blob: 607c953987b3daa651f94d5b8d256302b564c659 [file] [log] [blame]
Michael Walled3967f32019-12-18 00:09:58 +01001// SPDX-License-Identifier: GPL-2.0+
2/*
3 * NXP FlexSPI(FSPI) controller driver.
4 *
5 * Copyright (c) 2019 Michael Walle <michael@walle.cc>
6 * Copyright (c) 2019 NXP
7 *
8 * This driver was originally ported from the linux kernel v5.4-rc3, which had
9 * the following notes:
10 *
11 * FlexSPI is a flexsible SPI host controller which supports two SPI
12 * channels and up to 4 external devices. Each channel supports
13 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
14 * data lines).
15 *
16 * FlexSPI controller is driven by the LUT(Look-up Table) registers
17 * LUT registers are a look-up-table for sequences of instructions.
18 * A valid sequence consists of four LUT registers.
19 * Maximum 32 LUT sequences can be programmed simultaneously.
20 *
21 * LUTs are being created at run-time based on the commands passed
22 * from the spi-mem framework, thus using single LUT index.
23 *
24 * Software triggered Flash read/write access by IP Bus.
25 *
26 * Memory mapped read access by AHB Bus.
27 *
28 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
29 *
30 * Author:
31 * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
32 * Boris Brezillon <bbrezillon@kernel.org>
33 * Frieder Schrempf <frieder.schrempf@kontron.de>
34 */
35
36#include <common.h>
Sean Andersonacccaca2020-10-04 21:39:49 -040037#include <clk.h>
38#include <dm.h>
39#include <dm/device_compat.h>
Michael Walled3967f32019-12-18 00:09:58 +010040#include <malloc.h>
41#include <spi.h>
42#include <spi-mem.h>
Sean Andersonacccaca2020-10-04 21:39:49 -040043#include <asm/io.h>
Kuldeep Singh19e38b22021-08-03 14:32:58 +053044#ifdef CONFIG_FSL_LAYERSCAPE
45#include <asm/arch/clock.h>
46#include <asm/arch/soc.h>
47#include <asm/arch/speed.h>
48#endif
Simon Glass4dcacfc2020-05-10 11:40:13 -060049#include <linux/bitops.h>
Michael Walled3967f32019-12-18 00:09:58 +010050#include <linux/kernel.h>
51#include <linux/sizes.h>
52#include <linux/iopoll.h>
53#include <linux/bug.h>
Simon Glassfb6f4822020-02-03 07:36:17 -070054#include <linux/err.h>
Michael Walled3967f32019-12-18 00:09:58 +010055
56/*
57 * The driver only uses one single LUT entry, that is updated on
58 * each call of exec_op(). Index 0 is preset at boot with a basic
59 * read operation, so let's use the last entry (31).
60 */
61#define SEQID_LUT 31
62
63/* Registers used by the driver */
64#define FSPI_MCR0 0x00
65#define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
66#define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
67#define FSPI_MCR0_LEARN_EN BIT(15)
68#define FSPI_MCR0_SCRFRUN_EN BIT(14)
69#define FSPI_MCR0_OCTCOMB_EN BIT(13)
70#define FSPI_MCR0_DOZE_EN BIT(12)
71#define FSPI_MCR0_HSEN BIT(11)
72#define FSPI_MCR0_SERCLKDIV BIT(8)
73#define FSPI_MCR0_ATDF_EN BIT(7)
74#define FSPI_MCR0_ARDF_EN BIT(6)
75#define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
76#define FSPI_MCR0_END_CFG(x) ((x) << 2)
77#define FSPI_MCR0_MDIS BIT(1)
78#define FSPI_MCR0_SWRST BIT(0)
79
80#define FSPI_MCR1 0x04
81#define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
82#define FSPI_MCR1_AHB_TIMEOUT(x) (x)
83
84#define FSPI_MCR2 0x08
85#define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
86#define FSPI_MCR2_SAMEDEVICEEN BIT(15)
87#define FSPI_MCR2_CLRLRPHS BIT(14)
88#define FSPI_MCR2_ABRDATSZ BIT(8)
89#define FSPI_MCR2_ABRLEARN BIT(7)
90#define FSPI_MCR2_ABR_READ BIT(6)
91#define FSPI_MCR2_ABRWRITE BIT(5)
92#define FSPI_MCR2_ABRDUMMY BIT(4)
93#define FSPI_MCR2_ABR_MODE BIT(3)
94#define FSPI_MCR2_ABRCADDR BIT(2)
95#define FSPI_MCR2_ABRRADDR BIT(1)
96#define FSPI_MCR2_ABR_CMD BIT(0)
97
98#define FSPI_AHBCR 0x0c
99#define FSPI_AHBCR_RDADDROPT BIT(6)
100#define FSPI_AHBCR_PREF_EN BIT(5)
101#define FSPI_AHBCR_BUFF_EN BIT(4)
102#define FSPI_AHBCR_CACH_EN BIT(3)
103#define FSPI_AHBCR_CLRTXBUF BIT(2)
104#define FSPI_AHBCR_CLRRXBUF BIT(1)
105#define FSPI_AHBCR_PAR_EN BIT(0)
106
107#define FSPI_INTEN 0x10
108#define FSPI_INTEN_SCLKSBWR BIT(9)
109#define FSPI_INTEN_SCLKSBRD BIT(8)
110#define FSPI_INTEN_DATALRNFL BIT(7)
111#define FSPI_INTEN_IPTXWE BIT(6)
