Zhikang Zhang | 145b88f | 2017-08-03 02:30:57 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2017 NXP Semiconductors |
| 3 | * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com> |
| 4 | * |
| 5 | * SPDX-License-Identifier: GPL-2.0+ |
| 6 | */ |
| 7 | |
| 8 | #include <common.h> |
| 9 | #include <dm.h> |
| 10 | #include <errno.h> |
| 11 | #include <memalign.h> |
| 12 | #include <pci.h> |
| 13 | #include <dm/device-internal.h> |
| 14 | #include "nvme.h" |
| 15 | |
| 16 | struct nvme_info *nvme_info; |
| 17 | |
| 18 | #define NVME_Q_DEPTH 2 |
| 19 | #define NVME_AQ_DEPTH 2 |
| 20 | #define NVME_SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) |
| 21 | #define NVME_CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) |
| 22 | #define ADMIN_TIMEOUT 60 |
| 23 | #define IO_TIMEOUT 30 |
| 24 | #define MAX_PRP_POOL 512 |
| 25 | |
| 26 | /* |
| 27 | * An NVM Express queue. Each device has at least two (one for admin |
| 28 | * commands and one for I/O commands). |
| 29 | */ |
| 30 | struct nvme_queue { |
| 31 | struct nvme_dev *dev; |
| 32 | struct nvme_command *sq_cmds; |
| 33 | struct nvme_completion *cqes; |
| 34 | wait_queue_head_t sq_full; |
| 35 | u32 __iomem *q_db; |
| 36 | u16 q_depth; |
| 37 | s16 cq_vector; |
| 38 | u16 sq_head; |
| 39 | u16 sq_tail; |
| 40 | u16 cq_head; |
| 41 | u16 qid; |
| 42 | u8 cq_phase; |
| 43 | u8 cqe_seen; |
| 44 | unsigned long cmdid_data[]; |
| 45 | }; |
| 46 | |
| 47 | static int nvme_wait_ready(struct nvme_dev *dev, bool enabled) |
| 48 | { |
| 49 | u32 bit = enabled ? NVME_CSTS_RDY : 0; |
| 50 | |
| 51 | while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) |
| 52 | udelay(10000); |
| 53 | |
| 54 | return 0; |
| 55 | } |
| 56 | |
| 57 | static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2, |
| 58 | int total_len, u64 dma_addr) |
| 59 | { |
| 60 | u32 page_size = dev->page_size; |
| 61 | int offset = dma_addr & (page_size - 1); |
| 62 | u64 *prp_pool; |
| 63 | int length = total_len; |
| 64 | int i, nprps; |
| 65 | length -= (page_size - offset); |
| 66 | |
| 67 | if (length <= 0) { |
| 68 | *prp2 = 0; |
| 69 | return 0; |
| 70 | } |
| 71 | |
| 72 | if (length) |
| 73 | dma_addr += (page_size - offset); |
| 74 | |
| 75 | if (length <= page_size) { |
| 76 | *prp2 = dma_addr; |
| 77 | return 0; |
| 78 | } |
| 79 | |
| 80 | nprps = DIV_ROUND_UP(length, page_size); |
| 81 | |
| 82 | if (nprps > dev->prp_entry_num) { |
| 83 | free(dev->prp_pool); |
| 84 | dev->prp_pool = malloc(nprps << 3); |
| 85 | if (!dev->prp_pool) { |
| 86 | printf("Error: malloc prp_pool fail\n"); |
| 87 | return -ENOMEM; |
| 88 | } |
| 89 | dev->prp_entry_num = nprps; |
| 90 | } |
| 91 | |
| 92 | prp_pool = dev->prp_pool; |
| 93 | i = 0; |
| 94 | while (nprps) { |
| 95 | if (i == ((page_size >> 3) - 1)) { |
| 96 | *(prp_pool + i) = cpu_to_le64((ulong)prp_pool + |
| 97 | page_size); |
| 98 | i = 0; |
| 99 | prp_pool += page_size; |
| 100 | } |
| 101 | *(prp_pool + i++) = cpu_to_le64(dma_addr); |
| 102 | dma_addr += page_size; |
| 103 | nprps--; |
| 104 | } |
| 105 | *prp2 = (ulong)dev->prp_pool; |
| 106 | |
| 107 | return 0; |
| 108 | } |
| 109 | |
| 110 | static __le16 nvme_get_cmd_id(void) |
| 111 | { |
| 112 | static unsigned short cmdid; |
| 113 | |
| 114 | return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0); |
| 115 | } |
| 116 | |
| 117 | static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index) |
| 118 | { |
| 119 | u64 start = (ulong)&nvmeq->cqes[index]; |
| 120 | u64 stop = start + sizeof(struct nvme_completion); |
| 121 | |
