blob: 5fe0c8e1237e26f89a9712f951b43a875a0f2756 [file] [log] [blame]
Padmarao Begari32678b02022-10-27 11:32:01 +05301// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2022 Microchip Technology Inc.
4 * Padmarao Begari <padmarao.begari@microchip.com>
5 * Naga Sureshkumar Relli <nagasuresh.relli@microchip.com>
6 */
7
8#include <common.h>
9#include <clk.h>
10#include <dm.h>
11#include <log.h>
12#include <malloc.h>
13#include <spi.h>
14#include <spi-mem.h>
15#include <asm/io.h>
16#include <linux/bitops.h>
17#include <linux/delay.h>
18#include <linux/types.h>
19#include <linux/sizes.h>
20
21DECLARE_GLOBAL_DATA_PTR;
22
23/*
24 * QSPI Control register mask defines
25 */
26#define CONTROL_ENABLE BIT(0)
27#define CONTROL_MASTER BIT(1)
28#define CONTROL_XIP BIT(2)
29#define CONTROL_XIPADDR BIT(3)
30#define CONTROL_CLKIDLE BIT(10)
31#define CONTROL_SAMPLE_MASK GENMASK(12, 11)
32#define CONTROL_MODE0 BIT(13)
33#define CONTROL_MODE12_MASK GENMASK(15, 14)
34#define CONTROL_MODE12_EX_RO BIT(14)
35#define CONTROL_MODE12_EX_RW BIT(15)
36#define CONTROL_MODE12_FULL GENMASK(15, 14)
37#define CONTROL_FLAGSX4 BIT(16)
38#define CONTROL_CLKRATE_MASK GENMASK(27, 24)
39#define CONTROL_CLKRATE_SHIFT 24
40
41/*
42 * QSPI Frames register mask defines
43 */
44#define FRAMES_TOTALBYTES_MASK GENMASK(15, 0)
45#define FRAMES_CMDBYTES_MASK GENMASK(24, 16)
46#define FRAMES_CMDBYTES_SHIFT 16
47#define FRAMES_SHIFT 25
48#define FRAMES_IDLE_MASK GENMASK(29, 26)
49#define FRAMES_IDLE_SHIFT 26
50#define FRAMES_FLAGBYTE BIT(30)
51#define FRAMES_FLAGWORD BIT(31)
52
53/*
54 * QSPI Interrupt Enable register mask defines
55 */
56#define IEN_TXDONE BIT(0)
57#define IEN_RXDONE BIT(1)
58#define IEN_RXAVAILABLE BIT(2)
59#define IEN_TXAVAILABLE BIT(3)
60#define IEN_RXFIFOEMPTY BIT(4)
61#define IEN_TXFIFOFULL BIT(5)
62
63/*
64 * QSPI Status register mask defines
65 */
66#define STATUS_TXDONE BIT(0)
67#define STATUS_RXDONE BIT(1)
68#define STATUS_RXAVAILABLE BIT(2)
69#define STATUS_TXAVAILABLE BIT(3)
70#define STATUS_RXFIFOEMPTY BIT(4)
71#define STATUS_TXFIFOFULL BIT(5)
72#define STATUS_READY BIT(7)
73#define STATUS_FLAGSX4 BIT(8)
74#define STATUS_MASK GENMASK(8, 0)
75
76#define BYTESUPPER_MASK GENMASK(31, 16)
77#define BYTESLOWER_MASK GENMASK(15, 0)
78
79#define MAX_DIVIDER 16
80#define MIN_DIVIDER 0
81#define MAX_DATA_CMD_LEN 256
82
83/* QSPI ready time out value */
84#define TIMEOUT_MS (1000 * 500)
85
86/*
87 * QSPI Register offsets.