112#define FSPI_INTEN_IPRXWA BIT(5)
113#define FSPI_INTEN_AHBCMDERR BIT(4)
114#define FSPI_INTEN_IPCMDERR BIT(3)
115#define FSPI_INTEN_AHBCMDGE BIT(2)
116#define FSPI_INTEN_IPCMDGE BIT(1)
117#define FSPI_INTEN_IPCMDDONE BIT(0)
118
119#define FSPI_INTR 0x14
120#define FSPI_INTR_SCLKSBWR BIT(9)
121#define FSPI_INTR_SCLKSBRD BIT(8)
122#define FSPI_INTR_DATALRNFL BIT(7)
123#define FSPI_INTR_IPTXWE BIT(6)
124#define FSPI_INTR_IPRXWA BIT(5)
125#define FSPI_INTR_AHBCMDERR BIT(4)
126#define FSPI_INTR_IPCMDERR BIT(3)
127#define FSPI_INTR_AHBCMDGE BIT(2)
128#define FSPI_INTR_IPCMDGE BIT(1)
129#define FSPI_INTR_IPCMDDONE BIT(0)
130
131#define FSPI_LUTKEY 0x18
132#define FSPI_LUTKEY_VALUE 0x5AF05AF0
133
134#define FSPI_LCKCR 0x1C
135
136#define FSPI_LCKER_LOCK 0x1
137#define FSPI_LCKER_UNLOCK 0x2
138
139#define FSPI_BUFXCR_INVALID_MSTRID 0xE
140#define FSPI_AHBRX_BUF0CR0 0x20
141#define FSPI_AHBRX_BUF1CR0 0x24
142#define FSPI_AHBRX_BUF2CR0 0x28
143#define FSPI_AHBRX_BUF3CR0 0x2C
144#define FSPI_AHBRX_BUF4CR0 0x30
145#define FSPI_AHBRX_BUF5CR0 0x34
146#define FSPI_AHBRX_BUF6CR0 0x38
147#define FSPI_AHBRX_BUF7CR0 0x3C
148#define FSPI_AHBRXBUF0CR7_PREF BIT(31)
149
150#define FSPI_AHBRX_BUF0CR1 0x40
151#define FSPI_AHBRX_BUF1CR1 0x44
152#define FSPI_AHBRX_BUF2CR1 0x48
153#define FSPI_AHBRX_BUF3CR1 0x4C
154#define FSPI_AHBRX_BUF4CR1 0x50
155#define FSPI_AHBRX_BUF5CR1 0x54
156#define FSPI_AHBRX_BUF6CR1 0x58
157#define FSPI_AHBRX_BUF7CR1 0x5C
158
159#define FSPI_FLSHA1CR0 0x60
160#define FSPI_FLSHA2CR0 0x64
161#define FSPI_FLSHB1CR0 0x68
162#define FSPI_FLSHB2CR0 0x6C
163#define FSPI_FLSHXCR0_SZ_KB 10
164#define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
165
166#define FSPI_FLSHA1CR1 0x70
167#define FSPI_FLSHA2CR1 0x74
168#define FSPI_FLSHB1CR1 0x78
169#define FSPI_FLSHB2CR1 0x7C
170#define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
171#define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
172#define FSPI_FLSHXCR1_WA BIT(10)
173#define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
174#define FSPI_FLSHXCR1_TCSS(x) (x)
175
176#define FSPI_FLSHA1CR2 0x80
177#define FSPI_FLSHA2CR2 0x84
178#define FSPI_FLSHB1CR2 0x88
179#define FSPI_FLSHB2CR2 0x8C
180#define FSPI_FLSHXCR2_CLRINSP BIT(24)
181#define FSPI_FLSHXCR2_AWRWAIT BIT(16)
182#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
183#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
184#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
185#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
186
187#define FSPI_IPCR0 0xA0
188
189#define FSPI_IPCR1 0xA4
190#define FSPI_IPCR1_IPAREN BIT(31)
191#define FSPI_IPCR1_SEQNUM_SHIFT 24
192#define FSPI_IPCR1_SEQID_SHIFT 16
193#define FSPI_IPCR1_IDATSZ(x) (x)
194
195#define FSPI_IPCMD 0xB0
196#define FSPI_IPCMD_TRG BIT(0)
197
198#define FSPI_DLPR 0xB4
199
200#define FSPI_IPRXFCR 0xB8
201#define FSPI_IPRXFCR_CLR BIT(0)
202#define FSPI_IPRXFCR_DMA_EN BIT(1)
203#define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
204
205#define FSPI_IPTXFCR 0xBC
206#define FSPI_IPTXFCR_CLR BIT(0)
207#define FSPI_IPTXFCR_DMA_EN BIT(1)
208#define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
209
210#define FSPI_DLLACR 0xC0
211#define FSPI_DLLACR_OVRDEN BIT(8)
212
213#define FSPI_DLLBCR 0xC4
214#define FSPI_DLLBCR_OVRDEN BIT(8)
215
216#define FSPI_STS0 0xE0
217#define FSPI_STS0_DLPHB(x) ((x) << 8)
218#define FSPI_STS0_DLPHA(x) ((x) << 4)
219#define FSPI_STS0_CMD_SRC(x) ((x) << 2)
220#define FSPI_STS0_ARB_IDLE BIT(1)
221#define FSPI_STS0_SEQ_IDLE BIT(0)
222
223#define FSPI_STS1 0xE4
224#define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
225#define FSPI_STS1_IP_ERRID(x) ((x) << 16)
226#define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
227#define FSPI_STS1_AHB_ERRID(x) (x)
228
229#define FSPI_AHBSPNST 0xEC
230#define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
231#define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
232#define FSPI_AHBSPNST_ACTIVE BIT(0)
233
234#define FSPI_IPRXFSTS 0xF0
235#define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
236#define FSPI_IPRXFSTS_FILL(x) (x)
237
238#define FSPI_IPTXFSTS 0xF4
