ret) { |
| 1480 | debug("%s: Timeout while waiting for", |
| 1481 | __func__); |
| 1482 | debug(" ack the receipt of the major message completed\n"); |
| 1483 | return ret; |
| 1484 | } |
| 1485 | |
| 1486 | /* Complete protocol */ |
| 1487 | setbits_le16(handoff->phy_base + DDR_PHY_DCTWRITEPROT_OFFSET, |
| 1488 | DDR_PHY_DCTWRITEPROT); |
| 1489 | |
| 1490 | return ret; |
| 1491 | } |
| 1492 | |
| 1493 | static int get_mail_streaming(struct ddr_handoff *handoff, |
| 1494 | enum message_mode mode, u32 *index) |
| 1495 | { |
| 1496 | int ret; |
| 1497 | |
| 1498 | *index = readw((uintptr_t)(handoff->phy_base + |
| 1499 | DDR_PHY_UCTWRITEONLYSHADOW_OFFSET)); |
| 1500 | |
| 1501 | if (mode == STREAMING_MESSAGE) |
| 1502 | *index |= readw((uintptr_t)((handoff->phy_base + |
| 1503 | DDR_PHY_UCTDATWRITEONLYSHADOW_OFFSET))) << |
| 1504 | SZ_16; |
| 1505 | |
| 1506 | /* Ack the receipt of the major message */ |
| 1507 | clrbits_le16(handoff->phy_base + DDR_PHY_DCTWRITEPROT_OFFSET, |
| 1508 | DDR_PHY_DCTWRITEPROT); |
| 1509 | |
| 1510 | ret = wait_for_bit_le16((const void *)(handoff->phy_base + |
| 1511 | DDR_PHY_UCTSHADOWREGS_OFFSET), |
| 1512 | DDR_PHY_UCTSHADOWREGS_UCTWRITEPROTESHADOW, |
| 1513 | true, TIMEOUT_200MS, false); |
| 1514 | if (ret) { |
| 1515 | debug("%s: Timeout while waiting for", |
| 1516 | __func__); |
| 1517 | debug(" ack the receipt of the major message completed\n"); |
| 1518 | return ret; |
| 1519 | } |
| 1520 | |
| 1521 | /* Complete protocol */ |
| 1522 | setbits_le16(handoff->phy_base + DDR_PHY_DCTWRITEPROT_OFFSET, |
| 1523 | DDR_PHY_DCTWRITEPROT); |
| 1524 | |
| 1525 | return 0; |
| 1526 | } |
| 1527 | |
| 1528 | static int decode_streaming_message(struct ddr_handoff *ddr_handoff_info, |
| 1529 | u32 *streaming_index) |
| 1530 | { |
| 1531 | int i = 0, ret; |
| 1532 | u32 temp; |
| 1533 | |
| 1534 | temp = *streaming_index; |
| 1535 | |
| 1536 | while (i < GET_LOWHW_DATA(temp)) { |
| 1537 | ret = get_mail(ddr_handoff_info, STREAMING_MESSAGE, |
| 1538 | streaming_index); |
| 1539 | if (ret) |
| 1540 | return ret; |
| 1541 | |
| 1542 | printf("args[%d]: 0x%x ", i, *streaming_index); |
| 1543 | i++; |
| 1544 | } |
| 1545 | |
| 1546 | return 0; |
| 1547 | } |
| 1548 | |
| 1549 | static int poll_for_training_complete(struct ddr_handoff *ddr_handoff_info) |
| 1550 | { |
| 1551 | int ret; |
| 1552 | u32 message_id = 0; |
| 1553 | u32 streaming_index = 0; |
| 1554 | |
| 1555 | do { |
| 1556 | ret = get_mail(ddr_handoff_info, MAJOR_MESSAGE, &message_id); |
| 1557 | if (ret) |
| 1558 | return ret; |
| 1559 | |
| 1560 | printf("Major message id = 0%x\n", message_id); |
| 1561 | |
| 1562 | if (message_id == FW_STREAMING_MSG_ID) { |
| 1563 | ret = get_mail_streaming(ddr_handoff_info, |
| 1564 | STREAMING_MESSAGE, |
| 1565 | &streaming_index); |
| 1566 | if (ret) |
| 1567 | return ret; |
| 1568 | |
| 1569 | printf("streaming index 0%x : ", streaming_index); |
| 1570 | |
| 1571 | decode_streaming_message(ddr_handoff_info, |
| 1572 | &streaming_index); |
| 1573 | |
| 1574 | printf("\n"); |
| 1575 | } |
| 1576 | } while ((message_id != FW_TRAINING_COMPLETED_STAT) && |
| 1577 | (message_id != FW_TRAINING_FAILED_STAT)); |
| 1578 | |
| 1579 | if (message_id == FW_TRAINING_COMPLETED_STAT) { |
| 1580 | printf("DDR firmware training completed\n"); |
| 1581 | } else if (message_id == FW_TRAINING_FAILED_STAT) { |
| 1582 | printf("DDR firmware training failed\n"); |
| 1583 | hang(); |
| 1584 | } |
| 1585 | |
| 1586 | return 0; |
| 1587 | } |
| 1588 | |
| 1589 | static void enable_phy_clk_for_csr_access(struct ddr_handoff *handoff, |
| 1590 | bool enable) |
| 1591 | { |
| 1592 | if (enable) { |
| 1593 | /* Enable PHY clk */ |