88 */
89#define REG_CONTROL (0x00)
90#define REG_FRAMES (0x04)
91#define REG_IEN (0x0c)
92#define REG_STATUS (0x10)
93#define REG_DIRECT_ACCESS (0x14)
94#define REG_UPPER_ACCESS (0x18)
95#define REG_RX_DATA (0x40)
96#define REG_TX_DATA (0x44)
97#define REG_X4_RX_DATA (0x48)
98#define REG_X4_TX_DATA (0x4c)
99#define REG_FRAMESUP (0x50)
100
101/**
102 * struct mchp_coreqspi - Defines qspi driver instance
103 * @regs: Address of the QSPI controller registers
104 * @freq: QSPI Input frequency
105 * @txbuf: TX buffer
106 * @rxbuf: RX buffer
107 * @tx_len: Number of bytes left to transfer
108 * @rx_len: Number of bytes left to receive
109 */
110struct mchp_coreqspi {
111 void __iomem *regs;
112 u32 freq;
113 u8 *txbuf;
114 u8 *rxbuf;
115 int tx_len;
116 int rx_len;
117};
118
119static void mchp_coreqspi_init_hw(struct mchp_coreqspi *qspi)
120{
121 u32 control;
122
123 control = CONTROL_CLKIDLE | CONTROL_ENABLE;
124
125 writel(control, qspi->regs + REG_CONTROL);
126 writel(0, qspi->regs + REG_IEN);
127}
128
129static inline void mchp_coreqspi_read_op(struct mchp_coreqspi *qspi)
130{
131 u32 control, data;
132
133 if (!qspi->rx_len)
134 return;
135
136 control = readl(qspi->regs + REG_CONTROL);
137
138 /*
139 * Read 4-bytes from the SPI FIFO in single transaction and then read
140 * the reamaining data byte wise.
141 */
142 control |= CONTROL_FLAGSX4;
143 writel(control, qspi->regs + REG_CONTROL);
144
145 while (qspi->rx_len >= 4) {
146 while (readl(qspi->regs + REG_STATUS) & STATUS_RXFIFOEMPTY)
147 ;
148 data = readl(qspi->regs + REG_X4_RX_DATA);
149 *(u32 *)qspi->rxbuf = data;
150 qspi->rxbuf += 4;
151 qspi->rx_len -= 4;
152 }
153
154 control &= ~CONTROL_FLAGSX4;
155 writel(control, qspi->regs + REG_CONTROL);
156
157 while (qspi->rx_len--) {
158 while (readl(qspi->regs + REG_STATUS) & STATUS_RXFIFOEMPTY)
159 ;
160 data = readl(qspi->regs + REG_RX_DATA);
161 *qspi->rxbuf++ = (data & 0xFF);
162 }
163}
164
165static inline void mchp_coreqspi_write_op(struct mchp_coreqspi *qspi, bool word)
166{
167 u32 control, data;
168
169 control = readl(qspi->regs + REG_CONTROL);
170 control |= CONTROL_FLAGSX4;
171 writel(control, qspi->regs + REG_CONTROL);
172
173 while (qspi->tx_len >= 4) {
174 while (readl(qspi->regs + REG_STATUS) & STATUS_TXFIFOFULL)
175 ;
176 data = *(u32 *)qspi->txbuf;
177 qspi->txbuf += 4;
178 qspi->tx_len -= 4;
179 writel(data, qspi->regs + REG_X4_TX_DATA);
180 }
181
182 control &= ~CONTROL_FLAGSX4;
183 writel(control, qspi->regs + REG_CONTROL);
184
185 while (qspi->tx_len--) {
186 while (readl(qspi->regs + REG_STATUS) & STATUS_TXFIFOFULL)
187 ;
188 data = *qspi->txbuf++;
189 writel(data, qspi->regs + REG_TX_DATA);
190 }
191}
192
193static inline void mchp_coreqspi_config_op(struct mchp_coreqspi *qspi,
194 const struct spi_mem_op *op)
195{
196 u32 idle_cycles = 0;
197 int total_bytes, cmd_bytes, frames, ctrl;
198
199 cmd_bytes = op->cmd.nbytes + op->addr.nbytes;
200 total_bytes = cmd_bytes + op->data.nbytes;
201
202 /*
203 * As per the coreQSPI IP spec,the number of command and data bytes are
204 * controlled by the frames register for each SPI sequence. This supports
205 * the SPI flash memory read and writes sequences as below. so configure
206 * the cmd and total bytes accordingly.