239#define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
240#define FSPI_IPTXFSTS_FILL(x) (x)
241
242#define FSPI_RFDR 0x100
243#define FSPI_TFDR 0x180
244
245#define FSPI_LUT_BASE 0x200
246#define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
247#define FSPI_LUT_REG(idx) \
248 (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
249
250/* register map end */
251
252/* Instruction set for the LUT register. */
253#define LUT_STOP 0x00
254#define LUT_CMD 0x01
255#define LUT_ADDR 0x02
256#define LUT_CADDR_SDR 0x03
257#define LUT_MODE 0x04
258#define LUT_MODE2 0x05
259#define LUT_MODE4 0x06
260#define LUT_MODE8 0x07
261#define LUT_NXP_WRITE 0x08
262#define LUT_NXP_READ 0x09
263#define LUT_LEARN_SDR 0x0A
264#define LUT_DATSZ_SDR 0x0B
265#define LUT_DUMMY 0x0C
266#define LUT_DUMMY_RWDS_SDR 0x0D
267#define LUT_JMP_ON_CS 0x1F
268#define LUT_CMD_DDR 0x21
269#define LUT_ADDR_DDR 0x22
270#define LUT_CADDR_DDR 0x23
271#define LUT_MODE_DDR 0x24
272#define LUT_MODE2_DDR 0x25
273#define LUT_MODE4_DDR 0x26
274#define LUT_MODE8_DDR 0x27
275#define LUT_WRITE_DDR 0x28
276#define LUT_READ_DDR 0x29
277#define LUT_LEARN_DDR 0x2A
278#define LUT_DATSZ_DDR 0x2B
279#define LUT_DUMMY_DDR 0x2C
280#define LUT_DUMMY_RWDS_DDR 0x2D
281
282/*
283 * Calculate number of required PAD bits for LUT register.
284 *
285 * The pad stands for the number of IO lines [0:7].
286 * For example, the octal read needs eight IO lines,
287 * so you should use LUT_PAD(8). This macro
288 * returns 3 i.e. use eight (2^3) IP lines for read.
289 */
290#define LUT_PAD(x) (fls(x) - 1)
291
292/*
293 * Macro for constructing the LUT entries with the following
294 * register layout:
295 *
296 * ---------------------------------------------------
297 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
298 * ---------------------------------------------------
299 */
300#define PAD_SHIFT 8
301#define INSTR_SHIFT 10
302#define OPRND_SHIFT 16
303
304/* Macros for constructing the LUT register. */
305#define LUT_DEF(idx, ins, pad, opr) \
306 ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
307 (opr)) << (((idx) % 2) * OPRND_SHIFT))
308
309#define POLL_TOUT 5000
310#define NXP_FSPI_MAX_CHIPSELECT 4
311
Kuldeep Singh66a813e2021-08-03 14:32:57 +0530312/* Access flash memory using IP bus only */
313#define FSPI_QUIRK_USE_IP_ONLY BIT(0)
314
Michael Walled3967f32019-12-18 00:09:58 +0100315struct nxp_fspi_devtype_data {
316 unsigned int rxfifo;
317 unsigned int txfifo;
318 unsigned int ahb_buf_size;
319 unsigned int quirks;
320 bool little_endian;
321};
322
Kuldeep Singh19e38b22021-08-03 14:32:58 +0530323static struct nxp_fspi_devtype_data lx2160a_data = {
Michael Walled3967f32019-12-18 00:09:58 +0100324 .rxfifo = SZ_512, /* (64 * 64 bits) */
325 .txfifo = SZ_1K, /* (128 * 64 bits) */
326 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
327 .quirks = 0,
328 .little_endian = true, /* little-endian */
329};
330
Kuldeep Singh19e38b22021-08-03 14:32:58 +0530331static struct nxp_fspi_devtype_data imx8mm_data = {
Adam Fordcf559bf2021-01-18 15:32:50 -0600332 .rxfifo = SZ_512, /* (64 * 64 bits) */
333 .txfifo = SZ_1K, /* (128 * 64 bits) */
334 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
335 .quirks = 0,
336 .little_endian = true, /* little-endian */
337};
338
Michael Walled3967f32019-12-18 00:09:58 +0100339struct nxp_fspi {
340 struct udevice *dev;
341 void __iomem *iobase;
342 void __iomem *ahb_addr;
343 u32 memmap_phy;
344 u32 memmap_phy_size;
345 struct clk clk, clk_en;
Kuldeep Singh19e38b22021-08-03 14:32:58 +0530346 struct nxp_fspi_devtype_data *devtype_data;
Michael Walled3967f32019-12-18 00:09:58 +0100347};
348
Kuldeep Singh66a813e2021-08-03 14:32:57 +0530349static inline int needs_ip_only(struct nxp_fspi *f)
350{
351 return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
352}
353
Michael Walled3967f32019-12-18 00:09:58 +0100354/*
355 * R/W functions for big- or little-endian registers:
356 * The FSPI controller's endianness is independent of
357 * the CPU core's endianness. So far, although the CPU
358 * core is little-endian the FSPI controller can use
359 * big-endian or little-endian.