| 122 | invalidate_dcache_range(start, stop); |
| 123 | |
| 124 | return le16_to_cpu(readw(&(nvmeq->cqes[index].status))); |
| 125 | } |
| 126 | |
| 127 | /** |
| 128 | * nvme_submit_cmd() - copy a command into a queue and ring the doorbell |
| 129 | * |
| 130 | * @nvmeq: The queue to use |
| 131 | * @cmd: The command to send |
| 132 | */ |
| 133 | static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd) |
| 134 | { |
| 135 | u16 tail = nvmeq->sq_tail; |
| 136 | |
| 137 | memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); |
| 138 | flush_dcache_range((ulong)&nvmeq->sq_cmds[tail], |
| 139 | (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd)); |
| 140 | |
| 141 | if (++tail == nvmeq->q_depth) |
| 142 | tail = 0; |
| 143 | writel(tail, nvmeq->q_db); |
| 144 | nvmeq->sq_tail = tail; |
| 145 | } |
| 146 | |
| 147 | static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, |
| 148 | struct nvme_command *cmd, |
| 149 | u32 *result, unsigned timeout) |
| 150 | { |
| 151 | u16 head = nvmeq->cq_head; |
| 152 | u16 phase = nvmeq->cq_phase; |
| 153 | u16 status; |
| 154 | ulong start_time; |
| 155 | ulong timeout_us = timeout * 100000; |
| 156 | |
| 157 | cmd->common.command_id = nvme_get_cmd_id(); |
| 158 | nvme_submit_cmd(nvmeq, cmd); |
| 159 | |
| 160 | start_time = timer_get_us(); |
| 161 | |
| 162 | for (;;) { |
| 163 | status = nvme_read_completion_status(nvmeq, head); |
| 164 | if ((status & 0x01) == phase) |
| 165 | break; |
| 166 | if (timeout_us > 0 && (timer_get_us() - start_time) |
| 167 | >= timeout_us) |
| 168 | return -ETIMEDOUT; |
| 169 | } |
| 170 | |
| 171 | status >>= 1; |
| 172 | if (status) { |
| 173 | printf("ERROR: status = %x, phase = %d, head = %d\n", |
| 174 | status, phase, head); |
| 175 | status = 0; |
| 176 | if (++head == nvmeq->q_depth) { |
| 177 | head = 0; |
| 178 | phase = !phase; |
| 179 | } |
| 180 | writel(head, nvmeq->q_db + nvmeq->dev->db_stride); |
| 181 | nvmeq->cq_head = head; |
| 182 | nvmeq->cq_phase = phase; |
| 183 | |
| 184 | return -EIO; |
| 185 | } |
| 186 | |
| 187 | if (result) |
| 188 | *result = le32_to_cpu(readl(&(nvmeq->cqes[head].result))); |
| 189 | |
| 190 | if (++head == nvmeq->q_depth) { |
| 191 | head = 0; |
| 192 | phase = !phase; |
| 193 | } |
| 194 | writel(head, nvmeq->q_db + nvmeq->dev->db_stride); |
| 195 | nvmeq->cq_head = head; |
| 196 | nvmeq->cq_phase = phase; |
| 197 | |
| 198 | return status; |
| 199 | } |
| 200 | |
| 201 | static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd, |
| 202 | u32 *result) |
| 203 | { |
| 204 | return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT); |
| 205 | } |
| 206 | |
| 207 | static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, |
| 208 | int qid, int depth) |
| 209 | { |
| 210 | struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq)); |
| 211 | if (!nvmeq) |
| 212 | return NULL; |
| 213 | memset(nvmeq, 0, sizeof(*nvmeq)); |
| 214 | |
| 215 | nvmeq->cqes = (void *)memalign(4096, NVME_CQ_SIZE(depth)); |
| 216 | if (!nvmeq->cqes) |
| 217 | goto free_nvmeq; |
| 218 | memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth)); |
| 219 | |
| 220 | nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth)); |
| 221 | if (!nvmeq->sq_cmds) |
| 222 | goto free_queue; |
| 223 | memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth)); |
| 224 | |
| 225 | nvmeq->dev = dev; |
| 226 | |
| 227 | nvmeq->cq_head = 0; |
| 228 | nvmeq->cq_phase = 1; |
| 229 | nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; |
| 230 | nvmeq->q_depth = depth; |
| 231 | nvmeq->qid = qid; |