207 * ---------------------------------------------------------------------
208 * TOTAL BYTES | CMD BYTES | What happens |
209 * ______________________________________________________________________
210 * | | |
211 * 1 | 1 | The SPI core will transmit a single byte |
212 * | | and receive data is discarded |
213 * | | |
214 * 1 | 0 | The SPI core will transmit a single byte |
215 * | | and return a single byte |
216 * | | |
217 * 10 | 4 | The SPI core will transmit 4 command |
218 * | | bytes discarding the receive data and |
219 * | | transmits 6 dummy bytes returning the 6 |
220 * | | received bytes and return a single byte |
221 * | | |
222 * 10 | 10 | The SPI core will transmit 10 command |
223 * | | |
224 * 10 | 0 | The SPI core will transmit 10 command |
225 * | | bytes and returning 10 received bytes |
226 * ______________________________________________________________________
227 */
228
229 if (!(op->data.dir == SPI_MEM_DATA_IN))
230 cmd_bytes = total_bytes;
231
232 frames = total_bytes & BYTESUPPER_MASK;
233 writel(frames, qspi->regs + REG_FRAMESUP);
234 frames = total_bytes & BYTESLOWER_MASK;
235 frames |= cmd_bytes << FRAMES_CMDBYTES_SHIFT;
236
237 if (op->dummy.buswidth)
238 idle_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth;
239
240 frames |= idle_cycles << FRAMES_IDLE_SHIFT;
241 ctrl = readl(qspi->regs + REG_CONTROL);
242
243 if (ctrl & CONTROL_MODE12_MASK)
244 frames |= (1 << FRAMES_SHIFT);
245
246 frames |= FRAMES_FLAGWORD;
247 writel(frames, qspi->regs + REG_FRAMES);
248}
249
250static int mchp_coreqspi_wait_for_ready(struct spi_slave *slave)
251{
252 struct mchp_coreqspi *qspi = dev_get_priv(slave->dev->parent);
253 unsigned long count = 0;
254
255 while (1) {
256 if (readl(qspi->regs + REG_STATUS) & STATUS_READY)
257 return 0;
258
259 udelay(1);
260 count += 1;
261 if (count == TIMEOUT_MS)
262 return -ETIMEDOUT;
263 }
264}
265
266static int mchp_coreqspi_set_operate_mode(struct mchp_coreqspi *qspi,
267 const struct spi_mem_op *op)
268{
269 u32 control = readl(qspi->regs + REG_CONTROL);
270
271 /*
272 * The operating mode can be configured based on the command that needs
273 * to be send.
274 * bits[15:14]: Sets whether multiple bit SPI operates in normal,
275 * extended or full modes.