360 */
361static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
362{
363 if (f->devtype_data->little_endian)
364 out_le32(addr, val);
365 else
366 out_be32(addr, val);
367}
368
369static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
370{
371 if (f->devtype_data->little_endian)
372 return in_le32(addr);
373 else
374 return in_be32(addr);
375}
376
377static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
378{
379 switch (width) {
380 case 1:
381 case 2:
382 case 4:
383 case 8:
384 return 0;
385 }
386
387 return -ENOTSUPP;
388}
389
390static bool nxp_fspi_supports_op(struct spi_slave *slave,
391 const struct spi_mem_op *op)
392{
393 struct nxp_fspi *f;
394 struct udevice *bus;
395 int ret;
396
397 bus = slave->dev->parent;
398 f = dev_get_priv(bus);
399
400 ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
401
402 if (op->addr.nbytes)
403 ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
404
405 if (op->dummy.nbytes)
406 ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
407
408 if (op->data.nbytes)
409 ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
410
411 if (ret)
412 return false;
413
414 /*
415 * The number of address bytes should be equal to or less than 4 bytes.
416 */
417 if (op->addr.nbytes > 4)
418 return false;
419
420 /*
421 * If requested address value is greater than controller assigned
422 * memory mapped space, return error as it didn't fit in the range
423 * of assigned address space.
424 */
425 if (op->addr.val >= f->memmap_phy_size)
426 return false;
427
428 /* Max 64 dummy clock cycles supported */
429 if (op->dummy.buswidth &&
430 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
431 return false;
432
433 /* Max data length, check controller limits and alignment */
434 if (op->data.dir == SPI_MEM_DATA_IN &&
435 (op->data.nbytes > f->devtype_data->ahb_buf_size ||
436 (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
437 !IS_ALIGNED(op->data.nbytes, 8))))
438 return false;
439
440 if (op->data.dir == SPI_MEM_DATA_OUT &&
441 op->data.nbytes > f->devtype_data->txfifo)
442 return false;
443
Michael Walled9d57332021-07-26 21:35:28 +0200444 return spi_mem_default_supports_op(slave, op);
Michael Walled3967f32019-12-18 00:09:58 +0100445}
446
Kuldeep Singhcab56512020-04-27 12:38:51 +0530447/* Instead of busy looping invoke readl_poll_sleep_timeout functionality. */
Michael Walled3967f32019-12-18 00:09:58 +0100448static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
449 u32 mask, u32 delay_us,
450 u32 timeout_us, bool c)
451{
452 u32 reg;
453
454 if (!f->devtype_data->little_endian)
455 mask = (u32)cpu_to_be32(mask);
456
457 if (c)
Kuldeep Singhcab56512020-04-27 12:38:51 +0530458 return readl_poll_sleep_timeout(base, reg, (reg & mask),
459 delay_us, timeout_us);
Michael Walled3967f32019-12-18 00:09:58 +0100460 else
Kuldeep Singhcab56512020-04-27 12:38:51 +0530461 return readl_poll_sleep_timeout(base, reg, !(reg & mask),
462 delay_us, timeout_us);
Michael Walled3967f32019-12-18 00:09:58 +0100463}
464
465/*
466 * If the slave device content being changed by Write/Erase, need to
467 * invalidate the AHB buffer. This can be achieved by doing the reset
468 * of controller after setting MCR0[SWRESET] bit.
