blob: c31ff6efb44d24e79b5c2b034c5aebc0194c727d [file] [log] [blame]
wdenk4fc95692003-02-28 00:49:47 +00001/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (c) 1994 - 1997, 1999, 2000 Ralf Baechle (ralf@gnu.org)
7 * Copyright (c) 2000 Silicon Graphics, Inc.
8 */
9#ifndef _ASM_BITOPS_H
10#define _ASM_BITOPS_H
11
12#include <linux/types.h>
13#include <asm/byteorder.h> /* sigh ... */
14
15#ifdef __KERNEL__
16
17#include <asm/sgidefs.h>
18#include <asm/system.h>
wdenk4fc95692003-02-28 00:49:47 +000019
Fabio Estevamc6c3fe62015-11-05 12:43:35 -020020#include <asm-generic/bitops/fls.h>
21#include <asm-generic/bitops/__fls.h>
22#include <asm-generic/bitops/fls64.h>
23#include <asm-generic/bitops/__ffs.h>
24
wdenk4fc95692003-02-28 00:49:47 +000025/*
26 * clear_bit() doesn't provide any barrier for the compiler.
27 */
28#define smp_mb__before_clear_bit() barrier()
29#define smp_mb__after_clear_bit() barrier()
30
31/*
32 * Only disable interrupt for kernel mode stuff to keep usermode stuff
33 * that dares to use kernel include files alive.
34 */
35#define __bi_flags unsigned long flags
36#define __bi_cli() __cli()
37#define __bi_save_flags(x) __save_flags(x)
38#define __bi_save_and_cli(x) __save_and_cli(x)
39#define __bi_restore_flags(x) __restore_flags(x)
40#else
41#define __bi_flags
42#define __bi_cli()
43#define __bi_save_flags(x)
44#define __bi_save_and_cli(x)
45#define __bi_restore_flags(x)
46#endif /* __KERNEL__ */
47
48#ifdef CONFIG_CPU_HAS_LLSC
49
50#include <asm/mipsregs.h>
51
52/*
53 * These functions for MIPS ISA > 1 are interrupt and SMP proof and
54 * interrupt friendly
55 */
56
57/*
58 * set_bit - Atomically set a bit in memory
59 * @nr: the bit to set
60 * @addr: the address to start counting from
61 *
62 * This function is atomic and may not be reordered. See __set_bit()
63 * if you do not require the atomic guarantees.
64 * Note that @nr may be almost arbitrarily large; this function is not
65 * restricted to acting on a single-word quantity.
66 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +090067static __inline__ void
wdenk4fc95692003-02-28 00:49:47 +000068set_bit(int nr, volatile void *addr)
69{
70 unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
71 unsigned long temp;
72
73 __asm__ __volatile__(
74 "1:\tll\t%0, %1\t\t# set_bit\n\t"
75 "or\t%0, %2\n\t"
76 "sc\t%0, %1\n\t"
77 "beqz\t%0, 1b"
78 : "=&r" (temp), "=m" (*m)
79 : "ir" (1UL << (nr & 0x1f)), "m" (*m));
80}
81
82/*
83 * __set_bit - Set a bit in memory
84 * @nr: the bit to set
85 * @addr: the address to start counting from
86 *
87 * Unlike set_bit(), this function is non-atomic and may be reordered.
88 * If it's called on the same region of memory simultaneously, the effect
89 * may be that only one operation succeeds.
90 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +090091static __inline__ void __set_bit(int nr, volatile void * addr)
wdenk4fc95692003-02-28 00:49:47 +000092{
93 unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
94
95 *m |= 1UL << (nr & 31);
96}
Simon Kagstrom95a3c732009-09-17 15:15:52 +020097#define PLATFORM__SET_BIT
wdenk4fc95692003-02-28 00:49:47 +000098
99/*
100 * clear_bit - Clears a bit in memory
101 * @nr: Bit to clear
102 * @addr: Address to start counting from
103 *
104 * clear_bit() is atomic and may not be reordered. However, it does
105 * not contain a memory barrier, so if it is used for locking purposes,
106 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
107 * in order to ensure changes are visible on other processors.
