blob: fbd26cc92b0590e852d8787dde6bd2ca90093e10 [file] [log] [blame]
Aubrey Li314d22f2007-04-05 18:31:18 +08001/* Copyright (C) 2003-2007 Analog Devices Inc.
Aubrey Li10ebdd92007-03-19 01:24:52 +08002 *
3 * This file is subject to the terms and conditions of the GNU General Public
4 * License.
5 */
Aubrey Li314d22f2007-04-05 18:31:18 +08006
Aubrey Li10ebdd92007-03-19 01:24:52 +08007#define ASSEMBLY
8
9#include <asm/linkage.h>
10#include <asm/cplb.h>
11#include <config.h>
12#include <asm/blackfin.h>
13
14.text
15
16/* This is an external function being called by the user
17 * application through __flush_cache_all. Currently this function
18 * serves the purpose of flushing all the pending writes in
19 * in the instruction cache.
20 */
21
22ENTRY(_flush_instruction_cache)
23 [--SP] = ( R7:6, P5:4 );
24 LINK 12;
25 SP += -12;
26 P5.H = (ICPLB_ADDR0 >> 16);
27 P5.L = (ICPLB_ADDR0 & 0xFFFF);
28 P4.H = (ICPLB_DATA0 >> 16);
29 P4.L = (ICPLB_DATA0 & 0xFFFF);
30 R7 = CPLB_VALID | CPLB_L1_CHBL;
31 R6 = 16;
32inext: R0 = [P5++];
33 R1 = [P4++];
34 [--SP] = RETS;
35 CALL _icplb_flush; /* R0 = page, R1 = data*/
36 RETS = [SP++];
37iskip: R6 += -1;
38 CC = R6;
39 IF CC JUMP inext;
40 SSYNC;
41 SP += 12;
42 UNLINK;
43 ( R7:6, P5:4 ) = [SP++];
44 RTS;
45
46/* This is an internal function to flush all pending
47 * writes in the cache associated with a particular ICPLB.
48 *
49 * R0 - page's start address
50 * R1 - CPLB's data field.
51 */
52
53.align 2
54ENTRY(_icplb_flush)
55 [--SP] = ( R7:0, P5:0 );
56 [--SP] = LC0;
57 [--SP] = LT0;
58 [--SP] = LB0;
59 [--SP] = LC1;
60 [--SP] = LT1;
61 [--SP] = LB1;
62
63 /* If it's a 1K or 4K page, then it's quickest to
64 * just systematically flush all the addresses in
65 * the page, regardless of whether they're in the
66 * cache, or dirty. If it's a 1M or 4M page, there
67 * are too many addresses, and we have to search the
68 * cache for lines corresponding to the page.
69 */
70
71 CC = BITTST(R1, 17); /* 1MB or 4MB */
72 IF !CC JUMP iflush_whole_page;
73
74 /* We're only interested in the page's size, so extract
75 * this from the CPLB (bits 17:16), and scale to give an
76 * offset into the page_size and page_prefix tables.
77 */
78
79 R1 <<= 14;
80 R1 >>= 30;
81 R1 <<= 2;
82
83 /* We can also determine the sub-bank used, because this is
84 * taken from bits 13:12 of the address.
85 */
86
87 R3 = ((12<<8)|2); /* Extraction pattern */
88 nop; /* Anamoly 05000209 */
89 R4 = EXTRACT(R0, R3.L) (Z); /* Extract bits */
90
91 /* Save in extraction pattern for later deposit. */
92 R3.H = R4.L << 0;
93
94 /* So:
95 * R0 = Page start
96 * R1 = Page length (actually, offset into size/prefix tables)
97 * R3 = sub-bank deposit values
98 *
99 * The cache has 2 Ways, and 64 sets, so we iterate through
100 * the sets, accessing the tag for each Way, for our Bank and
101 * sub-bank, looking for dirty, valid tags that match our
102 * address prefix.