| 232 | dev->queue_count++; |
| 233 | dev->queues[qid] = nvmeq; |
| 234 | |
| 235 | return nvmeq; |
| 236 | |
| 237 | free_queue: |
| 238 | free((void *)nvmeq->cqes); |
| 239 | free_nvmeq: |
| 240 | free(nvmeq); |
| 241 | |
| 242 | return NULL; |
| 243 | } |
| 244 | |
| 245 | static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) |
| 246 | { |
| 247 | struct nvme_command c; |
| 248 | |
| 249 | memset(&c, 0, sizeof(c)); |
| 250 | c.delete_queue.opcode = opcode; |
| 251 | c.delete_queue.qid = cpu_to_le16(id); |
| 252 | |
| 253 | return nvme_submit_admin_cmd(dev, &c, NULL); |
| 254 | } |
| 255 | |
| 256 | static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid) |
| 257 | { |
| 258 | return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid); |
| 259 | } |
| 260 | |
| 261 | static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid) |
| 262 | { |
| 263 | return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid); |
| 264 | } |
| 265 | |
| 266 | static int nvme_enable_ctrl(struct nvme_dev *dev) |
| 267 | { |
| 268 | dev->ctrl_config &= ~NVME_CC_SHN_MASK; |
| 269 | dev->ctrl_config |= NVME_CC_ENABLE; |
| 270 | writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc); |
| 271 | |
| 272 | return nvme_wait_ready(dev, true); |
| 273 | } |
| 274 | |
| 275 | static int nvme_disable_ctrl(struct nvme_dev *dev) |
| 276 | { |
| 277 | dev->ctrl_config &= ~NVME_CC_SHN_MASK; |
| 278 | dev->ctrl_config &= ~NVME_CC_ENABLE; |
| 279 | writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc); |
| 280 | |
| 281 | return nvme_wait_ready(dev, false); |
| 282 | } |
| 283 | |
| 284 | static void nvme_free_queue(struct nvme_queue *nvmeq) |
| 285 | { |
| 286 | free((void *)nvmeq->cqes); |
| 287 | free(nvmeq->sq_cmds); |
| 288 | free(nvmeq); |
| 289 | } |
| 290 | |
| 291 | static void nvme_free_queues(struct nvme_dev *dev, int lowest) |
| 292 | { |
| 293 | int i; |
| 294 | |
| 295 | for (i = dev->queue_count - 1; i >= lowest; i--) { |
| 296 | struct nvme_queue *nvmeq = dev->queues[i]; |
| 297 | dev->queue_count--; |
| 298 | dev->queues[i] = NULL; |
| 299 | nvme_free_queue(nvmeq); |
| 300 | } |
| 301 | } |
| 302 | |
| 303 | static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) |
| 304 | { |
| 305 | struct nvme_dev *dev = nvmeq->dev; |
| 306 | |
| 307 | nvmeq->sq_tail = 0; |
| 308 | nvmeq->cq_head = 0; |
| 309 | nvmeq->cq_phase = 1; |
| 310 | nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; |
| 311 | memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth)); |
| 312 | flush_dcache_range((ulong)nvmeq->cqes, |
| 313 | (ulong)nvmeq->cqes + NVME_CQ_SIZE(nvmeq->q_depth)); |
| 314 | dev->online_queues++; |
| 315 | } |
| 316 | |
| 317 | static int nvme_configure_admin_queue(struct nvme_dev *dev) |
| 318 | { |
| 319 | int result; |
| 320 | u32 aqa; |
| 321 | u64 cap = nvme_readq(&dev->bar->cap); |
| 322 | struct nvme_queue *nvmeq; |
| 323 | /* most architectures use 4KB as the page size */ |
| 324 | unsigned page_shift = 12; |
| 325 | unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12; |
| 326 | unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12; |
| 327 | |
| 328 | if (page_shift < dev_page_min) { |
| 329 | debug("Device minimum page size (%u) too large for host (%u)\n", |
| 330 | 1 << dev_page_min, 1 << page_shift); |
| 331 | return -ENODEV; |
| 332 | } |
| 333 | |
| 334 | if (page_shift > dev_page_max) { |
| 335 | debug("Device maximum page size (%u) smaller than host (%u)\n", |
| 336 | 1 << dev_page_max, 1 << page_shift); |
| 337 | page_shift = dev_page_max; |
| 338 | } |
| 339 | |