108 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900109static __inline__ void
wdenk4fc95692003-02-28 00:49:47 +0000110clear_bit(int nr, volatile void *addr)
111{
112 unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
113 unsigned long temp;
114
115 __asm__ __volatile__(
116 "1:\tll\t%0, %1\t\t# clear_bit\n\t"
117 "and\t%0, %2\n\t"
118 "sc\t%0, %1\n\t"
119 "beqz\t%0, 1b\n\t"
120 : "=&r" (temp), "=m" (*m)
121 : "ir" (~(1UL << (nr & 0x1f))), "m" (*m));
122}
123
124/*
125 * change_bit - Toggle a bit in memory
126 * @nr: Bit to clear
127 * @addr: Address to start counting from
128 *
129 * change_bit() is atomic and may not be reordered.
130 * Note that @nr may be almost arbitrarily large; this function is not
131 * restricted to acting on a single-word quantity.
132 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900133static __inline__ void
wdenk4fc95692003-02-28 00:49:47 +0000134change_bit(int nr, volatile void *addr)
135{
136 unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
137 unsigned long temp;
138
139 __asm__ __volatile__(
140 "1:\tll\t%0, %1\t\t# change_bit\n\t"
141 "xor\t%0, %2\n\t"
142 "sc\t%0, %1\n\t"
143 "beqz\t%0, 1b"
144 : "=&r" (temp), "=m" (*m)
145 : "ir" (1UL << (nr & 0x1f)), "m" (*m));
146}
147
148/*
149 * __change_bit - Toggle a bit in memory
150 * @nr: the bit to set
151 * @addr: the address to start counting from
152 *
153 * Unlike change_bit(), this function is non-atomic and may be reordered.
154 * If it's called on the same region of memory simultaneously, the effect
155 * may be that only one operation succeeds.
156 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900157static __inline__ void __change_bit(int nr, volatile void * addr)
wdenk4fc95692003-02-28 00:49:47 +0000158{
159 unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
160
161 *m ^= 1UL << (nr & 31);
162}
163
164/*
165 * test_and_set_bit - Set a bit and return its old value
166 * @nr: Bit to set
167 * @addr: Address to count from
168 *
wdenk57b2d802003-06-27 21:31:46 +0000169 * This operation is atomic and cannot be reordered.
wdenk4fc95692003-02-28 00:49:47 +0000170 * It also implies a memory barrier.
171 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900172static __inline__ int
wdenk4fc95692003-02-28 00:49:47 +0000173test_and_set_bit(int nr, volatile void *addr)
174{
175 unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
176 unsigned long temp, res;
177
178 __asm__ __volatile__(
179 ".set\tnoreorder\t\t# test_and_set_bit\n"
180 "1:\tll\t%0, %1\n\t"
181 "or\t%2, %0, %3\n\t"
182 "sc\t%2, %1\n\t"
183 "beqz\t%2, 1b\n\t"
184 " and\t%2, %0, %3\n\t"
185 ".set\treorder"
186 : "=&r" (temp), "=m" (*m), "=&r" (res)
187 : "r" (1UL << (nr & 0x1f)), "m" (*m)
188 : "memory");
189
190 return res != 0;
191}
192
193/*
194 * __test_and_set_bit - Set a bit and return its old value
195 * @nr: Bit to set
196 * @addr: Address to count from
197 *
wdenk57b2d802003-06-27 21:31:46 +0000198 * This operation is non-atomic and can be reordered.
wdenk4fc95692003-02-28 00:49:47 +0000199 * If two examples of this operation race, one can appear to succeed
200 * but actually fail. You must protect multiple accesses with a lock.
201 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900202static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
wdenk4fc95692003-02-28 00:49:47 +0000203{
204 int mask, retval;
205 volatile int *a = addr;
206
207 a += nr >> 5;
208 mask = 1 << (nr & 0x1f);
209 retval = (mask & *a) != 0;
210 *a |= mask;
211
212 return retval;
213}
214
215/*
216 * test_and_clear_bit - Clear a bit and return its old value
217 * @nr: Bit to set
218 * @addr: Address to count from
219 *
wdenk57b2d802003-06-27 21:31:46 +0000220 * This operation is atomic and cannot be reordered.
wdenk4fc95692003-02-28 00:49:47 +0000221 * It also implies a memory barrier.