276 * 00: Normal (single DQ0 TX and single DQ1 RX lines)
277 * 01: Extended RO (command and address bytes on DQ0 only)
278 * 10: Extended RW (command byte on DQ0 only)
279 * 11: Full. (command and address are on all DQ lines)
280 * bit[13]: Sets whether multiple bit SPI uses 2 or 4 bits of data
281 * 0: 2-bits (BSPI)
282 * 1: 4-bits (QSPI)
283 */
284 if (op->data.buswidth == 4 || op->data.buswidth == 2) {
285 control &= ~CONTROL_MODE12_MASK;
286 if (op->cmd.buswidth == 1 && (op->addr.buswidth == 1 ||
287 op->addr.buswidth == 0))
288 control |= CONTROL_MODE12_EX_RO;
289 else if (op->cmd.buswidth == 1)
290 control |= CONTROL_MODE12_EX_RW;
291 else
292 control |= CONTROL_MODE12_FULL;
293
294 control |= CONTROL_MODE0;
295 } else {
296 control &= ~(CONTROL_MODE12_MASK | CONTROL_MODE0);
297 }
298
299 writel(control, qspi->regs + REG_CONTROL);
300
301 return 0;
302}
303
304static int mchp_coreqspi_exec_op(struct spi_slave *slave,
305 const struct spi_mem_op *op)
306{
307 struct mchp_coreqspi *qspi = dev_get_priv(slave->dev->parent);
308
309 u32 address = op->addr.val;
310 u8 opcode = op->cmd.opcode;
311 u8 opaddr[5];
312 int err = 0, i;
313
314 err = mchp_coreqspi_wait_for_ready(slave);
315 if (err)
316 return err;
317
318 err = mchp_coreqspi_set_operate_mode(qspi, op);
319 if (err)
320 return err;
321
322 mchp_coreqspi_config_op(qspi, op);
323 if (op->cmd.opcode) {
324 qspi->txbuf = &opcode;
325 qspi->rxbuf = NULL;
326 qspi->tx_len = op->cmd.nbytes;
327 qspi->rx_len = 0;
328 mchp_coreqspi_write_op(qspi, false);
329 }
330
331 qspi->txbuf = &opaddr[0];
332 if (op->addr.nbytes) {
333 for (i = 0; i < op->addr.nbytes; i++)
334 qspi->txbuf[i] = address >> (8 * (op->addr.nbytes - i - 1));
335
336 qspi->rxbuf = NULL;
337 qspi->tx_len = op->addr.nbytes;
338 qspi->rx_len = 0;
339 mchp_coreqspi_write_op(qspi, false);
340 }
341
342 if (op->data.nbytes) {
343 if (op->data.dir == SPI_MEM_DATA_OUT) {
344 qspi->txbuf = (u8 *)op->data.buf.out;
345 qspi->rxbuf = NULL;
346 qspi->rx_len = 0;
347 qspi->tx_len = op->data.nbytes;
348 mchp_coreqspi_write_op(qspi, true);
349 } else {
350 qspi->txbuf = NULL;
351 qspi->rxbuf = (u8 *)op->data.buf.in;
352 qspi->rx_len = op->data.nbytes;
353 qspi->tx_len = 0;
354 mchp_coreqspi_read_op(qspi);
355 }
356 }
357
358 return 0;
359}
360
361static bool mchp_coreqspi_supports_op(struct spi_slave *slave,
362 const struct spi_mem_op *op)
363{
364 if (!spi_mem_default_supports_op(slave, op))
365 return false;
366
367 if ((op->data.buswidth == 4 || op->data.buswidth == 2) &&
368 (op->cmd.buswidth == 1 && (op->addr.buswidth == 1 ||
369 op->addr.buswidth == 0))) {
370 /*
371 * If the command and address are on DQ0 only, then this
372 * controller doesn't support sending data on dual and
373 * quad lines. but it supports reading data on dual and
374 * quad lines with same configuration as command and
375 * address on DQ0.
376 * i.e. The control register[15:13] :EX_RO(read only) is
377 * meant only for the command and address are on DQ0 but
378 * not to write data, it is just to read.
379 * Ex: 0x34h is Quad Load Program Data which is not
380 * supported. Then the spi-mem layer will iterate over
381 * each command and it will chose the supported one.