469 */
470static inline void nxp_fspi_invalid(struct nxp_fspi *f)
471{
472 u32 reg;
473 int ret;
474
475 reg = fspi_readl(f, f->iobase + FSPI_MCR0);
476 fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
477
478 /* w1c register, wait unit clear */
479 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
480 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
481 WARN_ON(ret);
482}
483
484static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
485 const struct spi_mem_op *op)
486{
487 void __iomem *base = f->iobase;
488 u32 lutval[4] = {};
489 int lutidx = 1, i;
490
491 /* cmd */
492 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
493 op->cmd.opcode);
494
495 /* addr bytes */
496 if (op->addr.nbytes) {
497 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
498 LUT_PAD(op->addr.buswidth),
499 op->addr.nbytes * 8);
500 lutidx++;
501 }
502
503 /* dummy bytes, if needed */
504 if (op->dummy.nbytes) {
505 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
506 /*
507 * Due to FlexSPI controller limitation number of PAD for dummy
508 * buswidth needs to be programmed as equal to data buswidth.
509 */
510 LUT_PAD(op->data.buswidth),
511 op->dummy.nbytes * 8 /
512 op->dummy.buswidth);
513 lutidx++;
514 }
515
516 /* read/write data bytes */
517 if (op->data.nbytes) {
518 lutval[lutidx / 2] |= LUT_DEF(lutidx,
519 op->data.dir == SPI_MEM_DATA_IN ?
520 LUT_NXP_READ : LUT_NXP_WRITE,
521 LUT_PAD(op->data.buswidth),
522 0);
523 lutidx++;
524 }
525
526 /* stop condition. */
527 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
528
529 /* unlock LUT */
530 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
531 fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
532
533 /* fill LUT */
534 for (i = 0; i < ARRAY_SIZE(lutval); i++)
535 fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
536
Kuldeep Singh19e38b22021-08-03 14:32:58 +0530537 dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
538 op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
Michael Walled3967f32019-12-18 00:09:58 +0100539
540 /* lock LUT */
541 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
542 fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
543}
544
Alper Nebi Yasak5de2f332020-10-05 09:57:29 +0300545#if CONFIG_IS_ENABLED(CLK)
Michael Walled3967f32019-12-18 00:09:58 +0100546static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
547{
548 int ret;
549
550 ret = clk_enable(&f->clk_en);
551 if (ret)
552 return ret;
553
554 ret = clk_enable(&f->clk);
555 if (ret) {
556 clk_disable(&f->clk_en);
557 return ret;
558 }
559
560 return 0;
561}
562
563static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
564{
565 clk_disable(&f->clk);
566 clk_disable(&f->clk_en);
567}
568#endif
569
570/*
571 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
572 * register and start base address of the slave device.
573 *
574 * (Higher address)
575 * -------- <-- FLSHB2CR0
576 * | B2 |
577 * | |
578 * B2 start address --> -------- <-- FLSHB1CR0
579 * | B1 |
580 * | |
581 * B1 start address --> -------- <-- FLSHA2CR0
582 * | A2 |
583 * | |
584 * A2 start address --> -------- <-- FLSHA1CR0
585 * | A1 |
586 * | |
587 * A1 start address --> -------- (Lower address)
588 *
589 *
590 * Start base address defines the starting address range for given CS and
591 * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
592 *
593 * But, different targets are having different combinations of number of CS,
594 * some targets only have single CS or two CS covering controller's full
595 * memory mapped space area.
596 * Thus, implementation is being done as independent of the size and number
597 * of the connected slave device.
598 * Assign controller memory mapped space size as the size to the connected
599 * slave device.
600 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
601 * chip-select Flash configuration register.
602 *
603 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
604 * memory mapped size of the controller.
605 * Value for rest of the CS FLSHxxCR0 register would be zero.
606 *
607 */
608static void nxp_fspi_select_mem(struct nxp_fspi *f, int chip_select)
609{
610 u64 size_kb;
611
612 /* Reset FLSHxxCR0 registers */
613 fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
614 fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
615 fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
616 fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
617
618 /* Assign controller memory mapped space as size, KBytes, of flash. */
619 size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
620
621 fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
622 4 * chip_select);
623
624 dev_dbg(f->dev, "Slave device [CS:%x] selected\n", chip_select);
625}
626
627static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
628{
629 u32 len = op->data.nbytes;
630
631 /* Read out the data directly from the AHB buffer. */
632 memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len);
633}
634
635static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
636 const struct spi_mem_op *op)
637{
638 void __iomem *base = f->iobase;
639 int i, ret;
640 u8 *buf = (u8 *)op->data.buf.out;
641
642 /* clear the TX FIFO. */
643 fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
644
645 /*
646 * Default value of water mark level is 8 bytes, hence in single
647 * write request controller can write max 8 bytes of data.