222 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900223static __inline__ int
wdenk4fc95692003-02-28 00:49:47 +0000224test_and_clear_bit(int nr, volatile void *addr)
225{
226 unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
227 unsigned long temp, res;
228
229 __asm__ __volatile__(
230 ".set\tnoreorder\t\t# test_and_clear_bit\n"
231 "1:\tll\t%0, %1\n\t"
232 "or\t%2, %0, %3\n\t"
233 "xor\t%2, %3\n\t"
234 "sc\t%2, %1\n\t"
235 "beqz\t%2, 1b\n\t"
236 " and\t%2, %0, %3\n\t"
237 ".set\treorder"
238 : "=&r" (temp), "=m" (*m), "=&r" (res)
239 : "r" (1UL << (nr & 0x1f)), "m" (*m)
240 : "memory");
241
242 return res != 0;
243}
244
245/*
246 * __test_and_clear_bit - Clear a bit and return its old value
247 * @nr: Bit to set
248 * @addr: Address to count from
249 *
wdenk57b2d802003-06-27 21:31:46 +0000250 * This operation is non-atomic and can be reordered.
wdenk4fc95692003-02-28 00:49:47 +0000251 * If two examples of this operation race, one can appear to succeed
252 * but actually fail. You must protect multiple accesses with a lock.
253 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900254static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
wdenk4fc95692003-02-28 00:49:47 +0000255{
256 int mask, retval;
257 volatile int *a = addr;
258
259 a += nr >> 5;
260 mask = 1 << (nr & 0x1f);
261 retval = (mask & *a) != 0;
262 *a &= ~mask;
263
264 return retval;
265}
266
267/*
268 * test_and_change_bit - Change a bit and return its new value
269 * @nr: Bit to set
270 * @addr: Address to count from
271 *
wdenk57b2d802003-06-27 21:31:46 +0000272 * This operation is atomic and cannot be reordered.
wdenk4fc95692003-02-28 00:49:47 +0000273 * It also implies a memory barrier.
274 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900275static __inline__ int
wdenk4fc95692003-02-28 00:49:47 +0000276test_and_change_bit(int nr, volatile void *addr)
277{
278 unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
279 unsigned long temp, res;
280
281 __asm__ __volatile__(
282 ".set\tnoreorder\t\t# test_and_change_bit\n"
283 "1:\tll\t%0, %1\n\t"
284 "xor\t%2, %0, %3\n\t"
285 "sc\t%2, %1\n\t"
286 "beqz\t%2, 1b\n\t"
287 " and\t%2, %0, %3\n\t"
288 ".set\treorder"
289 : "=&r" (temp), "=m" (*m), "=&r" (res)
290 : "r" (1UL << (nr & 0x1f)), "m" (*m)
291 : "memory");
292
293 return res != 0;
294}
295
296/*
297 * __test_and_change_bit - Change a bit and return its old value
298 * @nr: Bit to set
299 * @addr: Address to count from
300 *
wdenk57b2d802003-06-27 21:31:46 +0000301 * This operation is non-atomic and can be reordered.
wdenk4fc95692003-02-28 00:49:47 +0000302 * If two examples of this operation race, one can appear to succeed
303 * but actually fail. You must protect multiple accesses with a lock.
304 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900305static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
wdenk4fc95692003-02-28 00:49:47 +0000306{
307 int mask, retval;
308 volatile int *a = addr;
309
310 a += nr >> 5;
311 mask = 1 << (nr & 0x1f);
312 retval = (mask & *a) != 0;
313 *a ^= mask;
314
315 return retval;
316}
317
318#else /* MIPS I */
319
320/*
321 * set_bit - Atomically set a bit in memory
322 * @nr: the bit to set
323 * @addr: the address to start counting from
324 *
325 * This function is atomic and may not be reordered. See __set_bit()
326 * if you do not require the atomic guarantees.