| 340 | result = nvme_disable_ctrl(dev); |
| 341 | if (result < 0) |
| 342 | return result; |
| 343 | |
| 344 | nvmeq = dev->queues[0]; |
| 345 | if (!nvmeq) { |
| 346 | nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); |
| 347 | if (!nvmeq) |
| 348 | return -ENOMEM; |
| 349 | } |
| 350 | |
| 351 | aqa = nvmeq->q_depth - 1; |
| 352 | aqa |= aqa << 16; |
| 353 | aqa |= aqa << 16; |
| 354 | |
| 355 | dev->page_size = 1 << page_shift; |
| 356 | |
| 357 | dev->ctrl_config = NVME_CC_CSS_NVM; |
| 358 | dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; |
| 359 | dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; |
| 360 | dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; |
| 361 | |
| 362 | writel(aqa, &dev->bar->aqa); |
| 363 | nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq); |
| 364 | nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq); |
| 365 | |
| 366 | result = nvme_enable_ctrl(dev); |
| 367 | if (result) |
| 368 | goto free_nvmeq; |
| 369 | |
| 370 | nvmeq->cq_vector = 0; |
| 371 | |
| 372 | nvme_init_queue(dev->queues[0], 0); |
| 373 | |
| 374 | return result; |
| 375 | |
| 376 | free_nvmeq: |
| 377 | nvme_free_queues(dev, 0); |
| 378 | |
| 379 | return result; |
| 380 | } |
| 381 | |
| 382 | static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid, |
| 383 | struct nvme_queue *nvmeq) |
| 384 | { |
| 385 | struct nvme_command c; |
| 386 | int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; |
| 387 | |
| 388 | memset(&c, 0, sizeof(c)); |
| 389 | c.create_cq.opcode = nvme_admin_create_cq; |
| 390 | c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes); |
| 391 | c.create_cq.cqid = cpu_to_le16(qid); |
| 392 | c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); |
| 393 | c.create_cq.cq_flags = cpu_to_le16(flags); |
| 394 | c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); |
| 395 | |
| 396 | return nvme_submit_admin_cmd(dev, &c, NULL); |
| 397 | } |
| 398 | |
| 399 | static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid, |
| 400 | struct nvme_queue *nvmeq) |
| 401 | { |
| 402 | struct nvme_command c; |
| 403 | int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; |
| 404 | |
| 405 | memset(&c, 0, sizeof(c)); |
| 406 | c.create_sq.opcode = nvme_admin_create_sq; |
| 407 | c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds); |
| 408 | c.create_sq.sqid = cpu_to_le16(qid); |
| 409 | c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); |
| 410 | c.create_sq.sq_flags = cpu_to_le16(flags); |
| 411 | c.create_sq.cqid = cpu_to_le16(qid); |
| 412 | |
| 413 | return nvme_submit_admin_cmd(dev, &c, NULL); |
| 414 | } |
| 415 | |
| 416 | int nvme_identify(struct nvme_dev *dev, unsigned nsid, |
| 417 | unsigned cns, dma_addr_t dma_addr) |
| 418 | { |
| 419 | struct nvme_command c; |
| 420 | u32 page_size = dev->page_size; |
| 421 | int offset = dma_addr & (page_size - 1); |
| 422 | int length = sizeof(struct nvme_id_ctrl); |
| 423 | |
| 424 | memset(&c, 0, sizeof(c)); |
| 425 | c.identify.opcode = nvme_admin_identify; |
| 426 | c.identify.nsid = cpu_to_le32(nsid); |
| 427 | c.identify.prp1 = cpu_to_le64(dma_addr); |
| 428 | |
| 429 | length -= (page_size - offset); |
| 430 | if (length <= 0) { |
| 431 | c.identify.prp2 = 0; |
| 432 | } else { |
| 433 | dma_addr += (page_size - offset); |
| 434 | c.identify.prp2 = dma_addr; |
| 435 | } |
| 436 | |
| 437 | c.identify.cns = cpu_to_le32(cns); |
| 438 | |
| 439 | return nvme_submit_admin_cmd(dev, &c, NULL); |
| 440 | } |
| 441 | |
| 442 | int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid, |