648 */
649
650 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
651 /* Wait for TXFIFO empty */
652 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
653 FSPI_INTR_IPTXWE, 0,
654 POLL_TOUT, true);
655 WARN_ON(ret);
656
657 fspi_writel(f, *(u32 *)(buf + i), base + FSPI_TFDR);
658 fspi_writel(f, *(u32 *)(buf + i + 4), base + FSPI_TFDR + 4);
659 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
660 }
661
662 if (i < op->data.nbytes) {
663 u32 data = 0;
664 int j;
665 /* Wait for TXFIFO empty */
666 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
667 FSPI_INTR_IPTXWE, 0,
668 POLL_TOUT, true);
669 WARN_ON(ret);
670
671 for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
672 memcpy(&data, buf + i + j, 4);
673 fspi_writel(f, data, base + FSPI_TFDR + j);
674 }
675 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
676 }
677}
678
679static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
680 const struct spi_mem_op *op)
681{
682 void __iomem *base = f->iobase;
683 int i, ret;
684 int len = op->data.nbytes;
685 u8 *buf = (u8 *)op->data.buf.in;
686
687 /*
688 * Default value of water mark level is 8 bytes, hence in single
689 * read request controller can read max 8 bytes of data.
690 */
691 for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
692 /* Wait for RXFIFO available */
693 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
694 FSPI_INTR_IPRXWA, 0,
695 POLL_TOUT, true);
696 WARN_ON(ret);
697
698 *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
699 *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
700 /* move the FIFO pointer */
701 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
702 }
703
704 if (i < len) {
705 u32 tmp;
706 int size, j;
707
708 buf = op->data.buf.in + i;
709 /* Wait for RXFIFO available */
710 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
711 FSPI_INTR_IPRXWA, 0,
712 POLL_TOUT, true);
713 WARN_ON(ret);
714
715 len = op->data.nbytes - i;
716 for (j = 0; j < op->data.nbytes - i; j += 4) {
717 tmp = fspi_readl(f, base + FSPI_RFDR + j);
718 size = min(len, 4);
719 memcpy(buf + j, &tmp, size);
720 len -= size;
721 }
722 }
723
724 /* invalid the RXFIFO */
725 fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
726 /* move the FIFO pointer */
727 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
728}
729
730static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
731{
732 void __iomem *base = f->iobase;
733 int seqnum = 0;
734 int err = 0;
735 u32 reg;
736
737 reg = fspi_readl(f, base + FSPI_IPRXFCR);
738 /* invalid RXFIFO first */
739 reg &= ~FSPI_IPRXFCR_DMA_EN;
740 reg = reg | FSPI_IPRXFCR_CLR;
741 fspi_writel(f, reg, base + FSPI_IPRXFCR);
742
743 fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
744 /*
745 * Always start the sequence at the same index since we update
746 * the LUT at each exec_op() call. And also specify the DATA
747 * length, since it's has not been specified in the LUT.
748 */
749 fspi_writel(f, op->data.nbytes |
750 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
751 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
752 base + FSPI_IPCR1);
753
754 /* Trigger the LUT now. */
755 fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
756
757 /* Wait for the completion. */
758 err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
759 FSPI_STS0_ARB_IDLE, 1, 1000 * 1000, true);
760
761 /* Invoke IP data read, if request is of data read. */
762 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
763 nxp_fspi_read_rxfifo(f, op);
764
765 return err;
766}
767
768static int nxp_fspi_exec_op(struct spi_slave *slave,
769 const struct spi_mem_op *op)
770{
771 struct nxp_fspi *f;
772 struct udevice *bus;
773 int err = 0;
774
775 bus = slave->dev->parent;
776 f = dev_get_priv(bus);
777
778 /* Wait for controller being ready. */
779 err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
780 FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
781 WARN_ON(err);
782
783 nxp_fspi_prepare_lut(f, op);
784 /*
Kuldeep Singh66a813e2021-08-03 14:32:57 +0530785 * If we have large chunks of data, we read them through the AHB bus by
786 * accessing the mapped memory. In all other cases we use IP commands
787 * to access the flash. Read via AHB bus may be corrupted due to
788 * existence of an errata and therefore discard AHB read in such cases.