| 1594 | setbits_le16((uintptr_t)(handoff->phy_base + |
| 1595 | DDR_PHY_UCCLKHCLKENABLES_OFFSET), |
| 1596 | DDR_PHY_UCCLKHCLKENABLES_UCCLKEN | |
| 1597 | DDR_PHY_UCCLKHCLKENABLES_HCLKEN); |
| 1598 | } else { |
| 1599 | /* Disable PHY clk */ |
| 1600 | clrbits_le16((uintptr_t)(handoff->phy_base + |
| 1601 | DDR_PHY_UCCLKHCLKENABLES_OFFSET), |
| 1602 | DDR_PHY_UCCLKHCLKENABLES_UCCLKEN | |
| 1603 | DDR_PHY_UCCLKHCLKENABLES_HCLKEN); |
| 1604 | } |
| 1605 | } |
| 1606 | |
| 1607 | /* helper function for updating train result to umctl2 RANKCTL register */ |
| 1608 | static void set_cal_res_to_rankctrl(u32 reg_addr, u16 update_value, |
| 1609 | u32 mask, u32 msb_mask, u32 shift) |
| 1610 | { |
| 1611 | u32 reg, value; |
| 1612 | |
| 1613 | reg = readl((uintptr_t)reg_addr); |
| 1614 | |
| 1615 | debug("max value divided by 2 is 0x%x\n", update_value); |
| 1616 | debug("umclt2 register 0x%x value is 0%x before ", reg_addr, reg); |
| 1617 | debug("update with train result\n"); |
| 1618 | |
| 1619 | value = (reg & mask) >> shift; |
| 1620 | |
| 1621 | value += update_value + 3; |
| 1622 | |
| 1623 | /* reg value greater than 0xF, set one to diff_rank_wr_gap_msb */ |
| 1624 | if (value > 0xF) |
| 1625 | setbits_le32((u32 *)(uintptr_t)reg_addr, msb_mask); |
| 1626 | else |
| 1627 | clrbits_le32((u32 *)(uintptr_t)reg_addr, msb_mask); |
| 1628 | |
| 1629 | reg = readl((uintptr_t)reg_addr); |
| 1630 | |
| 1631 | value = (value << shift) & mask; |
| 1632 | |
| 1633 | /* update register */ |
| 1634 | writel((reg & (~mask)) | value, (uintptr_t)reg_addr); |
| 1635 | |
| 1636 | reg = readl((uintptr_t)reg_addr); |
| 1637 | debug("umclt2 register 0x%x value is 0%x before ", reg_addr, reg); |
| 1638 | debug("update with train result\n"); |
| 1639 | } |
| 1640 | |
| 1641 | /* helper function for updating train result to register */ |
| 1642 | static void set_cal_res_to_reg(u32 reg_addr, u16 update_value, u32 mask, |
| 1643 | u32 shift) |
| 1644 | { |
| 1645 | u32 reg, value; |
| 1646 | |
| 1647 | reg = readl((uintptr_t)reg_addr); |
| 1648 | |
| 1649 | debug("max value divided by 2 is 0x%x\n", update_value); |
| 1650 | debug("umclt2 register 0x%x value is 0%x before ", reg_addr, reg); |
| 1651 | debug("update with train result\n"); |
| 1652 | |
| 1653 | value = (reg & mask) >> shift; |
| 1654 | |
| 1655 | value = ((value + update_value + 3) << shift) & mask; |
| 1656 | |
| 1657 | /* update register */ |
| 1658 | writel((reg & (~mask)) | value, (uintptr_t)reg_addr); |
| 1659 | |
| 1660 | reg = readl((uintptr_t)reg_addr); |
| 1661 | debug("umclt2 register 0x%x value is 0%x before ", reg_addr, reg); |
| 1662 | debug("update with train result\n"); |
| 1663 | } |
| 1664 | |
| 1665 | static u16 get_max_txdqsdlytg0_ux_p0(struct ddr_handoff *handoff, u32 reg, |
| 1666 | u8 numdbyte, u16 upd_val) |
| 1667 | { |
| 1668 | u32 b_addr; |
| 1669 | u16 val; |
| 1670 | u8 byte; |
| 1671 | |
| 1672 | /* Getting max value from DBYTEx TxDqsDlyTg0_ux_p0 */ |
| 1673 | for (byte = 0; byte < numdbyte; byte++) { |
| 1674 | b_addr = byte << 13; |
| 1675 | |
| 1676 | /* TxDqsDlyTg0[9:6] is the coarse delay */ |
| 1677 | val = (readw((uintptr_t)(handoff->phy_base + |
| 1678 | reg + b_addr)) & |
| 1679 | DDR_PHY_TXDQDLYTG0_COARSE_DELAY) >> |
| 1680 | DDR_PHY_TXDQDLYTG0_COARSE_DELAY_SHIFT; |
| 1681 | |
| 1682 | upd_val = max(val, upd_val); |
| 1683 | } |
| 1684 | |
| 1685 | return upd_val; |
| 1686 | } |
| 1687 | |
| 1688 | static int set_cal_res_to_umctl2(struct ddr_handoff *handoff, |
| 1689 | phys_addr_t umctl2_base, |
| 1690 | enum ddr_type umctl2_type) |
| 1691 | { |
| 1692 | int ret; |
| 1693 | u8 numdbyte = 0x8; |
| 1694 | u16 upd_val, val; |
| 1695 | u32 dramtmg2_reg_addr, rankctl_reg_addr, reg_addr; |