327 * Note that @nr may be almost arbitrarily large; this function is not
328 * restricted to acting on a single-word quantity.
329 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900330static __inline__ void set_bit(int nr, volatile void * addr)
wdenk4fc95692003-02-28 00:49:47 +0000331{
332 int mask;
333 volatile int *a = addr;
334 __bi_flags;
335
336 a += nr >> 5;
337 mask = 1 << (nr & 0x1f);
338 __bi_save_and_cli(flags);
339 *a |= mask;
340 __bi_restore_flags(flags);
341}
342
343/*
344 * __set_bit - Set a bit in memory
345 * @nr: the bit to set
346 * @addr: the address to start counting from
347 *
348 * Unlike set_bit(), this function is non-atomic and may be reordered.
349 * If it's called on the same region of memory simultaneously, the effect
350 * may be that only one operation succeeds.
351 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900352static __inline__ void __set_bit(int nr, volatile void * addr)
wdenk4fc95692003-02-28 00:49:47 +0000353{
354 int mask;
355 volatile int *a = addr;
356
357 a += nr >> 5;
358 mask = 1 << (nr & 0x1f);
359 *a |= mask;
360}
361
362/*
363 * clear_bit - Clears a bit in memory
364 * @nr: Bit to clear
365 * @addr: Address to start counting from
366 *
367 * clear_bit() is atomic and may not be reordered. However, it does
368 * not contain a memory barrier, so if it is used for locking purposes,
369 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
370 * in order to ensure changes are visible on other processors.
371 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900372static __inline__ void clear_bit(int nr, volatile void * addr)
wdenk4fc95692003-02-28 00:49:47 +0000373{
374 int mask;
375 volatile int *a = addr;
376 __bi_flags;
377
378 a += nr >> 5;
379 mask = 1 << (nr & 0x1f);
380 __bi_save_and_cli(flags);
381 *a &= ~mask;
382 __bi_restore_flags(flags);
383}
384
385/*
386 * change_bit - Toggle a bit in memory
387 * @nr: Bit to clear
388 * @addr: Address to start counting from
389 *
390 * change_bit() is atomic and may not be reordered.
391 * Note that @nr may be almost arbitrarily large; this function is not
392 * restricted to acting on a single-word quantity.
393 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900394static __inline__ void change_bit(int nr, volatile void * addr)
wdenk4fc95692003-02-28 00:49:47 +0000395{
396 int mask;
397 volatile int *a = addr;
398 __bi_flags;
399
400 a += nr >> 5;
401 mask = 1 << (nr & 0x1f);
402 __bi_save_and_cli(flags);
403 *a ^= mask;
404 __bi_restore_flags(flags);
405}
406
407/*
408 * __change_bit - Toggle a bit in memory
409 * @nr: the bit to set
410 * @addr: the address to start counting from
411 *
412 * Unlike change_bit(), this function is non-atomic and may be reordered.
413 * If it's called on the same region of memory simultaneously, the effect
414 * may be that only one operation succeeds.
415 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900416static __inline__ void __change_bit(int nr, volatile void * addr)
wdenk4fc95692003-02-28 00:49:47 +0000417{
418 unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
419
420 *m ^= 1UL << (nr & 31);
421}
422
423/*
424 * test_and_set_bit - Set a bit and return its old value
425 * @nr: Bit to set
426 * @addr: Address to count from
427 *
wdenk57b2d802003-06-27 21:31:46 +0000428 * This operation is atomic and cannot be reordered.
wdenk4fc95692003-02-28 00:49:47 +0000429 * It also implies a memory barrier.
430 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900431static __inline__ int test_and_set_bit(int nr, volatile void * addr)
wdenk4fc95692003-02-28 00:49:47 +0000432{
433 int mask, retval;
434 volatile int *a = addr;
435 __bi_flags;
436
437 a += nr >> 5;
438 mask = 1 << (nr & 0x1f);
439 __bi_save_and_cli(flags);
440 retval = (mask & *a) != 0;
441 *a |= mask;
442 __bi_restore_flags(flags);
443
444 return retval;
445}
446
447/*
448 * __test_and_set_bit - Set a bit and return its old value
449 * @nr: Bit to set
450 * @addr: Address to count from
451 *
wdenk57b2d802003-06-27 21:31:46 +0000452 * This operation is non-atomic and can be reordered.
wdenk4fc95692003-02-28 00:49:47 +0000453 * If two examples of this operation race, one can appear to succeed
454 * but actually fail. You must protect multiple accesses with a lock.