| 443 | dma_addr_t dma_addr, u32 *result) |
| 444 | { |
| 445 | struct nvme_command c; |
| 446 | |
| 447 | memset(&c, 0, sizeof(c)); |
| 448 | c.features.opcode = nvme_admin_get_features; |
| 449 | c.features.nsid = cpu_to_le32(nsid); |
| 450 | c.features.prp1 = cpu_to_le64(dma_addr); |
| 451 | c.features.fid = cpu_to_le32(fid); |
| 452 | |
| 453 | return nvme_submit_admin_cmd(dev, &c, result); |
| 454 | } |
| 455 | |
| 456 | int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11, |
| 457 | dma_addr_t dma_addr, u32 *result) |
| 458 | { |
| 459 | struct nvme_command c; |
| 460 | |
| 461 | memset(&c, 0, sizeof(c)); |
| 462 | c.features.opcode = nvme_admin_set_features; |
| 463 | c.features.prp1 = cpu_to_le64(dma_addr); |
| 464 | c.features.fid = cpu_to_le32(fid); |
| 465 | c.features.dword11 = cpu_to_le32(dword11); |
| 466 | |
| 467 | return nvme_submit_admin_cmd(dev, &c, result); |
| 468 | } |
| 469 | |
| 470 | static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) |
| 471 | { |
| 472 | struct nvme_dev *dev = nvmeq->dev; |
| 473 | int result; |
| 474 | |
| 475 | nvmeq->cq_vector = qid - 1; |
| 476 | result = nvme_alloc_cq(dev, qid, nvmeq); |
| 477 | if (result < 0) |
| 478 | goto release_cq; |
| 479 | |
| 480 | result = nvme_alloc_sq(dev, qid, nvmeq); |
| 481 | if (result < 0) |
| 482 | goto release_sq; |
| 483 | |
| 484 | nvme_init_queue(nvmeq, qid); |
| 485 | |
| 486 | return result; |
| 487 | |
| 488 | release_sq: |
| 489 | nvme_delete_sq(dev, qid); |
| 490 | release_cq: |
| 491 | nvme_delete_cq(dev, qid); |
| 492 | |
| 493 | return result; |
| 494 | } |
| 495 | |
| 496 | static int nvme_set_queue_count(struct nvme_dev *dev, int count) |
| 497 | { |
| 498 | int status; |
| 499 | u32 result; |
| 500 | u32 q_count = (count - 1) | ((count - 1) << 16); |
| 501 | |
| 502 | status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, |
| 503 | q_count, 0, &result); |
| 504 | |
| 505 | if (status < 0) |
| 506 | return status; |
| 507 | if (status > 1) |
| 508 | return 0; |
| 509 | |
| 510 | return min(result & 0xffff, result >> 16) + 1; |
| 511 | } |
| 512 | |
| 513 | static void nvme_create_io_queues(struct nvme_dev *dev) |
| 514 | { |
| 515 | unsigned int i; |
| 516 | |
| 517 | for (i = dev->queue_count; i <= dev->max_qid; i++) |
| 518 | if (!nvme_alloc_queue(dev, i, dev->q_depth)) |
| 519 | break; |
| 520 | |
| 521 | for (i = dev->online_queues; i <= dev->queue_count - 1; i++) |
| 522 | if (nvme_create_queue(dev->queues[i], i)) |
| 523 | break; |
| 524 | } |
| 525 | |
| 526 | static int nvme_setup_io_queues(struct nvme_dev *dev) |
| 527 | { |
| 528 | int nr_io_queues; |
| 529 | int result; |
| 530 | |
| 531 | nr_io_queues = 1; |
| 532 | result = nvme_set_queue_count(dev, nr_io_queues); |
| 533 | if (result <= 0) |
| 534 | return result; |
| 535 | |
| 536 | if (result < nr_io_queues) |
| 537 | nr_io_queues = result; |
| 538 | |
| 539 | dev->max_qid = nr_io_queues; |
| 540 | |
| 541 | /* Free previously allocated queues */ |
| 542 | nvme_free_queues(dev, nr_io_queues + 1); |
| 543 | nvme_create_io_queues(dev); |
| 544 | |
| 545 | return 0; |
| 546 | } |
| 547 | |
| 548 | static int nvme_get_info_from_identify(struct nvme_dev *dev) |
| 549 | { |
| 550 | u16 vendor, device; |
| 551 | struct nvme_id_ctrl buf, *ctrl = &buf; |
| 552 | int ret; |
| 553 | int shift = NVME_CAP_MPSMIN(nvme_readq(&dev->bar->cap)) + 12; |
| 554 | |
| 555 | ret = nvme_identify(dev, 0, 1, (dma_addr_t)ctrl); |
| 556 | if (ret) |
| 557 | return -EIO; |
| 558 | |
| 559 | dev->nn = le32_to_cpu(ctrl->nn); |