| 1696 | |
| 1697 | /* Enable quasi-dynamic programing of the controller registers */ |
| 1698 | clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); |
| 1699 | |
| 1700 | ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type); |
| 1701 | if (ret) |
| 1702 | return ret; |
| 1703 | |
| 1704 | /* Enable access to the PHY configuration registers */ |
| 1705 | clrbits_le16(handoff->phy_base + DDR_PHY_APBONLY0_OFFSET, |
| 1706 | DDR_PHY_MICROCONTMUXSEL); |
| 1707 | |
| 1708 | if (umctl2_type == DDRTYPE_DDR4) { |
| 1709 | val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1710 | DMEM_MB_CDD_WW_1_0_OFFSET))); |
| 1711 | |
| 1712 | upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1713 | DMEM_MB_CDD_WW_0_1_OFFSET))); |
| 1714 | } else if (umctl2_type == DDRTYPE_LPDDR4_0) { |
| 1715 | val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1716 | DMEM_MB_CDD_CHA_WW_1_0_OFFSET))); |
| 1717 | |
| 1718 | upd_val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1719 | DMEM_MB_CDD_CHA_WW_0_1_OFFSET))); |
| 1720 | } else if (umctl2_type == DDRTYPE_LPDDR4_1) { |
| 1721 | val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1722 | DMEM_MB_CDD_CHB_WW_1_0_OFFSET))); |
| 1723 | |
| 1724 | upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1725 | DMEM_MB_CDD_CHB_WW_0_1_OFFSET))); |
| 1726 | } |
| 1727 | |
| 1728 | upd_val = max(val, upd_val); |
| 1729 | debug("max value is 0x%x\n", upd_val); |
| 1730 | |
| 1731 | /* Divided by two is required when running in freq ratio 1:2 */ |
| 1732 | if (!(readl(umctl2_base + DDR4_MSTR_OFFSET) & DDR4_FREQ_RATIO)) |
| 1733 | upd_val = DIV_ROUND_CLOSEST(upd_val, 2); |
| 1734 | |
| 1735 | debug("Update train value to umctl2 RANKCTL.diff_rank_wr_gap\n"); |
| 1736 | rankctl_reg_addr = umctl2_base + DDR4_RANKCTL_OFFSET; |
| 1737 | /* Update train value to umctl2 RANKCTL.diff_rank_wr_gap */ |
| 1738 | set_cal_res_to_rankctrl(rankctl_reg_addr, upd_val, |
| 1739 | DDR4_RANKCTL_DIFF_RANK_WR_GAP, |
| 1740 | DDR4_RANKCTL_DIFF_RANK_WR_GAP_MSB, |
| 1741 | DDR4_RANKCTL_DIFF_RANK_WR_GAP_SHIFT); |
| 1742 | |
| 1743 | debug("Update train value to umctl2 DRAMTMG2.W2RD\n"); |
| 1744 | dramtmg2_reg_addr = umctl2_base + DDR4_DRAMTMG2_OFFSET; |
| 1745 | /* Update train value to umctl2 dramtmg2.wr2rd */ |
| 1746 | set_cal_res_to_reg(dramtmg2_reg_addr, upd_val, DDR4_DRAMTMG2_WR2RD, 0); |
| 1747 | |
| 1748 | if (umctl2_type == DDRTYPE_DDR4) { |
| 1749 | debug("Update train value to umctl2 DRAMTMG9.W2RD_S\n"); |
| 1750 | reg_addr = umctl2_base + DDR4_DRAMTMG9_OFFSET; |
| 1751 | /* Update train value to umctl2 dramtmg9.wr2rd_s */ |
| 1752 | set_cal_res_to_reg(reg_addr, upd_val, DDR4_DRAMTMG9_W2RD_S, 0); |
| 1753 | } |
| 1754 | |
| 1755 | if (umctl2_type == DDRTYPE_DDR4) { |
| 1756 | val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1757 | DMEM_MB_CDD_RR_1_0_OFFSET))); |
| 1758 | |
| 1759 | upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1760 | DMEM_MB_CDD_RR_0_1_OFFSET))); |
| 1761 | } else if (umctl2_type == DDRTYPE_LPDDR4_0) { |
| 1762 | val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1763 | DMEM_MB_CDD_CHA_RR_1_0_OFFSET))); |
| 1764 | |
| 1765 | upd_val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1766 | DMEM_MB_CDD_CHA_RR_0_1_OFFSET))); |
| 1767 | } else if (umctl2_type == DDRTYPE_LPDDR4_1) { |
| 1768 | val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1769 | DMEM_MB_CDD_CHB_RR_1_0_OFFSET))); |
| 1770 | |
| 1771 | upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1772 | DMEM_MB_CDD_CHB_RR_0_1_OFFSET))); |
| 1773 | } |
| 1774 | |
| 1775 | upd_val = max(val, upd_val); |
| 1776 | debug("max value is 0x%x\n", upd_val); |
| 1777 | |