455 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900456static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
wdenk4fc95692003-02-28 00:49:47 +0000457{
458 int mask, retval;
459 volatile int *a = addr;
460
461 a += nr >> 5;
462 mask = 1 << (nr & 0x1f);
463 retval = (mask & *a) != 0;
464 *a |= mask;
465
466 return retval;
467}
468
469/*
470 * test_and_clear_bit - Clear a bit and return its old value
471 * @nr: Bit to set
472 * @addr: Address to count from
473 *
wdenk57b2d802003-06-27 21:31:46 +0000474 * This operation is atomic and cannot be reordered.
wdenk4fc95692003-02-28 00:49:47 +0000475 * It also implies a memory barrier.
476 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900477static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
wdenk4fc95692003-02-28 00:49:47 +0000478{
479 int mask, retval;
480 volatile int *a = addr;
481 __bi_flags;
482
483 a += nr >> 5;
484 mask = 1 << (nr & 0x1f);
485 __bi_save_and_cli(flags);
486 retval = (mask & *a) != 0;
487 *a &= ~mask;
488 __bi_restore_flags(flags);
489
490 return retval;
491}
492
493/*
494 * __test_and_clear_bit - Clear a bit and return its old value
495 * @nr: Bit to set
496 * @addr: Address to count from
497 *
wdenk57b2d802003-06-27 21:31:46 +0000498 * This operation is non-atomic and can be reordered.
wdenk4fc95692003-02-28 00:49:47 +0000499 * If two examples of this operation race, one can appear to succeed
500 * but actually fail. You must protect multiple accesses with a lock.
501 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900502static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
wdenk4fc95692003-02-28 00:49:47 +0000503{
504 int mask, retval;
505 volatile int *a = addr;
506
507 a += nr >> 5;
508 mask = 1 << (nr & 0x1f);
509 retval = (mask & *a) != 0;
510 *a &= ~mask;
511
512 return retval;
513}
514
515/*
516 * test_and_change_bit - Change a bit and return its new value
517 * @nr: Bit to set
518 * @addr: Address to count from
519 *
wdenk57b2d802003-06-27 21:31:46 +0000520 * This operation is atomic and cannot be reordered.
wdenk4fc95692003-02-28 00:49:47 +0000521 * It also implies a memory barrier.
522 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900523static __inline__ int test_and_change_bit(int nr, volatile void * addr)
wdenk4fc95692003-02-28 00:49:47 +0000524{
525 int mask, retval;
526 volatile int *a = addr;
527 __bi_flags;
528
529 a += nr >> 5;
530 mask = 1 << (nr & 0x1f);
531 __bi_save_and_cli(flags);
532 retval = (mask & *a) != 0;
533 *a ^= mask;
534 __bi_restore_flags(flags);
535
536 return retval;
537}
538
539/*
540 * __test_and_change_bit - Change a bit and return its old value
541 * @nr: Bit to set
542 * @addr: Address to count from
543 *
wdenk57b2d802003-06-27 21:31:46 +0000544 * This operation is non-atomic and can be reordered.
wdenk4fc95692003-02-28 00:49:47 +0000545 * If two examples of this operation race, one can appear to succeed
546 * but actually fail. You must protect multiple accesses with a lock.