| 560 | dev->vwc = ctrl->vwc; |
| 561 | memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn)); |
| 562 | memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn)); |
| 563 | memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr)); |
| 564 | if (ctrl->mdts) |
| 565 | dev->max_transfer_shift = (ctrl->mdts + shift); |
Bin Meng | ab1c160 | 2017-08-03 02:31:02 -0700 | [diff] [blame] | 566 | else { |
| 567 | /* |
| 568 | * Maximum Data Transfer Size (MDTS) field indicates the maximum |
| 569 | * data transfer size between the host and the controller. The |
| 570 | * host should not submit a command that exceeds this transfer |
| 571 | * size. The value is in units of the minimum memory page size |
| 572 | * and is reported as a power of two (2^n). |
| 573 | * |
| 574 | * The spec also says: a value of 0h indicates no restrictions |
| 575 | * on transfer size. But in nvme_blk_read/write() below we have |
| 576 | * the following algorithm for maximum number of logic blocks |
| 577 | * per transfer: |
| 578 | * |
| 579 | * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift); |
| 580 | * |
| 581 | * In order for lbas not to overflow, the maximum number is 15 |
| 582 | * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift). |
| 583 | * Let's use 20 which provides 1MB size. |
| 584 | */ |
| 585 | dev->max_transfer_shift = 20; |
| 586 | } |
Zhikang Zhang | 145b88f | 2017-08-03 02:30:57 -0700 | [diff] [blame] | 587 | |
| 588 | /* Apply quirk stuff */ |
| 589 | dm_pci_read_config16(dev->pdev, PCI_VENDOR_ID, &vendor); |
| 590 | dm_pci_read_config16(dev->pdev, PCI_DEVICE_ID, &device); |
| 591 | if ((vendor == PCI_VENDOR_ID_INTEL) && |
| 592 | (device == 0x0953) && ctrl->vs[3]) { |
| 593 | unsigned int max_transfer_shift; |
| 594 | dev->stripe_size = (ctrl->vs[3] + shift); |
| 595 | max_transfer_shift = (ctrl->vs[3] + 18); |
| 596 | if (dev->max_transfer_shift) { |
| 597 | dev->max_transfer_shift = min(max_transfer_shift, |
| 598 | dev->max_transfer_shift); |
| 599 | } else { |
| 600 | dev->max_transfer_shift = max_transfer_shift; |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | return 0; |
| 605 | } |
| 606 | |
| 607 | int nvme_scan_namespace(void) |
| 608 | { |
| 609 | struct uclass *uc; |
| 610 | struct udevice *dev; |
| 611 | int ret; |
| 612 | |
| 613 | ret = uclass_get(UCLASS_NVME, &uc); |
| 614 | if (ret) |
| 615 | return ret; |
| 616 | |
| 617 | uclass_foreach_dev(dev, uc) { |
| 618 | ret = device_probe(dev); |
| 619 | if (ret) |
| 620 | return ret; |
| 621 | } |
| 622 | |
| 623 | return 0; |
| 624 | } |
| 625 | |
| 626 | static int nvme_blk_probe(struct udevice *udev) |
| 627 | { |
| 628 | struct nvme_dev *ndev = dev_get_priv(udev->parent); |
| 629 | struct blk_desc *desc = dev_get_uclass_platdata(udev); |
| 630 | struct nvme_ns *ns = dev_get_priv(udev); |
| 631 | u8 flbas; |
| 632 | u16 vendor; |
| 633 | struct nvme_id_ns buf, *id = &buf; |
| 634 | |
| 635 | memset(ns, 0, sizeof(*ns)); |
| 636 | ns->dev = ndev; |
| 637 | ns->ns_id = desc->devnum - ndev->blk_dev_start + 1; |
| 638 | if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)id)) |
| 639 | return -EIO; |
| 640 | |
| 641 | flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK; |
| 642 | ns->flbas = flbas; |
| 643 | ns->lba_shift = id->lbaf[flbas].ds; |
Jon Nettleton | e15555a | 2017-08-03 02:31:01 -0700 | [diff] [blame] | 644 | ns->mode_select_num_blocks = le64_to_cpu(id->nsze); |
Zhikang Zhang | 145b88f | 2017-08-03 02:30:57 -0700 | [diff] [blame] | 645 | ns->mode_select_block_len = 1 << ns->lba_shift; |