| 1778 | /* Divided by two is required when running in freq ratio 1:2 */ |
| 1779 | if (!(readl(umctl2_base + DDR4_MSTR_OFFSET) & DDR4_FREQ_RATIO)) |
| 1780 | upd_val = DIV_ROUND_CLOSEST(upd_val, 2); |
| 1781 | |
| 1782 | debug("Update train value to umctl2 RANKCTL.diff_rank_rd_gap\n"); |
| 1783 | /* Update train value to umctl2 RANKCTL.diff_rank_rd_gap */ |
| 1784 | set_cal_res_to_rankctrl(rankctl_reg_addr, upd_val, |
| 1785 | DDR4_RANKCTL_DIFF_RANK_RD_GAP, |
| 1786 | DDR4_RANKCTL_DIFF_RANK_RD_GAP_MSB, |
| 1787 | DDR4_RANKCTL_DIFF_RANK_RD_GAP_SHIFT); |
| 1788 | |
| 1789 | if (umctl2_type == DDRTYPE_DDR4) { |
| 1790 | val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1791 | DMEM_MB_CDD_RW_1_1_OFFSET))); |
| 1792 | |
| 1793 | upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1794 | DMEM_MB_CDD_RW_1_0_OFFSET))); |
| 1795 | |
| 1796 | upd_val = max(val, upd_val); |
| 1797 | |
| 1798 | val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1799 | DMEM_MB_CDD_RW_0_1_OFFSET))); |
| 1800 | |
| 1801 | upd_val = max(val, upd_val); |
| 1802 | |
| 1803 | val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1804 | DMEM_MB_CDD_RW_0_0_OFFSET))); |
| 1805 | |
| 1806 | upd_val = max(val, upd_val); |
| 1807 | } else if (umctl2_type == DDRTYPE_LPDDR4_0) { |
| 1808 | val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1809 | DMEM_MB_CDD_CHA_RW_1_1_OFFSET))); |
| 1810 | |
| 1811 | upd_val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1812 | DMEM_MB_CDD_CHA_RW_1_0_OFFSET))); |
| 1813 | |
| 1814 | upd_val = max(val, upd_val); |
| 1815 | |
| 1816 | val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1817 | DMEM_MB_CDD_CHA_RW_0_1_OFFSET))); |
| 1818 | |
| 1819 | upd_val = max(val, upd_val); |
| 1820 | |
| 1821 | val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1822 | DMEM_MB_CDD_CHA_RW_0_0_OFFSET))); |
| 1823 | |
| 1824 | upd_val = max(val, upd_val); |
| 1825 | } else if (umctl2_type == DDRTYPE_LPDDR4_1) { |
| 1826 | val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1827 | DMEM_MB_CDD_CHB_RW_1_1_OFFSET))); |
| 1828 | |
| 1829 | upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1830 | DMEM_MB_CDD_CHB_RW_1_0_OFFSET))); |
| 1831 | |
| 1832 | upd_val = max(val, upd_val); |
| 1833 | |
| 1834 | val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1835 | DMEM_MB_CDD_CHB_RW_0_1_OFFSET))); |
| 1836 | |
| 1837 | upd_val = max(val, upd_val); |
| 1838 | |
| 1839 | val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + |
| 1840 | DMEM_MB_CDD_CHB_RW_0_0_OFFSET))); |
| 1841 | |
| 1842 | upd_val = max(val, upd_val); |
| 1843 | } |
| 1844 | |
| 1845 | debug("max value is 0x%x\n", upd_val); |
| 1846 | |
| 1847 | /* Divided by two is required when running in freq ratio 1:2 */ |
| 1848 | if (!(readl(umctl2_base + DDR4_MSTR_OFFSET) & DDR4_FREQ_RATIO)) |
| 1849 | upd_val = DIV_ROUND_CLOSEST(upd_val, 2); |
| 1850 | |
| 1851 | debug("Update train value to umctl2 dramtmg2.rd2wr\n"); |
| 1852 | /* Update train value to umctl2 dramtmg2.rd2wr */ |
| 1853 | set_cal_res_to_reg(dramtmg2_reg_addr, upd_val, DDR4_DRAMTMG2_RD2WR, |
| 1854 | DDR4_DRAMTMG2_RD2WR_SHIFT); |
| 1855 | |
| 1856 | /* Checking ECC is enabled?, lpddr4 using inline ECC */ |
| 1857 | val = readl(umctl2_base + DDR4_ECCCFG0_OFFSET) & DDR4_ECC_MODE; |
| 1858 | if (val && umctl2_type == DDRTYPE_DDR4) |
| 1859 | numdbyte = 0x9; |
| 1860 | |
| 1861 | upd_val = 0; |
| 1862 | |
| 1863 | /* Getting max value from DBYTEx TxDqsDlyTg0_u0_p0 */ |
| 1864 | upd_val = get_max_txdqsdlytg0_ux_p0(handoff, |
| 1865 | DDR_PHY_DBYTE0_TXDQDLYTG0_U0_P0, |
| 1866 | numdbyte, upd_val); |
| 1867 | |
| 1868 | /* Getting max value from DBYTEx TxDqsDlyTg0_u1_p0 */ |
| 1869 | upd_val = get_max_txdqsdlytg0_ux_p0(handoff, |