547 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900548static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
wdenk4fc95692003-02-28 00:49:47 +0000549{
550 int mask, retval;
551 volatile int *a = addr;
552
553 a += nr >> 5;
554 mask = 1 << (nr & 0x1f);
555 retval = (mask & *a) != 0;
556 *a ^= mask;
557
558 return retval;
559}
560
561#undef __bi_flags
562#undef __bi_cli
563#undef __bi_save_flags
564#undef __bi_restore_flags
565
566#endif /* MIPS I */
567
568/*
569 * test_bit - Determine whether a bit is set
570 * @nr: bit number to test
571 * @addr: Address to start counting from
572 */
Daniel Schwierzeck790e7f22012-12-08 21:33:44 +0100573static __inline__ int test_bit(int nr, const volatile void *addr)
wdenk4fc95692003-02-28 00:49:47 +0000574{
575 return ((1UL << (nr & 31)) & (((const unsigned int *) addr)[nr >> 5])) != 0;
576}
577
578#ifndef __MIPSEB__
579
580/* Little endian versions. */
581
582/*
583 * find_first_zero_bit - find the first zero bit in a memory region
584 * @addr: The address to start the search at
585 * @size: The maximum size to search
586 *
587 * Returns the bit-number of the first zero bit, not the number of the byte
588 * containing a bit.
589 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900590static __inline__ int find_first_zero_bit (void *addr, unsigned size)
wdenk4fc95692003-02-28 00:49:47 +0000591{
592 unsigned long dummy;
593 int res;
594
595 if (!size)
596 return 0;
597
598 __asm__ (".set\tnoreorder\n\t"
599 ".set\tnoat\n"
600 "1:\tsubu\t$1,%6,%0\n\t"
601 "blez\t$1,2f\n\t"
602 "lw\t$1,(%5)\n\t"
603 "addiu\t%5,4\n\t"
604#if (_MIPS_ISA == _MIPS_ISA_MIPS2 ) || (_MIPS_ISA == _MIPS_ISA_MIPS3 ) || \
605 (_MIPS_ISA == _MIPS_ISA_MIPS4 ) || (_MIPS_ISA == _MIPS_ISA_MIPS5 ) || \
606 (_MIPS_ISA == _MIPS_ISA_MIPS32) || (_MIPS_ISA == _MIPS_ISA_MIPS64)
607 "beql\t%1,$1,1b\n\t"
608 "addiu\t%0,32\n\t"
609#else
610 "addiu\t%0,32\n\t"
611 "beq\t%1,$1,1b\n\t"
612 "nop\n\t"
613 "subu\t%0,32\n\t"
614#endif
615#ifdef __MIPSEB__
616#error "Fix this for big endian"
617#endif /* __MIPSEB__ */
618 "li\t%1,1\n"
619 "1:\tand\t%2,$1,%1\n\t"
620 "beqz\t%2,2f\n\t"
621 "sll\t%1,%1,1\n\t"
622 "bnez\t%1,1b\n\t"
623 "add\t%0,%0,1\n\t"
624 ".set\tat\n\t"
625 ".set\treorder\n"
626 "2:"
627 : "=r" (res), "=r" (dummy), "=r" (addr)
628 : "0" ((signed int) 0), "1" ((unsigned int) 0xffffffff),
629 "2" (addr), "r" (size)
630 : "$1");
631
632 return res;
633}
634
635/*
636 * find_next_zero_bit - find the first zero bit in a memory region
637 * @addr: The address to base the search on
638 * @offset: The bitnumber to start searching at
639 * @size: The maximum size to search
640 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900641static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
wdenk4fc95692003-02-28 00:49:47 +0000642{
643 unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
644 int set = 0, bit = offset & 31, res;
645 unsigned long dummy;
wdenk57b2d802003-06-27 21:31:46 +0000646
wdenk4fc95692003-02-28 00:49:47 +0000647 if (bit) {
648 /*
649 * Look for zero in first byte
650 */
651#ifdef __MIPSEB__
652#error "Fix this for big endian byte order"
653#endif
654 __asm__(".set\tnoreorder\n\t"
655 ".set\tnoat\n"
656 "1:\tand\t$1,%4,%1\n\t"
657 "beqz\t$1,1f\n\t"
658 "sll\t%1,%1,1\n\t"
659 "bnez\t%1,1b\n\t"
660 "addiu\t%0,1\n\t"
661 ".set\tat\n\t"
662 ".set\treorder\n"
663 "1:"
664 : "=r" (set), "=r" (dummy)
665 : "0" (0), "1" (1 << bit), "r" (*p)
666 : "$1");
667 if (set < (32 - bit))
668 return set + offset;
669 set = 32 - bit;
670 p++;
671 }
672 /*
673 * No zero yet, search remaining full bytes for a zero
674 */
675 res = find_first_zero_bit(p, size - 32 * (p - (unsigned int *) addr));
676 return offset + set + res;
677}
678
679#endif /* !(__MIPSEB__) */
680
681/*
682 * ffz - find first zero in word.