Michael Walled3967f32019-12-18 00:09:58 +0100789 */
790 if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
Kuldeep Singh66a813e2021-08-03 14:32:57 +0530791 op->data.dir == SPI_MEM_DATA_IN &&
792 !needs_ip_only(f)) {
Michael Walled3967f32019-12-18 00:09:58 +0100793 nxp_fspi_read_ahb(f, op);
794 } else {
795 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
796 nxp_fspi_fill_txfifo(f, op);
797
798 err = nxp_fspi_do_op(f, op);
799 }
800
801 /* Invalidate the data in the AHB buffer. */
802 nxp_fspi_invalid(f);
803
804 return err;
805}
806
807static int nxp_fspi_adjust_op_size(struct spi_slave *slave,
808 struct spi_mem_op *op)
809{
810 struct nxp_fspi *f;
811 struct udevice *bus;
812
813 bus = slave->dev->parent;
814 f = dev_get_priv(bus);
815
816 if (op->data.dir == SPI_MEM_DATA_OUT) {
817 if (op->data.nbytes > f->devtype_data->txfifo)
818 op->data.nbytes = f->devtype_data->txfifo;
819 } else {
820 if (op->data.nbytes > f->devtype_data->ahb_buf_size)
821 op->data.nbytes = f->devtype_data->ahb_buf_size;
822 else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
823 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
824 }
825
Kuldeep Singh66a813e2021-08-03 14:32:57 +0530826 /* Limit data bytes to RX FIFO in case of IP read only */
827 if (needs_ip_only(f) &&
828 op->data.dir == SPI_MEM_DATA_IN &&
829 op->data.nbytes > f->devtype_data->rxfifo)
830 op->data.nbytes = f->devtype_data->rxfifo;
831
Michael Walled3967f32019-12-18 00:09:58 +0100832 return 0;
833}
834
Kuldeep Singh19e38b22021-08-03 14:32:58 +0530835#ifdef CONFIG_FSL_LAYERSCAPE
836static void erratum_err050568(struct nxp_fspi *f)
837{
838 struct sys_info sysinfo;
839 u32 svr = 0, freq = 0;
840
841 /* Check for LS1028A variants */
842 svr = SVR_SOC_VER(get_svr());
843 if (svr != SVR_LS1017A ||
844 svr != SVR_LS1018A ||
845 svr != SVR_LS1027A ||
846 svr != SVR_LS1028A) {
847 dev_dbg(f->dev, "Errata applicable only for LS1028A variants\n");
848 return;
849 }
850
851 /* Read PLL frequency */
852 get_sys_info(&sysinfo);
853 freq = sysinfo.freq_systembus / 1000000; /* Convert to MHz */
854 dev_dbg(f->dev, "svr: %08x, Frequency: %dMhz\n", svr, freq);
855
856 /* Use IP bus only if PLL is 300MHz */
857 if (freq == 300)
858 f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
859}
860#endif
861
Michael Walled3967f32019-12-18 00:09:58 +0100862static int nxp_fspi_default_setup(struct nxp_fspi *f)
863{
864 void __iomem *base = f->iobase;
865 int ret, i;
866 u32 reg;
867
Alper Nebi Yasak5de2f332020-10-05 09:57:29 +0300868#if CONFIG_IS_ENABLED(CLK)
Michael Walled3967f32019-12-18 00:09:58 +0100869 /* disable and unprepare clock to avoid glitch pass to controller */
870 nxp_fspi_clk_disable_unprep(f);
871
872 /* the default frequency, we will change it later if necessary. */
873 ret = clk_set_rate(&f->clk, 20000000);
Adam Fordc9ad0482021-01-18 15:32:49 -0600874 if (ret < 0)
Michael Walled3967f32019-12-18 00:09:58 +0100875 return ret;
876
877 ret = nxp_fspi_clk_prep_enable(f);
878 if (ret)
879 return ret;
880#endif
881
Kuldeep Singh19e38b22021-08-03 14:32:58 +0530882#ifdef CONFIG_FSL_LAYERSCAPE
883 /*
884 * ERR050568: Flash access by FlexSPI AHB command may not work with
885 * platform frequency equal to 300 MHz on LS1028A.
886 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
887 * Layerscape LS1028A platform family.
888 */
889 if (device_is_compatible(f->dev, "nxp,lx2160a-fspi"))
890 erratum_err050568(f);
891#endif
892
Michael Walled3967f32019-12-18 00:09:58 +0100893 /* Reset the module */
894 /* w1c register, wait unit clear */
895 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
896 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
897 WARN_ON(ret);
898
899 /* Disable the module */
900 fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
901
902 /* Reset the DLL register to default value */
903 fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
904 fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
905
906 /* enable module */
907 fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | FSPI_MCR0_IP_TIMEOUT(0xFF),
908 base + FSPI_MCR0);
909
910 /*
911 * Disable same device enable bit and configure all slave devices
912 * independently.
913 */
914 reg = fspi_readl(f, f->iobase + FSPI_MCR2);
915 reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
916 fspi_writel(f, reg, base + FSPI_MCR2);
917
918 /* AHB configuration for access buffer 0~7. */
919 for (i = 0; i < 7; i++)
920 fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
921
922 /*
923 * Set ADATSZ with the maximum AHB buffer size to improve the read
924 * performance.