103 */
104
105 P5.L = (ITEST_COMMAND & 0xFFFF);
106 P5.H = (ITEST_COMMAND >> 16);
107 P4.L = (ITEST_DATA0 & 0xFFFF);
108 P4.H = (ITEST_DATA0 >> 16);
109
110 P0.L = page_prefix_table;
111 P0.H = page_prefix_table;
112 P1 = R1;
113 R5 = 0; /* Set counter*/
114 P0 = P1 + P0;
115 R4 = [P0]; /* This is the address prefix*/
116
117 /* We're reading (bit 1==0) the tag (bit 2==0), and we
118 * don't care about which double-word, since we're only
119 * fetching tags, so we only have to set Set, Bank,
120 * Sub-bank and Way.
121 */
122
123 P2 = 4;
124 LSETUP (ifs1, ife1) LC1 = P2;
125ifs1: P0 = 32; /* iterate over all sets*/
126 LSETUP (ifs0, ife0) LC0 = P0;
127ifs0: R6 = R5 << 5; /* Combine set*/
128 R6.H = R3.H << 0 ; /* and sub-bank*/
129 [P5] = R6; /* Issue Command*/
130 SSYNC; /* CSYNC will not work here :(*/
131 R7 = [P4]; /* and read Tag.*/
132 CC = BITTST(R7, 0); /* Check if valid*/
133 IF !CC JUMP ifskip; /* and skip if not.*/
134
135 /* Compare against the page address. First, plant bits 13:12
136 * into the tag, since those aren't part of the returned data.
137 */
138
139 R7 = DEPOSIT(R7, R3); /* set 13:12*/
140 R1 = R7 & R4; /* Mask off lower bits*/
141 CC = R1 == R0; /* Compare against page start.*/
142 IF !CC JUMP ifskip; /* Skip it if it doesn't match.*/
143
144 /* Tag address matches against page, so this is an entry
145 * we must flush.
146 */
147
148 R7 >>= 10; /* Mask off the non-address bits*/
149 R7 <<= 10;
150 P3 = R7;
151 IFLUSH [P3]; /* And flush the entry*/
152ifskip:
153ife0: R5 += 1; /* Advance to next Set*/
154ife1: NOP;
155
156ifinished:
157 SSYNC; /* Ensure the data gets out to mem.*/
158
159 /*Finished. Restore context.*/
160 LB1 = [SP++];
161 LT1 = [SP++];
162 LC1 = [SP++];
163 LB0 = [SP++];
164 LT0 = [SP++];
165 LC0 = [SP++];
166 ( R7:0, P5:0 ) = [SP++];
167 RTS;
168
169iflush_whole_page:
170 /* It's a 1K or 4K page, so quicker to just flush the
171 * entire page.
172 */
173
174 P1 = 32; /* For 1K pages*/
175 P2 = P1 << 2; /* For 4K pages*/
176 P0 = R0; /* Start of page*/
177 CC = BITTST(R1, 16); /* Whether 1K or 4K*/
178 IF CC P1 = P2;
179 P1 += -1; /* Unroll one iteration*/
180 SSYNC;
181 IFLUSH [P0++]; /* because CSYNC can't end loops.*/
182 LSETUP (isall, ieall) LC0 = P1;
183isall:IFLUSH [P0++];
184ieall: NOP;
185 SSYNC;
186 JUMP ifinished;
187
188/* This is an external function being called by the user
189 * application through __flush_cache_all. Currently this function
190 * serves the purpose of flushing all the pending writes in
191 * in the data cache.