683 * @word: The word to search
684 *
685 * Undefined if no zero exists, so code should check against ~0UL first.
686 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900687static __inline__ unsigned long ffz(unsigned long word)
wdenk4fc95692003-02-28 00:49:47 +0000688{
689 unsigned int __res;
690 unsigned int mask = 1;
691
692 __asm__ (
693 ".set\tnoreorder\n\t"
694 ".set\tnoat\n\t"
695 "move\t%0,$0\n"
696 "1:\tand\t$1,%2,%1\n\t"
697 "beqz\t$1,2f\n\t"
698 "sll\t%1,1\n\t"
699 "bnez\t%1,1b\n\t"
700 "addiu\t%0,1\n\t"
701 ".set\tat\n\t"
702 ".set\treorder\n"
703 "2:\n\t"
704 : "=&r" (__res), "=r" (mask)
705 : "r" (word), "1" (mask)
706 : "$1");
707
708 return __res;
709}
710
711#ifdef __KERNEL__
712
wdenk4fc95692003-02-28 00:49:47 +0000713/*
714 * hweightN - returns the hamming weight of a N-bit word
715 * @x: the word to weigh
716 *
717 * The Hamming Weight of a number is the total number of bits set in it.
718 */
719
720#define hweight32(x) generic_hweight32(x)
721#define hweight16(x) generic_hweight16(x)
722#define hweight8(x) generic_hweight8(x)
723
724#endif /* __KERNEL__ */
725
726#ifdef __MIPSEB__
727/*
728 * find_next_zero_bit - find the first zero bit in a memory region
729 * @addr: The address to base the search on
730 * @offset: The bitnumber to start searching at
731 * @size: The maximum size to search
732 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900733static __inline__ int find_next_zero_bit(void *addr, int size, int offset)
wdenk4fc95692003-02-28 00:49:47 +0000734{
735 unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
736 unsigned long result = offset & ~31UL;
737 unsigned long tmp;
738
739 if (offset >= size)
740 return size;
741 size -= result;
742 offset &= 31UL;
743 if (offset) {
744 tmp = *(p++);
745 tmp |= ~0UL >> (32-offset);
746 if (size < 32)
747 goto found_first;
748 if (~tmp)
749 goto found_middle;
750 size -= 32;
751 result += 32;
752 }
753 while (size & ~31UL) {
754 if (~(tmp = *(p++)))
755 goto found_middle;
756 result += 32;
757 size -= 32;
758 }
759 if (!size)
760 return result;
761 tmp = *p;
762
763found_first:
764 tmp |= ~0UL << size;
765found_middle:
766 return result + ffz(tmp);
767}
768
769/* Linus sez that gcc can optimize the following correctly, we'll see if this
770 * holds on the Sparc as it does for the ALPHA.
771 */
772
773#if 0 /* Fool kernel-doc since it doesn't do macros yet */
774/*
775 * find_first_zero_bit - find the first zero bit in a memory region
776 * @addr: The address to start the search at
777 * @size: The maximum size to search
778 *
779 * Returns the bit-number of the first zero bit, not the number of the byte
780 * containing a bit.