| 646 | list_add(&ns->list, &ndev->namespaces); |
| 647 | |
| 648 | desc->lba = ns->mode_select_num_blocks; |
| 649 | desc->log2blksz = ns->lba_shift; |
| 650 | desc->blksz = 1 << ns->lba_shift; |
| 651 | desc->bdev = udev; |
| 652 | dm_pci_read_config16(ndev->pdev, PCI_VENDOR_ID, &vendor); |
| 653 | sprintf(desc->vendor, "0x%.4x", vendor); |
| 654 | memcpy(desc->product, ndev->serial, sizeof(ndev->serial)); |
| 655 | memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev)); |
| 656 | part_init(desc); |
| 657 | |
| 658 | return 0; |
| 659 | } |
| 660 | |
| 661 | static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr, |
| 662 | lbaint_t blkcnt, void *buffer) |
| 663 | { |
| 664 | struct nvme_ns *ns = dev_get_priv(udev); |
| 665 | struct nvme_dev *dev = ns->dev; |
| 666 | struct nvme_command c; |
| 667 | struct blk_desc *desc = dev_get_uclass_platdata(udev); |
| 668 | int status; |
| 669 | u64 prp2; |
| 670 | u64 total_len = blkcnt << desc->log2blksz; |
| 671 | u64 temp_len = total_len; |
| 672 | |
| 673 | u64 slba = blknr; |
| 674 | u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift); |
| 675 | u64 total_lbas = blkcnt; |
| 676 | |
| 677 | c.rw.opcode = nvme_cmd_read; |
| 678 | c.rw.flags = 0; |
| 679 | c.rw.nsid = cpu_to_le32(ns->ns_id); |
| 680 | c.rw.control = 0; |
| 681 | c.rw.dsmgmt = 0; |
| 682 | c.rw.reftag = 0; |
| 683 | c.rw.apptag = 0; |
| 684 | c.rw.appmask = 0; |
| 685 | c.rw.metadata = 0; |
| 686 | |
| 687 | while (total_lbas) { |
| 688 | if (total_lbas < lbas) { |
| 689 | lbas = (u16)total_lbas; |
| 690 | total_lbas = 0; |
| 691 | } else { |
| 692 | total_lbas -= lbas; |
| 693 | } |
| 694 | |
| 695 | if (nvme_setup_prps |
| 696 | (dev, &prp2, lbas << ns->lba_shift, (ulong)buffer)) |
| 697 | return -EIO; |
| 698 | c.rw.slba = cpu_to_le64(slba); |
| 699 | slba += lbas; |
| 700 | c.rw.length = cpu_to_le16(lbas - 1); |
| 701 | c.rw.prp1 = cpu_to_le64((ulong)buffer); |
| 702 | c.rw.prp2 = cpu_to_le64(prp2); |
| 703 | status = nvme_submit_sync_cmd(dev->queues[1], |
| 704 | &c, NULL, IO_TIMEOUT); |
| 705 | if (status) |
| 706 | break; |
| 707 | temp_len -= lbas << ns->lba_shift; |
| 708 | buffer += lbas << ns->lba_shift; |
| 709 | } |
| 710 | |
| 711 | return (total_len - temp_len) >> desc->log2blksz; |
| 712 | } |
| 713 | |
| 714 | static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr, |
| 715 | lbaint_t blkcnt, const void *buffer) |
| 716 | { |
| 717 | struct nvme_ns *ns = dev_get_priv(udev); |
| 718 | struct nvme_dev *dev = ns->dev; |
| 719 | struct nvme_command c; |
| 720 | struct blk_desc *desc = dev_get_uclass_platdata(udev); |
| 721 | int status; |
| 722 | u64 prp2; |
| 723 | u64 total_len = blkcnt << desc->log2blksz; |
| 724 | u64 temp_len = total_len; |
| 725 | |
| 726 | u64 slba = blknr; |
| 727 | u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift); |
| 728 | u64 total_lbas = blkcnt; |
| 729 | |
| 730 | c.rw.opcode = nvme_cmd_write; |
| 731 | c.rw.flags = 0; |
| 732 | c.rw.nsid = cpu_to_le32(ns->ns_id); |
| 733 | c.rw.control = 0; |
| 734 | c.rw.dsmgmt = 0; |
| 735 | c.rw.reftag = 0; |
| 736 | c.rw.apptag = 0; |
| 737 | c.rw.appmask = 0; |
| 738 | c.rw.metadata = 0; |
| 739 | |
| 740 | while (total_lbas) { |
| 741 | if (total_lbas < lbas) { |
| 742 | lbas = (u16)total_lbas; |
| 743 | total_lbas = 0; |
| 744 | } else { |
| 745 | total_lbas -= lbas; |
| 746 | } |
| 747 | |
| 748 | if (nvme_setup_prps |
| 749 | (dev, &prp2, lbas << ns->lba_shift, (ulong)buffer)) |
| 750 | return -EIO; |
| 751 | c.rw.slba = cpu_to_le64(slba); |
| 752 | slba += lbas; |