925 */
926 fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
927 FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
928
929 /* prefetch and no start address alignment limitation */
930 fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
931 base + FSPI_AHBCR);
932
933 /* AHB Read - Set lut sequence ID for all CS. */
934 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
935 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
936 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
937 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
938
939 return 0;
940}
941
942static int nxp_fspi_probe(struct udevice *bus)
943{
944 struct nxp_fspi *f = dev_get_priv(bus);
945
946 f->devtype_data =
947 (struct nxp_fspi_devtype_data *)dev_get_driver_data(bus);
948 nxp_fspi_default_setup(f);
949
950 return 0;
951}
952
953static int nxp_fspi_claim_bus(struct udevice *dev)
954{
955 struct nxp_fspi *f;
956 struct udevice *bus;
Simon Glassb75b15b2020-12-03 16:55:23 -0700957 struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
Michael Walled3967f32019-12-18 00:09:58 +0100958
959 bus = dev->parent;
960 f = dev_get_priv(bus);
961
962 nxp_fspi_select_mem(f, slave_plat->cs);
963
964 return 0;
965}
966
967static int nxp_fspi_set_speed(struct udevice *bus, uint speed)
968{
Alper Nebi Yasak5de2f332020-10-05 09:57:29 +0300969#if CONFIG_IS_ENABLED(CLK)
Michael Walled3967f32019-12-18 00:09:58 +0100970 struct nxp_fspi *f = dev_get_priv(bus);
971 int ret;
972
973 nxp_fspi_clk_disable_unprep(f);
974
975 ret = clk_set_rate(&f->clk, speed);
Adam Fordc9ad0482021-01-18 15:32:49 -0600976 if (ret < 0)
Michael Walled3967f32019-12-18 00:09:58 +0100977 return ret;
978
979 ret = nxp_fspi_clk_prep_enable(f);
980 if (ret)
981 return ret;
982#endif
983 return 0;
984}
985
986static int nxp_fspi_set_mode(struct udevice *bus, uint mode)
987{
988 /* Nothing to do */
989 return 0;
990}
991
Simon Glassaad29ae2020-12-03 16:55:21 -0700992static int nxp_fspi_of_to_plat(struct udevice *bus)
Michael Walled3967f32019-12-18 00:09:58 +0100993{
994 struct nxp_fspi *f = dev_get_priv(bus);
Alper Nebi Yasak5de2f332020-10-05 09:57:29 +0300995#if CONFIG_IS_ENABLED(CLK)
Michael Walled3967f32019-12-18 00:09:58 +0100996 int ret;
997#endif
998
999 fdt_addr_t iobase;
1000 fdt_addr_t iobase_size;
1001 fdt_addr_t ahb_addr;
1002 fdt_addr_t ahb_size;
1003
1004 f->dev = bus;
1005
1006 iobase = devfdt_get_addr_size_name(bus, "fspi_base", &iobase_size);
1007 if (iobase == FDT_ADDR_T_NONE) {
1008 dev_err(bus, "fspi_base regs missing\n");
1009 return -ENODEV;
1010 }
1011 f->iobase = map_physmem(iobase, iobase_size, MAP_NOCACHE);
1012
1013 ahb_addr = devfdt_get_addr_size_name(bus, "fspi_mmap", &ahb_size);
1014 if (ahb_addr == FDT_ADDR_T_NONE) {
1015 dev_err(bus, "fspi_mmap regs missing\n");
1016 return -ENODEV;
1017 }
1018 f->ahb_addr = map_physmem(ahb_addr, ahb_size, MAP_NOCACHE);
1019 f->memmap_phy_size = ahb_size;
1020
Alper Nebi Yasak5de2f332020-10-05 09:57:29 +03001021#if CONFIG_IS_ENABLED(CLK)
Michael Walled3967f32019-12-18 00:09:58 +01001022 ret = clk_get_by_name(bus, "fspi_en", &f->clk_en);
1023 if (ret) {
1024 dev_err(bus, "failed to get fspi_en clock\n");
1025 return ret;
1026 }
1027
1028 ret = clk_get_by_name(bus, "fspi", &f->clk);
1029 if (ret) {
1030 dev_err(bus, "failed to get fspi clock\n");
1031 return ret;
1032 }
1033#endif
1034
1035 dev_dbg(bus, "iobase=<0x%llx>, ahb_addr=<0x%llx>\n", iobase, ahb_addr);
1036
1037 return 0;
1038}
1039
1040static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1041 .adjust_op_size = nxp_fspi_adjust_op_size,
1042 .supports_op = nxp_fspi_supports_op,
1043 .exec_op = nxp_fspi_exec_op,
1044};
1045
1046static const struct dm_spi_ops nxp_fspi_ops = {
1047 .claim_bus = nxp_fspi_claim_bus,
1048 .set_speed = nxp_fspi_set_speed,
1049 .set_mode = nxp_fspi_set_mode,
1050 .mem_ops = &nxp_fspi_mem_ops,
1051};
1052
1053static const struct udevice_id nxp_fspi_ids[] = {
1054 { .compatible = "nxp,lx2160a-fspi", .data = (ulong)&lx2160a_data, },
Adam Fordcf559bf2021-01-18 15:32:50 -06001055 { .compatible = "nxp,imx8mm-fspi", .data = (ulong)&imx8mm_data, },
Marek Vasut2e4b63b2022-03-09 04:18:57 +01001056 { .compatible = "nxp,imx8mp-fspi", .data = (ulong)&imx8mm_data, },
Michael Walled3967f32019-12-18 00:09:58 +01001057 { }
1058};
1059
1060U_BOOT_DRIVER(nxp_fspi) = {
1061 .name = "nxp_fspi",
1062 .id = UCLASS_SPI,
1063 .of_match = nxp_fspi_ids,
1064 .ops = &nxp_fspi_ops,
Simon Glassaad29ae2020-12-03 16:55:21 -07001065 .of_to_plat = nxp_fspi_of_to_plat,
Simon Glass8a2b47f2020-12-03 16:55:17 -07001066 .priv_auto = sizeof(struct nxp_fspi),
Michael Walled3967f32019-12-18 00:09:58 +01001067 .probe = nxp_fspi_probe,
1068};