781 */
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900782static int find_first_zero_bit (void *addr, unsigned size);
wdenk4fc95692003-02-28 00:49:47 +0000783#endif
784
785#define find_first_zero_bit(addr, size) \
wdenk57b2d802003-06-27 21:31:46 +0000786 find_next_zero_bit((addr), (size), 0)
wdenk4fc95692003-02-28 00:49:47 +0000787
788#endif /* (__MIPSEB__) */
789
790/* Now for the ext2 filesystem bit operations and helper routines. */
791
792#ifdef __MIPSEB__
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900793static __inline__ int ext2_set_bit(int nr, void * addr)
wdenk4fc95692003-02-28 00:49:47 +0000794{
795 int mask, retval, flags;
796 unsigned char *ADDR = (unsigned char *) addr;
797
798 ADDR += nr >> 3;
799 mask = 1 << (nr & 0x07);
800 save_and_cli(flags);
801 retval = (mask & *ADDR) != 0;
802 *ADDR |= mask;
803 restore_flags(flags);
804 return retval;
805}
806
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900807static __inline__ int ext2_clear_bit(int nr, void * addr)
wdenk4fc95692003-02-28 00:49:47 +0000808{
809 int mask, retval, flags;
810 unsigned char *ADDR = (unsigned char *) addr;
811
812 ADDR += nr >> 3;
813 mask = 1 << (nr & 0x07);
814 save_and_cli(flags);
815 retval = (mask & *ADDR) != 0;
816 *ADDR &= ~mask;
817 restore_flags(flags);
818 return retval;
819}
820
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900821static __inline__ int ext2_test_bit(int nr, const void * addr)
wdenk4fc95692003-02-28 00:49:47 +0000822{
823 int mask;
824 const unsigned char *ADDR = (const unsigned char *) addr;
825
826 ADDR += nr >> 3;
827 mask = 1 << (nr & 0x07);
828 return ((mask & *ADDR) != 0);
829}
830
831#define ext2_find_first_zero_bit(addr, size) \
wdenk57b2d802003-06-27 21:31:46 +0000832 ext2_find_next_zero_bit((addr), (size), 0)
wdenk4fc95692003-02-28 00:49:47 +0000833
Shinya Kuribayashic558a662009-05-16 09:12:09 +0900834static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
wdenk4fc95692003-02-28 00:49:47 +0000835{
836 unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
837 unsigned long result = offset & ~31UL;
838 unsigned long tmp;
839
840 if (offset >= size)
841 return size;
842 size -= result;
843 offset &= 31UL;
844 if(offset) {
845 /* We hold the little endian value in tmp, but then the
846 * shift is illegal. So we could keep a big endian value
847 * in tmp, like this:
848 *
849 * tmp = __swab32(*(p++));
850 * tmp |= ~0UL >> (32-offset);
851 *
852 * but this would decrease preformance, so we change the
853 * shift:
854 */
855 tmp = *(p++);
856 tmp |= __swab32(~0UL >> (32-offset));
857 if(size < 32)
858 goto found_first;
859 if(~tmp)
860 goto found_middle;
861 size -= 32;
862 result += 32;
863 }
864 while(size & ~31UL) {
865 if(~(tmp = *(p++)))
866 goto found_middle;
867 result += 32;
868 size -= 32;
869 }
870 if(!size)
871 return result;
872 tmp = *p;
873
874found_first:
875 /* tmp is little endian, so we would have to swab the shift,
876 * see above. But then we have to swab tmp below for ffz, so
877 * we might as well do this here.
878 */
879 return result + ffz(__swab32(tmp) | (~0UL << size));
880found_middle:
881 return result + ffz(__swab32(tmp));
882}
883#else /* !(__MIPSEB__) */
884
885/* Native ext2 byte ordering, just collapse using defines. */
886#define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr))
887#define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr))
888#define ext2_test_bit(nr, addr) test_bit((nr), (addr))
889#define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size))
890#define ext2_find_next_zero_bit(addr, size, offset) \
wdenk57b2d802003-06-27 21:31:46 +0000891 find_next_zero_bit((addr), (size), (offset))
892
wdenk4fc95692003-02-28 00:49:47 +0000893#endif /* !(__MIPSEB__) */
894
895/*
896 * Bitmap functions for the minix filesystem.
897 * FIXME: These assume that Minix uses the native byte/bitorder.
898 * This limits the Minix filesystem's value for data exchange very much.
899 */
900#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
901#define minix_set_bit(nr,addr) set_bit(nr,addr)
902#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
903#define minix_test_bit(nr,addr) test_bit(nr,addr)
904#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
905
906#endif /* _ASM_BITOPS_H */