| 1870 | DDR_PHY_DBYTE0_TXDQDLYTG0_U1_P0, |
| 1871 | numdbyte, upd_val); |
| 1872 | |
| 1873 | debug("TxDqsDlyTg0 max value is 0x%x\n", upd_val); |
| 1874 | |
| 1875 | /* Divided by two is required when running in freq ratio 1:2 */ |
| 1876 | if (!(readl(umctl2_base + DDR4_MSTR_OFFSET) & DDR4_FREQ_RATIO)) |
| 1877 | upd_val = DIV_ROUND_CLOSEST(upd_val, 2); |
| 1878 | |
| 1879 | reg_addr = umctl2_base + DDR4_DFITMG1_OFFSET; |
| 1880 | /* Update train value to umctl2 dfitmg1.dfi_wrdata_delay */ |
| 1881 | set_cal_res_to_reg(reg_addr, upd_val, DDR4_DFITMG1_DFI_T_WRDATA_DELAY, |
| 1882 | DDR4_DFITMG1_DFI_T_WRDATA_SHIFT); |
| 1883 | |
| 1884 | /* Complete quasi-dynamic register programming */ |
| 1885 | setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); |
| 1886 | |
| 1887 | /* Polling programming done */ |
| 1888 | ret = wait_for_bit_le32((const void *)(umctl2_base + |
| 1889 | DDR4_SWSTAT_OFFSET), DDR4_SWSTAT_SW_DONE_ACK, |
| 1890 | true, TIMEOUT_200MS, false); |
| 1891 | if (ret) { |
| 1892 | debug("%s: Timeout while waiting for", __func__); |
| 1893 | debug(" programming done\n"); |
| 1894 | } |
| 1895 | |
| 1896 | /* Isolate the APB access from internal CSRs */ |
| 1897 | setbits_le16(handoff->phy_base + DDR_PHY_APBONLY0_OFFSET, |
| 1898 | DDR_PHY_MICROCONTMUXSEL); |
| 1899 | |
| 1900 | return ret; |
| 1901 | } |
| 1902 | |
| 1903 | static int update_training_result(struct ddr_handoff *ddr_handoff_info) |
| 1904 | { |
| 1905 | int ret = 0; |
| 1906 | |
| 1907 | /* Updating training result to first DDR controller */ |
| 1908 | if (ddr_handoff_info->cntlr_t == DDRTYPE_DDR4 || |
| 1909 | ddr_handoff_info->cntlr_t == DDRTYPE_LPDDR4_0) { |
| 1910 | ret = set_cal_res_to_umctl2(ddr_handoff_info, |
| 1911 | ddr_handoff_info->cntlr_base, |
| 1912 | ddr_handoff_info->cntlr_t); |
| 1913 | if (ret) { |
| 1914 | debug("%s: Failed to update train result to ", |
| 1915 | __func__); |
| 1916 | debug("first DDR controller\n"); |
| 1917 | return ret; |
| 1918 | } |
| 1919 | } |
| 1920 | |
| 1921 | /* Updating training result to 2nd DDR controller */ |
| 1922 | if (ddr_handoff_info->cntlr2_t == DDRTYPE_LPDDR4_1) { |
| 1923 | ret = set_cal_res_to_umctl2(ddr_handoff_info, |
| 1924 | ddr_handoff_info->cntlr2_base, |
| 1925 | ddr_handoff_info->cntlr2_t); |
| 1926 | if (ret) { |
| 1927 | debug("%s: Failed to update train result to ", |
| 1928 | __func__); |
| 1929 | debug("2nd DDR controller\n"); |
| 1930 | } |
| 1931 | } |
| 1932 | |
| 1933 | return ret; |
| 1934 | } |
| 1935 | |
| 1936 | static int start_ddr_calibration(struct ddr_handoff *ddr_handoff_info) |
| 1937 | { |
| 1938 | int ret; |
| 1939 | |
| 1940 | /* Implement 1D training firmware */ |
| 1941 | ret = configure_training_firmware(ddr_handoff_info, |
| 1942 | (const void *)SOC64_HANDOFF_DDR_TRAIN_IMEM_1D_SECTION, |
| 1943 | (const void *)SOC64_HANDOFF_DDR_TRAIN_DMEM_1D_SECTION); |
| 1944 | if (ret) { |
| 1945 | debug("%s: Failed to configure 1D training firmware\n", |
| 1946 | __func__); |
| 1947 | return ret; |
| 1948 | } |
| 1949 | |
| 1950 | calibrating_sdram(ddr_handoff_info); |
| 1951 | |
| 1952 | ret = poll_for_training_complete(ddr_handoff_info); |
| 1953 | if (ret) { |
| 1954 | debug("%s: Failed to get FW training completed\n", |
| 1955 | __func__); |
| 1956 | return ret; |
| 1957 | } |
| 1958 | |
| 1959 | /* Updating training result to DDR controller */ |
| 1960 | ret = update_training_result(ddr_handoff_info); |
| 1961 | if (ret) |
| 1962 | return ret; |
| 1963 | |
| 1964 | /* Implement 2D training firmware */ |
| 1965 | ret = configure_training_firmware(ddr_handoff_info, |
| 1966 | (const void *)SOC64_HANDOFF_DDR_TRAIN_IMEM_2D_SECTION, |