| 753 | c.rw.length = cpu_to_le16(lbas - 1); |
| 754 | c.rw.prp1 = cpu_to_le64((ulong)buffer); |
| 755 | c.rw.prp2 = cpu_to_le64(prp2); |
| 756 | status = nvme_submit_sync_cmd(dev->queues[1], |
| 757 | &c, NULL, IO_TIMEOUT); |
| 758 | if (status) |
| 759 | break; |
| 760 | temp_len -= lbas << ns->lba_shift; |
| 761 | buffer += lbas << ns->lba_shift; |
| 762 | } |
| 763 | |
| 764 | return (total_len - temp_len) >> desc->log2blksz; |
| 765 | } |
| 766 | |
| 767 | static const struct blk_ops nvme_blk_ops = { |
| 768 | .read = nvme_blk_read, |
| 769 | .write = nvme_blk_write, |
| 770 | }; |
| 771 | |
| 772 | U_BOOT_DRIVER(nvme_blk) = { |
| 773 | .name = "nvme-blk", |
| 774 | .id = UCLASS_BLK, |
| 775 | .probe = nvme_blk_probe, |
| 776 | .ops = &nvme_blk_ops, |
| 777 | .priv_auto_alloc_size = sizeof(struct nvme_ns), |
| 778 | }; |
| 779 | |
| 780 | static int nvme_bind(struct udevice *udev) |
| 781 | { |
| 782 | char name[20]; |
| 783 | sprintf(name, "nvme#%d", nvme_info->ndev_num++); |
| 784 | |
| 785 | return device_set_name(udev, name); |
| 786 | } |
| 787 | |
| 788 | static int nvme_probe(struct udevice *udev) |
| 789 | { |
| 790 | int ret; |
| 791 | struct nvme_dev *ndev = dev_get_priv(udev); |
| 792 | u64 cap; |
| 793 | |
| 794 | ndev->pdev = pci_get_controller(udev); |
| 795 | ndev->instance = trailing_strtol(udev->name); |
| 796 | |
| 797 | INIT_LIST_HEAD(&ndev->namespaces); |
| 798 | ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0, |
| 799 | PCI_REGION_MEM); |
| 800 | if (readl(&ndev->bar->csts) == -1) { |
| 801 | ret = -ENODEV; |
| 802 | printf("Error: %s: Out of memory!\n", udev->name); |
| 803 | goto free_nvme; |
| 804 | } |
| 805 | |
| 806 | ndev->queues = malloc(2 * sizeof(struct nvme_queue)); |
| 807 | if (!ndev->queues) { |
| 808 | ret = -ENOMEM; |
| 809 | printf("Error: %s: Out of memory!\n", udev->name); |
| 810 | goto free_nvme; |
| 811 | } |
| 812 | memset(ndev->queues, 0, sizeof(2 * sizeof(struct nvme_queue))); |
| 813 | |
| 814 | ndev->prp_pool = malloc(MAX_PRP_POOL); |
| 815 | if (!ndev->prp_pool) { |
| 816 | ret = -ENOMEM; |
| 817 | printf("Error: %s: Out of memory!\n", udev->name); |
| 818 | goto free_nvme; |
| 819 | } |
| 820 | ndev->prp_entry_num = MAX_PRP_POOL >> 3; |
| 821 | |
| 822 | cap = nvme_readq(&ndev->bar->cap); |
| 823 | ndev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH); |
| 824 | ndev->db_stride = 1 << NVME_CAP_STRIDE(cap); |
| 825 | ndev->dbs = ((void __iomem *)ndev->bar) + 4096; |
| 826 | |
| 827 | ret = nvme_configure_admin_queue(ndev); |
| 828 | if (ret) |
| 829 | goto free_queue; |
| 830 | |
| 831 | ret = nvme_setup_io_queues(ndev); |
| 832 | if (ret) |
| 833 | goto free_queue; |
| 834 | |
| 835 | nvme_get_info_from_identify(ndev); |
| 836 | ndev->blk_dev_start = nvme_info->ns_num; |
| 837 | list_add(&ndev->node, &nvme_info->dev_list); |
| 838 | |
| 839 | return 0; |
| 840 | |
| 841 | free_queue: |
| 842 | free((void *)ndev->queues); |
| 843 | free_nvme: |
| 844 | return ret; |
| 845 | } |
| 846 | |
| 847 | U_BOOT_DRIVER(nvme) = { |
| 848 | .name = "nvme", |
| 849 | .id = UCLASS_NVME, |
| 850 | .bind = nvme_bind, |
| 851 | .probe = nvme_probe, |
| 852 | .priv_auto_alloc_size = sizeof(struct nvme_dev), |
| 853 | }; |
| 854 | |
| 855 | struct pci_device_id nvme_supported[] = { |
Jon Nettleton | 7435481 | 2017-08-03 02:31:00 -0700 | [diff] [blame] | 856 | { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) }, |
Zhikang Zhang | 145b88f | 2017-08-03 02:30:57 -0700 | [diff] [blame] | 857 | {} |
| 858 | }; |
| 859 | |
| 860 | U_BOOT_PCI_DEVICE(nvme, nvme_supported); |