382 */
383 if (op->data.dir == SPI_MEM_DATA_OUT)
384 return false;
385 }
386
387 return true;
388}
389
390static int mchp_coreqspi_adjust_op_size(struct spi_slave *slave,
391 struct spi_mem_op *op)
392{
393 if (op->data.dir == SPI_MEM_DATA_OUT) {
394 if (op->data.nbytes > MAX_DATA_CMD_LEN)
395 op->data.nbytes = MAX_DATA_CMD_LEN;
396 }
397
398 return 0;
399}
400
401static int mchp_coreqspi_set_speed(struct udevice *dev, uint speed)
402{
403 struct mchp_coreqspi *qspi = dev_get_priv(dev);
404 u32 control, baud_rate_val = 0;
405
406 if (speed > (qspi->freq / 2))
407 speed = qspi->freq / 2;
408
409 baud_rate_val = DIV_ROUND_UP(qspi->freq, 2 * speed);
410 if (baud_rate_val >= MAX_DIVIDER || baud_rate_val <= MIN_DIVIDER)
411 return -EINVAL;
412
413 control = readl(qspi->regs + REG_CONTROL);
414 control &= ~CONTROL_CLKRATE_MASK;
415 control |= baud_rate_val << CONTROL_CLKRATE_SHIFT;
416 writel(control, qspi->regs + REG_CONTROL);
417
418 return 0;
419}
420
421static int mchp_coreqspi_set_mode(struct udevice *dev, uint mode)
422{
423 struct mchp_coreqspi *qspi = dev_get_priv(dev);
424 u32 control;
425
426 control = readl(qspi->regs + REG_CONTROL);
427
428 if ((mode & SPI_CPOL) && (mode & SPI_CPHA))
429 control |= CONTROL_CLKIDLE;
430 else
431 control &= ~CONTROL_CLKIDLE;
432
433 writel(control, qspi->regs + REG_CONTROL);
434
435 return 0;
436}
437
438static int mchp_coreqspi_claim_bus(struct udevice *dev)
439{
440 return 0;
441}
442
443static int mchp_coreqspi_release_bus(struct udevice *dev)
444{
445 return 0;
446}
447
448static int mchp_coreqspi_probe(struct udevice *dev)
449{
450 struct mchp_coreqspi *qspi = dev_get_priv(dev);
451 struct clk clk;
452 ulong clk_rate;
453 int ret;
454
455 ret = clk_get_by_index(dev, 0, &clk);
456 if (ret)
457 return -EINVAL;
458
459 ret = clk_enable(&clk);
460 if (ret)
461 return ret;
462
463 clk_rate = clk_get_rate(&clk);
464 if (!clk_rate)
465 return -EINVAL;
466 qspi->freq = clk_rate;
467
468 qspi->regs = dev_read_addr_ptr(dev);
469 if (!qspi->regs)
470 return -EINVAL;
471
472 /* Init the mpfs qspi hw */
473 mchp_coreqspi_init_hw(qspi);
474
475 return 0;
476}
477
478static const struct spi_controller_mem_ops mchp_coreqspi_mem_ops = {
479 .adjust_op_size = mchp_coreqspi_adjust_op_size,
480 .supports_op = mchp_coreqspi_supports_op,
481 .exec_op = mchp_coreqspi_exec_op,
482};
483
484static const struct dm_spi_ops mchp_coreqspi_ops = {
485 .claim_bus = mchp_coreqspi_claim_bus,
486 .release_bus = mchp_coreqspi_release_bus,
487 .set_speed = mchp_coreqspi_set_speed,
488 .set_mode = mchp_coreqspi_set_mode,
489 .mem_ops = &mchp_coreqspi_mem_ops,
490};
491
492static const struct udevice_id mchp_coreqspi_ids[] = {
493 { .compatible = "microchip,mpfs-coreqspi-rtl-v2" },
494 { .compatible = "microchip,mpfs-qspi" },
495 { }
496};
497
498U_BOOT_DRIVER(mchp_coreqspi) = {
499 .name = "mchp_coreqspi",
500 .id = UCLASS_SPI,
501 .of_match = mchp_coreqspi_ids,
502 .ops = &mchp_coreqspi_ops,
503 .priv_auto = sizeof(struct mchp_coreqspi),
504 .probe = mchp_coreqspi_probe,
505};