| 1967 | (const void *)SOC64_HANDOFF_DDR_TRAIN_DMEM_2D_SECTION); |
| 1968 | if (ret) { |
| 1969 | debug("%s: Failed to update train result to ", __func__); |
| 1970 | debug("DDR controller\n"); |
| 1971 | return ret; |
| 1972 | } |
| 1973 | |
| 1974 | calibrating_sdram(ddr_handoff_info); |
| 1975 | |
| 1976 | ret = poll_for_training_complete(ddr_handoff_info); |
| 1977 | if (ret) |
| 1978 | debug("%s: Failed to get FW training completed\n", |
| 1979 | __func__); |
| 1980 | |
| 1981 | return ret; |
| 1982 | } |
| 1983 | |
| 1984 | static int init_controller(struct ddr_handoff *ddr_handoff_info, |
| 1985 | u32 *user_backup, u32 *user_backup_2nd) |
| 1986 | { |
| 1987 | int ret = 0; |
| 1988 | |
| 1989 | if (ddr_handoff_info->cntlr_t == DDRTYPE_DDR4 || |
| 1990 | ddr_handoff_info->cntlr_t == DDRTYPE_LPDDR4_0) { |
| 1991 | /* Initialize 1st DDR controller */ |
| 1992 | ret = init_umctl2(ddr_handoff_info->cntlr_handoff_base, |
| 1993 | ddr_handoff_info->cntlr_base, |
| 1994 | ddr_handoff_info->cntlr_t, |
| 1995 | ddr_handoff_info->cntlr_handoff_length, |
| 1996 | user_backup); |
| 1997 | if (ret) { |
| 1998 | debug("%s: Failed to inilialize first controller\n", |
| 1999 | __func__); |
| 2000 | return ret; |
| 2001 | } |
| 2002 | } |
| 2003 | |
| 2004 | if (ddr_handoff_info->cntlr2_t == DDRTYPE_LPDDR4_1) { |
| 2005 | /* Initialize 2nd DDR controller */ |
| 2006 | ret = init_umctl2(ddr_handoff_info->cntlr2_handoff_base, |
| 2007 | ddr_handoff_info->cntlr2_base, |
| 2008 | ddr_handoff_info->cntlr2_t, |
| 2009 | ddr_handoff_info->cntlr2_handoff_length, |
| 2010 | user_backup_2nd); |
| 2011 | if (ret) |
| 2012 | debug("%s: Failed to inilialize 2nd controller\n", |
| 2013 | __func__); |
| 2014 | } |
| 2015 | |
| 2016 | return ret; |
| 2017 | } |
| 2018 | |
| 2019 | static int dfi_init(struct ddr_handoff *ddr_handoff_info) |
| 2020 | { |
| 2021 | int ret; |
| 2022 | |
| 2023 | ret = ddr_start_dfi_init(ddr_handoff_info->cntlr_base, |
| 2024 | ddr_handoff_info->cntlr_t); |
| 2025 | if (ret) |
| 2026 | return ret; |
| 2027 | |
| 2028 | if (ddr_handoff_info->cntlr2_t == DDRTYPE_LPDDR4_1) |
| 2029 | ret = ddr_start_dfi_init(ddr_handoff_info->cntlr2_base, |
| 2030 | ddr_handoff_info->cntlr2_t); |
| 2031 | |
| 2032 | return ret; |
| 2033 | } |
| 2034 | |
| 2035 | static int check_dfi_init(struct ddr_handoff *handoff) |
| 2036 | { |
| 2037 | int ret; |
| 2038 | |
| 2039 | ret = ddr_check_dfi_init_complete(handoff->cntlr_base, |
| 2040 | handoff->cntlr_t); |
| 2041 | if (ret) |
| 2042 | return ret; |
| 2043 | |
| 2044 | if (handoff->cntlr2_t == DDRTYPE_LPDDR4_1) |
| 2045 | ret = ddr_check_dfi_init_complete(handoff->cntlr2_base, |
| 2046 | handoff->cntlr2_t); |
| 2047 | |
| 2048 | return ret; |
| 2049 | } |
| 2050 | |
| 2051 | static int trigger_sdram_init(struct ddr_handoff *handoff) |
| 2052 | { |
| 2053 | int ret; |
| 2054 | |
| 2055 | ret = ddr_trigger_sdram_init(handoff->cntlr_base, |
| 2056 | handoff->cntlr_t); |
| 2057 | if (ret) |
| 2058 | return ret; |
| 2059 | |
| 2060 | if (handoff->cntlr2_t == DDRTYPE_LPDDR4_1) |
| 2061 | ret = ddr_trigger_sdram_init(handoff->cntlr2_base, |
| 2062 | handoff->cntlr2_t); |
| 2063 | |
| 2064 | return ret; |
| 2065 | } |
| 2066 | |
| 2067 | static int ddr_post_config(struct ddr_handoff *handoff) |
| 2068 | { |
| 2069 | int ret; |
| 2070 | |
| 2071 | ret = ddr_post_handoff_config(handoff->cntlr_base, |
| 2072 | handoff->cntlr_t); |
| 2073 | if (ret) |
| 2074 | return ret; |
| 2075 | |
| 2076 | if (handoff->cntlr2_t == DDRTYPE_LPDDR4_1) |
| 2077 | ret = ddr_post_handoff_config(handoff->cntlr2_base, |
| 2078 | handoff->cntlr2_t); |
| 2079 | |
| 2080 | return ret; |
| 2081 | } |
| 2082 | |
| 2083 | static bool is_ddr_retention_enabled(u32 boot_scratch_cold0_reg) |