192 */
193
194ENTRY(_flush_data_cache)
195 [--SP] = ( R7:6, P5:4 );
196 LINK 12;
197 SP += -12;
198 P5.H = (DCPLB_ADDR0 >> 16);
199 P5.L = (DCPLB_ADDR0 & 0xFFFF);
200 P4.H = (DCPLB_DATA0 >> 16);
201 P4.L = (DCPLB_DATA0 & 0xFFFF);
202 R7 = CPLB_VALID | CPLB_L1_CHBL | CPLB_DIRTY (Z);
203 R6 = 16;
204next: R0 = [P5++];
205 R1 = [P4++];
206 CC = BITTST(R1, 14); /* Is it write-through?*/
207 IF CC JUMP skip; /* If so, ignore it.*/
208 R2 = R1 & R7; /* Is it a dirty, cached page?*/
209 CC = R2;
210 IF !CC JUMP skip; /* If not, ignore it.*/
211 [--SP] = RETS;
212 CALL _dcplb_flush; /* R0 = page, R1 = data*/
213 RETS = [SP++];
214skip: R6 += -1;
215 CC = R6;
216 IF CC JUMP next;
217 SSYNC;
218 SP += 12;
219 UNLINK;
220 ( R7:6, P5:4 ) = [SP++];
221 RTS;
222
223/* This is an internal function to flush all pending
224 * writes in the cache associated with a particular DCPLB.
225 *
226 * R0 - page's start address
227 * R1 - CPLB's data field.
228 */
229
230.align 2
231ENTRY(_dcplb_flush)
232 [--SP] = ( R7:0, P5:0 );
233 [--SP] = LC0;
234 [--SP] = LT0;
235 [--SP] = LB0;
236 [--SP] = LC1;
237 [--SP] = LT1;
238 [--SP] = LB1;
239
240 /* If it's a 1K or 4K page, then it's quickest to
241 * just systematically flush all the addresses in
242 * the page, regardless of whether they're in the
243 * cache, or dirty. If it's a 1M or 4M page, there
244 * are too many addresses, and we have to search the
245 * cache for lines corresponding to the page.
246 */
247
248 CC = BITTST(R1, 17); /* 1MB or 4MB */
249 IF !CC JUMP dflush_whole_page;
250
251 /* We're only interested in the page's size, so extract
252 * this from the CPLB (bits 17:16), and scale to give an
253 * offset into the page_size and page_prefix tables.
254 */
255
256 R1 <<= 14;
257 R1 >>= 30;
258 R1 <<= 2;
259
260 /* The page could be mapped into Bank A or Bank B, depending
261 * on (a) whether both banks are configured as cache, and
262 * (b) on whether address bit A[x] is set. x is determined
263 * by DCBS in DMEM_CONTROL
264 */
265
266 R2 = 0; /* Default to Bank A (Bank B would be 1)*/
267
268 P0.L = (DMEM_CONTROL & 0xFFFF);
269 P0.H = (DMEM_CONTROL >> 16);
270
271 R3 = [P0]; /* If Bank B is not enabled as cache*/
272 CC = BITTST(R3, 2); /* then Bank A is our only option.*/
273 IF CC JUMP bank_chosen;
274
275 R4 = 1<<14; /* If DCBS==0, use A[14].*/
276 R5 = R4 << 7; /* If DCBS==1, use A[23];*/
277 CC = BITTST(R3, 4);
278 IF CC R4 = R5; /* R4 now has either bit 14 or bit 23 set.*/
279 R5 = R0 & R4; /* Use it to test the Page address*/
280 CC = R5; /* and if that bit is set, we use Bank B,*/
281 R2 = CC; /* else we use Bank A.*/
282 R2 <<= 23; /* The Bank selection's at posn 23.*/
283
284bank_chosen:
285
286 /* We can also determine the sub-bank used, because this is
287 * taken from bits 13:12 of the address.
288 */
289
290 R3 = ((12<<8)|2); /* Extraction pattern */
291 nop; /*Anamoly 05000209*/
292 R4 = EXTRACT(R0, R3.L) (Z); /* Extract bits*/
293 /* Save in extraction pattern for later deposit.*/
294 R3.H = R4.L << 0;
295
296 /* So:
297 * R0 = Page start
298 * R1 = Page length (actually, offset into size/prefix tables)
299 * R2 = Bank select mask
300 * R3 = sub-bank deposit values
301 *
302 * The cache has 2 Ways, and 64 sets, so we iterate through
303 * the sets, accessing the tag for each Way, for our Bank and
304 * sub-bank, looking for dirty, valid tags that match our
305 * address prefix.