| 2084 | { |
| 2085 | return boot_scratch_cold0_reg & |
| 2086 | ALT_SYSMGR_SCRATCH_REG_0_DDR_RETENTION_MASK; |
| 2087 | } |
| 2088 | |
| 2089 | static bool is_ddr_bitstream_sha_matching(u32 boot_scratch_cold0_reg) |
| 2090 | { |
| 2091 | return boot_scratch_cold0_reg & ALT_SYSMGR_SCRATCH_REG_0_DDR_SHA_MASK; |
| 2092 | } |
| 2093 | |
| 2094 | static enum reset_type get_reset_type(u32 boot_scratch_cold0_reg) |
| 2095 | { |
| 2096 | return (boot_scratch_cold0_reg & |
| 2097 | ALT_SYSMGR_SCRATCH_REG_0_DDR_RESET_TYPE_MASK) >> |
| 2098 | ALT_SYSMGR_SCRATCH_REG_0_DDR_RESET_TYPE_SHIFT; |
| 2099 | } |
| 2100 | |
| 2101 | void reset_type_debug_print(u32 boot_scratch_cold0_reg) |
| 2102 | { |
| 2103 | switch (get_reset_type(boot_scratch_cold0_reg)) { |
| 2104 | case POR_RESET: |
| 2105 | debug("%s: POR is triggered\n", __func__); |
| 2106 | break; |
| 2107 | case WARM_RESET: |
| 2108 | debug("%s: Warm reset is triggered\n", __func__); |
| 2109 | break; |
| 2110 | case COLD_RESET: |
| 2111 | debug("%s: Cold reset is triggered\n", __func__); |
| 2112 | break; |
| 2113 | default: |
| 2114 | debug("%s: Invalid reset type\n", __func__); |
| 2115 | } |
| 2116 | } |
| 2117 | |
| 2118 | bool is_ddr_init(void) |
| 2119 | { |
| 2120 | u32 reg = readl(socfpga_get_sysmgr_addr() + |
| 2121 | SYSMGR_SOC64_BOOT_SCRATCH_COLD0); |
| 2122 | |
| 2123 | reset_type_debug_print(reg); |
| 2124 | |
| 2125 | if (get_reset_type(reg) == POR_RESET) { |
| 2126 | debug("%s: DDR init is required\n", __func__); |
| 2127 | return true; |
| 2128 | } |
| 2129 | |
| 2130 | if (get_reset_type(reg) == WARM_RESET) { |
| 2131 | debug("%s: DDR init is skipped\n", __func__); |
| 2132 | return false; |
| 2133 | } |
| 2134 | |
| 2135 | if (get_reset_type(reg) == COLD_RESET) { |
| 2136 | if (is_ddr_retention_enabled(reg) && |
| 2137 | is_ddr_bitstream_sha_matching(reg)) { |
| 2138 | debug("%s: DDR retention bit is set\n", __func__); |
| 2139 | debug("%s: Matching in DDR bistream\n", __func__); |
| 2140 | debug("%s: DDR init is skipped\n", __func__); |
| 2141 | return false; |
| 2142 | } |
| 2143 | } |
| 2144 | |
| 2145 | debug("%s: DDR init is required\n", __func__); |
| 2146 | return true; |
| 2147 | } |
| 2148 | |
| 2149 | int sdram_mmr_init_full(struct udevice *dev) |
| 2150 | { |
| 2151 | u32 user_backup[2], user_backup_2nd[2]; |
| 2152 | int ret; |
| 2153 | struct bd_info bd; |
| 2154 | struct ddr_handoff ddr_handoff_info; |
| 2155 | struct altera_sdram_priv *priv = dev_get_priv(dev); |
| 2156 | |
| 2157 | printf("Checking SDRAM configuration in progress ...\n"); |
| 2158 | ret = populate_ddr_handoff(&ddr_handoff_info); |
| 2159 | if (ret) { |
| 2160 | debug("%s: Failed to populate DDR handoff\n", |
| 2161 | __func__); |
| 2162 | return ret; |
| 2163 | } |
| 2164 | |
| 2165 | /* Set the MPFE NoC mux to correct DDR controller type */ |
| 2166 | use_ddr4(ddr_handoff_info.cntlr_t); |
| 2167 | |
| 2168 | if (is_ddr_init()) { |
| 2169 | printf("SDRAM init in progress ...\n"); |
| 2170 | |
| 2171 | /* |
| 2172 | * Polling reset complete, must be high to ensure DDR subsystem |
| 2173 | * in complete reset state before init DDR clock and DDR |
| 2174 | * controller |
| 2175 | */ |
| 2176 | ret = wait_for_bit_le32((const void *)((uintptr_t)(readl |
| 2177 | (ddr_handoff_info.mem_reset_base) + |
| 2178 | MEM_RST_MGR_STATUS)), |
| 2179 | MEM_RST_MGR_STATUS_RESET_COMPLETE, |
| 2180 | true, TIMEOUT_200MS, false); |
| 2181 | if (ret) { |
| 2182 | debug("%s: Timeout while waiting for", __func__); |
| 2183 | debug(" reset complete done\n"); |
| 2184 | return ret; |
| 2185 | } |
| 2186 | |
| 2187 | ret = enable_ddr_clock(dev); |
| 2188 | if (ret) |
| 2189 | return ret; |
| 2190 | |
| 2191 | ret = init_controller(&ddr_handoff_info, user_backup, |
| 2192 | user_backup_2nd); |
| 2193 | if (ret) { |
| 2194 | debug("%s: Failed to inilialize DDR controller\n", |
| 2195 | __func__); |
| 2196 | return ret; |
| 2197 | } |
| 2198 | |
| 2199 | /* Release the controller from reset */ |
| 2200 | setbits_le32((uintptr_t) |
| 2201 | (readl(ddr_handoff_info.mem_reset_base) + |
| 2202 | MEM_RST_MGR_STATUS), MEM_RST_MGR_STATUS_AXI_RST | |
| 2203 | MEM_RST_MGR_STATUS_CONTROLLER_RST | |
| 2204 | MEM_RST_MGR_STATUS_RESET_COMPLETE); |
| 2205 | |
| 2206 | printf("DDR controller configuration is completed\n"); |
| 2207 | |
| 2208 | /* Initialize DDR PHY */ |
| 2209 | ret = init_phy(&ddr_handoff_info); |
| 2210 | if (ret) { |
| 2211 | debug("%s: Failed to inilialize DDR PHY\n", __func__); |
| 2212 | return ret; |
| 2213 | } |
| 2214 | |
| 2215 | enable_phy_clk_for_csr_access(&ddr_handoff_info, true); |
| 2216 | |
| 2217 | ret = start_ddr_calibration(&ddr_handoff_info); |
| 2218 | if (ret) { |
| 2219 | debug("%s: Failed to calibrate DDR\n", __func__); |
| 2220 | return ret; |
| 2221 | } |
| 2222 | |
| 2223 | enable_phy_clk_for_csr_access(&ddr_handoff_info, false); |
| 2224 | |
| 2225 | /* Reset ARC processor when no using for security purpose */ |
| 2226 | setbits_le16(ddr_handoff_info.phy_base + |
| 2227 | DDR_PHY_MICRORESET_OFFSET, |
| 2228 | DDR_PHY_MICRORESET_RESET); |
| 2229 | |
| 2230 | /* DDR freq set to support DDR4-3200 */ |
| 2231 | phy_init_engine(&ddr_handoff_info); |
| 2232 | |
| 2233 | ret = dfi_init(&ddr_handoff_info); |
| 2234 | if (ret) |
| 2235 | return ret; |
| 2236 | |
| 2237 | ret = check_dfi_init(&ddr_handoff_info); |
| 2238 | if (ret) |
| 2239 | return ret; |
| 2240 | |
| 2241 | ret = trigger_sdram_init(&ddr_handoff_info); |
| 2242 | if (ret) |
| 2243 | return ret; |
| 2244 | |
| 2245 | ret = ddr_post_config(&ddr_handoff_info); |
| 2246 | if (ret) |
| 2247 | return ret; |
| 2248 | |
| 2249 | /* Restore user settings */ |
| 2250 | writel(user_backup[0], ddr_handoff_info.cntlr_base + |
| 2251 | DDR4_PWRCTL_OFFSET); |
| 2252 | |
| 2253 | if (ddr_handoff_info.cntlr2_t == DDRTYPE_LPDDR4_0) |
| 2254 | setbits_le32(ddr_handoff_info.cntlr_base + |
| 2255 | DDR4_INIT0_OFFSET, user_backup[1]); |
| 2256 | |
| 2257 | if (ddr_handoff_info.cntlr2_t == DDRTYPE_LPDDR4_1) { |
| 2258 | /* Restore user settings */ |
| 2259 | writel(user_backup_2nd[0], |
| 2260 | ddr_handoff_info.cntlr2_base + |
| 2261 | DDR4_PWRCTL_OFFSET); |
| 2262 | |
| 2263 | setbits_le32(ddr_handoff_info.cntlr2_base + |
| 2264 | DDR4_INIT0_OFFSET, user_backup_2nd[1]); |
| 2265 | } |
| 2266 | |
| 2267 | /* Enable input traffic per port */ |
| 2268 | setbits_le32(ddr_handoff_info.cntlr_base + DDR4_PCTRL0_OFFSET, |
| 2269 | DDR4_PCTRL0_PORT_EN); |
| 2270 | |
| 2271 | if (ddr_handoff_info.cntlr2_t == DDRTYPE_LPDDR4_1) { |
| 2272 | /* Enable input traffic per port */ |
| 2273 | setbits_le32(ddr_handoff_info.cntlr2_base + |
| 2274 | DDR4_PCTRL0_OFFSET, DDR4_PCTRL0_PORT_EN); |
| 2275 | } |
| 2276 | |
| 2277 | printf("DDR init success\n"); |
| 2278 | } |
| 2279 | |
| 2280 | /* Get bank configuration from devicetree */ |
| 2281 | ret = fdtdec_decode_ram_size(gd->fdt_blob, NULL, 0, NULL, |
| 2282 | (phys_size_t *)&gd->ram_size, &bd); |
| 2283 | if (ret) { |
| 2284 | debug("%s: Failed to decode memory node\n", __func__); |
| 2285 | return -1; |
| 2286 | } |
| 2287 | |
| 2288 | printf("DDR: %lld MiB\n", gd->ram_size >> 20); |
| 2289 | |
| 2290 | priv->info.base = bd.bi_dram[0].start; |
| 2291 | priv->info.size = gd->ram_size; |
| 2292 | |
| 2293 | sdram_size_check(&bd); |
| 2294 | |
| 2295 | sdram_set_firewall(&bd); |
| 2296 | |
| 2297 | return 0; |
| 2298 | } |