306 */
307
308 P5.L = (DTEST_COMMAND & 0xFFFF);
309 P5.H = (DTEST_COMMAND >> 16);
310 P4.L = (DTEST_DATA0 & 0xFFFF);
311 P4.H = (DTEST_DATA0 >> 16);
312
313 P0.L = page_prefix_table;
314 P0.H = page_prefix_table;
315 P1 = R1;
316 R5 = 0; /* Set counter*/
317 P0 = P1 + P0;
318 R4 = [P0]; /* This is the address prefix*/
319
320
321 /* We're reading (bit 1==0) the tag (bit 2==0), and we
322 * don't care about which double-word, since we're only
323 * fetching tags, so we only have to set Set, Bank,
324 * Sub-bank and Way.
325 */
326
327 P2 = 2;
328 LSETUP (fs1, fe1) LC1 = P2;
329fs1: P0 = 64; /* iterate over all sets*/
330 LSETUP (fs0, fe0) LC0 = P0;
331fs0: R6 = R5 << 5; /* Combine set*/
332 R6.H = R3.H << 0 ; /* and sub-bank*/
333 R6 = R6 | R2; /* and Bank. Leave Way==0 at first.*/
334 BITSET(R6,14);
335 [P5] = R6; /* Issue Command*/
336 SSYNC;
337 R7 = [P4]; /* and read Tag.*/
338 CC = BITTST(R7, 0); /* Check if valid*/
339 IF !CC JUMP fskip; /* and skip if not.*/
340 CC = BITTST(R7, 1); /* Check if dirty*/
341 IF !CC JUMP fskip; /* and skip if not.*/
342
343 /* Compare against the page address. First, plant bits 13:12
344 * into the tag, since those aren't part of the returned data.
345 */
346
347 R7 = DEPOSIT(R7, R3); /* set 13:12*/
348 R1 = R7 & R4; /* Mask off lower bits*/
349 CC = R1 == R0; /* Compare against page start.*/
350 IF !CC JUMP fskip; /* Skip it if it doesn't match.*/
351
352 /* Tag address matches against page, so this is an entry
353 * we must flush.
354 */
355
356 R7 >>= 10; /* Mask off the non-address bits*/
357 R7 <<= 10;
358 P3 = R7;
359 SSYNC;
360 FLUSHINV [P3]; /* And flush the entry*/
361fskip:
362fe0: R5 += 1; /* Advance to next Set*/
363fe1: BITSET(R2, 26); /* Go to next Way.*/
364
365dfinished:
366 SSYNC; /* Ensure the data gets out to mem.*/
367
368 /*Finished. Restore context.*/
369 LB1 = [SP++];
370 LT1 = [SP++];
371 LC1 = [SP++];
372 LB0 = [SP++];
373 LT0 = [SP++];
374 LC0 = [SP++];
375 ( R7:0, P5:0 ) = [SP++];
376 RTS;
377
378dflush_whole_page:
379
380 /* It's a 1K or 4K page, so quicker to just flush the
381 * entire page.
382 */
383
384 P1 = 32; /* For 1K pages*/
385 P2 = P1 << 2; /* For 4K pages*/
386 P0 = R0; /* Start of page*/
387 CC = BITTST(R1, 16); /* Whether 1K or 4K*/
388 IF CC P1 = P2;
389 P1 += -1; /* Unroll one iteration*/
390 SSYNC;
391 FLUSHINV [P0++]; /* because CSYNC can't end loops.*/
392 LSETUP (eall, eall) LC0 = P1;
393eall: FLUSHINV [P0++];
394 SSYNC;
395 JUMP dfinished;
396
397.align 4;
398page_prefix_table:
399.byte4 0xFFFFFC00; /* 1K */
400.byte4 0xFFFFF000; /* 4K */
401.byte4 0xFFF00000; /* 1M */
402.byte4 0xFFC00000; /* 4M */
403.page_prefix_table.end: