blob: 099d51718b987039f5e1c93cfae5686b5e2f28e6 [file] [log] [blame]
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +00001/*
2 *
3 * ZFS filesystem ported to u-boot by
4 * Jorgen Lundman <lundman at lundman.net>
5 *
6 * GRUB -- GRand Unified Bootloader
7 * Copyright (C) 1999,2000,2001,2002,2003,2004
8 * Free Software Foundation, Inc.
9 * Copyright 2004 Sun Microsystems, Inc.
10 *
Wolfgang Denkd79de1d2013-07-08 09:37:19 +020011 * SPDX-License-Identifier: GPL-2.0+
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +000012 */
13
14#include <common.h>
15#include <malloc.h>
16#include <linux/stat.h>
17#include <linux/time.h>
18#include <linux/ctype.h>
19#include <asm/byteorder.h>
20#include "zfs_common.h"
Alejandro Mery8b773142012-10-31 08:21:33 +000021#include "div64.h"
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +000022
23block_dev_desc_t *zfs_dev_desc;
24
25/*
26 * The zfs plug-in routines for GRUB are:
27 *
28 * zfs_mount() - locates a valid uberblock of the root pool and reads
29 * in its MOS at the memory address MOS.
30 *
31 * zfs_open() - locates a plain file object by following the MOS
32 * and places its dnode at the memory address DNODE.
33 *
34 * zfs_read() - read in the data blocks pointed by the DNODE.
35 *
36 */
37
38#include <zfs/zfs.h>
39#include <zfs/zio.h>
40#include <zfs/dnode.h>
41#include <zfs/uberblock_impl.h>
42#include <zfs/vdev_impl.h>
43#include <zfs/zio_checksum.h>
44#include <zfs/zap_impl.h>
45#include <zfs/zap_leaf.h>
46#include <zfs/zfs_znode.h>
47#include <zfs/dmu.h>
48#include <zfs/dmu_objset.h>
49#include <zfs/sa_impl.h>
50#include <zfs/dsl_dir.h>
51#include <zfs/dsl_dataset.h>
52
53
54#define ZPOOL_PROP_BOOTFS "bootfs"
55
56
57/*
58 * For nvlist manipulation. (from nvpair.h)
59 */
60#define NV_ENCODE_NATIVE 0
61#define NV_ENCODE_XDR 1
62#define NV_BIG_ENDIAN 0
63#define NV_LITTLE_ENDIAN 1
64#define DATA_TYPE_UINT64 8
65#define DATA_TYPE_STRING 9
66#define DATA_TYPE_NVLIST 19
67#define DATA_TYPE_NVLIST_ARRAY 20
68
69
70/*
71 * Macros to get fields in a bp or DVA.
72 */
73#define P2PHASE(x, align) ((x) & ((align) - 1))
74#define DVA_OFFSET_TO_PHYS_SECTOR(offset) \
75 ((offset + VDEV_LABEL_START_SIZE) >> SPA_MINBLOCKSHIFT)
76
77/*
78 * return x rounded down to an align boundary
79 * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
80 * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
81 * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
82 * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
83 */
84#define P2ALIGN(x, align) ((x) & -(align))
85
86/*
87 * FAT ZAP data structures
88 */
89#define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
90#define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n))))
91#define CHAIN_END 0xffff /* end of the chunk chain */
92
93/*
94 * The amount of space within the chunk available for the array is:
95 * chunk size - space for type (1) - space for next pointer (2)
96 */
97#define ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3)
98
99#define ZAP_LEAF_HASH_SHIFT(bs) (bs - 5)
100#define ZAP_LEAF_HASH_NUMENTRIES(bs) (1 << ZAP_LEAF_HASH_SHIFT(bs))
101#define LEAF_HASH(bs, h) \
102 ((ZAP_LEAF_HASH_NUMENTRIES(bs)-1) & \
103 ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(bs)-l->l_hdr.lh_prefix_len)))
104
105/*
106 * The amount of space available for chunks is:
107 * block size shift - hash entry size (2) * number of hash
108 * entries - header space (2*chunksize)
109 */
110#define ZAP_LEAF_NUMCHUNKS(bs) \
111 (((1<<bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(bs)) / \
112 ZAP_LEAF_CHUNKSIZE - 2)
113
114/*
115 * The chunks start immediately after the hash table. The end of the
116 * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a
117 * chunk_t.
118 */
119#define ZAP_LEAF_CHUNK(l, bs, idx) \
120 ((zap_leaf_chunk_t *)(l->l_hash + ZAP_LEAF_HASH_NUMENTRIES(bs)))[idx]
121#define ZAP_LEAF_ENTRY(l, bs, idx) (&ZAP_LEAF_CHUNK(l, bs, idx).l_entry)
122
123
124/*
125 * Decompression Entry - lzjb
126 */
127#ifndef NBBY
128#define NBBY 8
129#endif
130
131
132
133typedef int zfs_decomp_func_t(void *s_start, void *d_start,
134 uint32_t s_len, uint32_t d_len);
135typedef struct decomp_entry {
136 char *name;
137 zfs_decomp_func_t *decomp_func;
138} decomp_entry_t;
139
140typedef struct dnode_end {
141 dnode_phys_t dn;
142 zfs_endian_t endian;
143} dnode_end_t;
144
145struct zfs_data {
146 /* cache for a file block of the currently zfs_open()-ed file */
147 char *file_buf;
148 uint64_t file_start;
149 uint64_t file_end;
150
151 /* XXX: ashift is per vdev, not per pool. We currently only ever touch
152 * a single vdev, but when/if raid-z or stripes are supported, this
153 * may need revision.
154 */
155 uint64_t vdev_ashift;
156 uint64_t label_txg;
157 uint64_t pool_guid;
158
159 /* cache for a dnode block */
160 dnode_phys_t *dnode_buf;
161 dnode_phys_t *dnode_mdn;
162 uint64_t dnode_start;
163 uint64_t dnode_end;
164 zfs_endian_t dnode_endian;
165
166 uberblock_t current_uberblock;
167
168 dnode_end_t mos;
169 dnode_end_t mdn;
170 dnode_end_t dnode;
171
172 uint64_t vdev_phys_sector;
173
174 int (*userhook)(const char *, const struct zfs_dirhook_info *);
175 struct zfs_dirhook_info *dirinfo;
176
177};
178
179
180
181
182static int
183zlib_decompress(void *s, void *d,
184 uint32_t slen, uint32_t dlen)
185{
186 if (zlib_decompress(s, d, slen, dlen) < 0)
187 return ZFS_ERR_BAD_FS;
188 return ZFS_ERR_NONE;
189}
190
191static decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] = {
192 {"inherit", NULL}, /* ZIO_COMPRESS_INHERIT */
193 {"on", lzjb_decompress}, /* ZIO_COMPRESS_ON */
194 {"off", NULL}, /* ZIO_COMPRESS_OFF */
195 {"lzjb", lzjb_decompress}, /* ZIO_COMPRESS_LZJB */
196 {"empty", NULL}, /* ZIO_COMPRESS_EMPTY */
197 {"gzip-1", zlib_decompress}, /* ZIO_COMPRESS_GZIP1 */
198 {"gzip-2", zlib_decompress}, /* ZIO_COMPRESS_GZIP2 */
199 {"gzip-3", zlib_decompress}, /* ZIO_COMPRESS_GZIP3 */
200 {"gzip-4", zlib_decompress}, /* ZIO_COMPRESS_GZIP4 */
201 {"gzip-5", zlib_decompress}, /* ZIO_COMPRESS_GZIP5 */
202 {"gzip-6", zlib_decompress}, /* ZIO_COMPRESS_GZIP6 */
203 {"gzip-7", zlib_decompress}, /* ZIO_COMPRESS_GZIP7 */
204 {"gzip-8", zlib_decompress}, /* ZIO_COMPRESS_GZIP8 */
205 {"gzip-9", zlib_decompress}, /* ZIO_COMPRESS_GZIP9 */
206};
207
208
209
210static int zio_read_data(blkptr_t *bp, zfs_endian_t endian,
211 void *buf, struct zfs_data *data);
212
213static int
214zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf,
215 size_t *size, struct zfs_data *data);
216
217/*
218 * Our own version of log2(). Same thing as highbit()-1.
219 */
220static int
221zfs_log2(uint64_t num)
222{
223 int i = 0;
224
225 while (num > 1) {
226 i++;
227 num = num >> 1;
228 }
229
230 return i;
231}
232
233
234/* Checksum Functions */
235static void
236zio_checksum_off(const void *buf __attribute__ ((unused)),
237 uint64_t size __attribute__ ((unused)),
238 zfs_endian_t endian __attribute__ ((unused)),
239 zio_cksum_t *zcp)
240{
241 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
242}
243
244/* Checksum Table and Values */
245static zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
246 {NULL, 0, 0, "inherit"},
247 {NULL, 0, 0, "on"},
248 {zio_checksum_off, 0, 0, "off"},
249 {zio_checksum_SHA256, 1, 1, "label"},
250 {zio_checksum_SHA256, 1, 1, "gang_header"},
251 {NULL, 0, 0, "zilog"},
252 {fletcher_2_endian, 0, 0, "fletcher2"},
253 {fletcher_4_endian, 1, 0, "fletcher4"},
254 {zio_checksum_SHA256, 1, 0, "SHA256"},
255 {NULL, 0, 0, "zilog2"},
256};
257
258/*
259 * zio_checksum_verify: Provides support for checksum verification.
260 *
261 * Fletcher2, Fletcher4, and SHA256 are supported.
262 *
263 */
264static int
265zio_checksum_verify(zio_cksum_t zc, uint32_t checksum,
266 zfs_endian_t endian, char *buf, int size)
267{
268 zio_eck_t *zec = (zio_eck_t *) (buf + size) - 1;
269 zio_checksum_info_t *ci = &zio_checksum_table[checksum];
270 zio_cksum_t actual_cksum, expected_cksum;
271
272 if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func == NULL) {
273 printf("zfs unknown checksum function %d\n", checksum);
274 return ZFS_ERR_NOT_IMPLEMENTED_YET;
275 }
276
277 if (ci->ci_eck) {
278 expected_cksum = zec->zec_cksum;
279 zec->zec_cksum = zc;
280 ci->ci_func(buf, size, endian, &actual_cksum);
281 zec->zec_cksum = expected_cksum;
282 zc = expected_cksum;
283 } else {
284 ci->ci_func(buf, size, endian, &actual_cksum);
285 }
286
287 if ((actual_cksum.zc_word[0] != zc.zc_word[0])
288 || (actual_cksum.zc_word[1] != zc.zc_word[1])
289 || (actual_cksum.zc_word[2] != zc.zc_word[2])
290 || (actual_cksum.zc_word[3] != zc.zc_word[3])) {
291 return ZFS_ERR_BAD_FS;
292 }
293
294 return ZFS_ERR_NONE;
295}
296
297/*
298 * vdev_uberblock_compare takes two uberblock structures and returns an integer
299 * indicating the more recent of the two.
300 * Return Value = 1 if ub2 is more recent
301 * Return Value = -1 if ub1 is more recent
302 * The most recent uberblock is determined using its transaction number and
303 * timestamp. The uberblock with the highest transaction number is
304 * considered "newer". If the transaction numbers of the two blocks match, the
305 * timestamps are compared to determine the "newer" of the two.
306 */
307static int
308vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
309{
310 zfs_endian_t ub1_endian, ub2_endian;
311 if (zfs_to_cpu64(ub1->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC)
312 ub1_endian = LITTLE_ENDIAN;
313 else
314 ub1_endian = BIG_ENDIAN;
315 if (zfs_to_cpu64(ub2->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC)
316 ub2_endian = LITTLE_ENDIAN;
317 else
318 ub2_endian = BIG_ENDIAN;
319
320 if (zfs_to_cpu64(ub1->ub_txg, ub1_endian)
321 < zfs_to_cpu64(ub2->ub_txg, ub2_endian))
322 return -1;
323 if (zfs_to_cpu64(ub1->ub_txg, ub1_endian)
324 > zfs_to_cpu64(ub2->ub_txg, ub2_endian))
325 return 1;
326
327 if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian)
328 < zfs_to_cpu64(ub2->ub_timestamp, ub2_endian))
329 return -1;
330 if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian)
331 > zfs_to_cpu64(ub2->ub_timestamp, ub2_endian))
332 return 1;
333
334 return 0;
335}
336
337/*
338 * Three pieces of information are needed to verify an uberblock: the magic
339 * number, the version number, and the checksum.
340 *
341 * Currently Implemented: version number, magic number, label txg
342 * Need to Implement: checksum
343 *
344 */
345static int
346uberblock_verify(uberblock_t *uber, int offset, struct zfs_data *data)
347{
348 int err;
349 zfs_endian_t endian = UNKNOWN_ENDIAN;
350 zio_cksum_t zc;
351
352 if (uber->ub_txg < data->label_txg) {
353 debug("ignoring partially written label: uber_txg < label_txg %llu %llu\n",
354 uber->ub_txg, data->label_txg);
355 return ZFS_ERR_BAD_FS;
356 }
357
358 if (zfs_to_cpu64(uber->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC
359 && zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) > 0
360 && zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) <= SPA_VERSION)
361 endian = LITTLE_ENDIAN;
362
363 if (zfs_to_cpu64(uber->ub_magic, BIG_ENDIAN) == UBERBLOCK_MAGIC
364 && zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) > 0
365 && zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) <= SPA_VERSION)
366 endian = BIG_ENDIAN;
367
368 if (endian == UNKNOWN_ENDIAN) {
369 printf("invalid uberblock magic\n");
370 return ZFS_ERR_BAD_FS;
371 }
372
373 memset(&zc, 0, sizeof(zc));
374 zc.zc_word[0] = cpu_to_zfs64(offset, endian);
375 err = zio_checksum_verify(zc, ZIO_CHECKSUM_LABEL, endian,
376 (char *) uber, UBERBLOCK_SIZE(data->vdev_ashift));
377
378 if (!err) {
379 /* Check that the data pointed by the rootbp is usable. */
380 void *osp = NULL;
381 size_t ospsize;
382 err = zio_read(&uber->ub_rootbp, endian, &osp, &ospsize, data);
383 free(osp);
384
385 if (!err && ospsize < OBJSET_PHYS_SIZE_V14) {
386 printf("uberblock rootbp points to invalid data\n");
387 return ZFS_ERR_BAD_FS;
388 }
389 }
390
391 return err;
392}
393
394/*
395 * Find the best uberblock.
396 * Return:
397 * Success - Pointer to the best uberblock.
398 * Failure - NULL
399 */
400static uberblock_t *find_bestub(char *ub_array, struct zfs_data *data)
401{
402 const uint64_t sector = data->vdev_phys_sector;
403 uberblock_t *ubbest = NULL;
404 uberblock_t *ubnext;
405 unsigned int i, offset, pickedub = 0;
406 int err = ZFS_ERR_NONE;
407
408 const unsigned int UBCOUNT = UBERBLOCK_COUNT(data->vdev_ashift);
409 const uint64_t UBBYTES = UBERBLOCK_SIZE(data->vdev_ashift);
410
411 for (i = 0; i < UBCOUNT; i++) {
412 ubnext = (uberblock_t *) (i * UBBYTES + ub_array);
413 offset = (sector << SPA_MINBLOCKSHIFT) + VDEV_PHYS_SIZE + (i * UBBYTES);
414
415 err = uberblock_verify(ubnext, offset, data);
416 if (err)
417 continue;
418
419 if (ubbest == NULL || vdev_uberblock_compare(ubnext, ubbest) > 0) {
420 ubbest = ubnext;
421 pickedub = i;
422 }
423 }
424
425 if (ubbest)
426 debug("zfs Found best uberblock at idx %d, txg %llu\n",
427 pickedub, (unsigned long long) ubbest->ub_txg);
428
429 return ubbest;
430}
431
432static inline size_t
433get_psize(blkptr_t *bp, zfs_endian_t endian)
434{
435 return (((zfs_to_cpu64((bp)->blk_prop, endian) >> 16) & 0xffff) + 1)
436 << SPA_MINBLOCKSHIFT;
437}
438
439static uint64_t
440dva_get_offset(dva_t *dva, zfs_endian_t endian)
441{
442 return zfs_to_cpu64((dva)->dva_word[1],
443 endian) << SPA_MINBLOCKSHIFT;
444}
445
446/*
447 * Read a block of data based on the gang block address dva,
448 * and put its data in buf.
449 *
450 */
451static int
452zio_read_gang(blkptr_t *bp, zfs_endian_t endian, dva_t *dva, void *buf,
453 struct zfs_data *data)
454{
455 zio_gbh_phys_t *zio_gb;
456 uint64_t offset, sector;
457 unsigned i;
458 int err;
459 zio_cksum_t zc;
460
461 memset(&zc, 0, sizeof(zc));
462
463 zio_gb = malloc(SPA_GANGBLOCKSIZE);
464 if (!zio_gb)
465 return ZFS_ERR_OUT_OF_MEMORY;
466
467 offset = dva_get_offset(dva, endian);
468 sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
469
470 /* read in the gang block header */
471 err = zfs_devread(sector, 0, SPA_GANGBLOCKSIZE, (char *) zio_gb);
472
473 if (err) {
474 free(zio_gb);
475 return err;
476 }
477
478 /* XXX */
479 /* self checksuming the gang block header */
480 ZIO_SET_CHECKSUM(&zc, DVA_GET_VDEV(dva),
481 dva_get_offset(dva, endian), bp->blk_birth, 0);
482 err = zio_checksum_verify(zc, ZIO_CHECKSUM_GANG_HEADER, endian,
483 (char *) zio_gb, SPA_GANGBLOCKSIZE);
484 if (err) {
485 free(zio_gb);
486 return err;
487 }
488
489 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
490
491 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
492 if (zio_gb->zg_blkptr[i].blk_birth == 0)
493 continue;
494
495 err = zio_read_data(&zio_gb->zg_blkptr[i], endian, buf, data);
496 if (err) {
497 free(zio_gb);
498 return err;
499 }
500 buf = (char *) buf + get_psize(&zio_gb->zg_blkptr[i], endian);
501 }
502 free(zio_gb);
503 return ZFS_ERR_NONE;
504}
505
506/*
507 * Read in a block of raw data to buf.
508 */
509static int
510zio_read_data(blkptr_t *bp, zfs_endian_t endian, void *buf,
511 struct zfs_data *data)
512{
513 int i, psize;
514 int err = ZFS_ERR_NONE;
515
516 psize = get_psize(bp, endian);
517
518 /* pick a good dva from the block pointer */
519 for (i = 0; i < SPA_DVAS_PER_BP; i++) {
520 uint64_t offset, sector;
521
522 if (bp->blk_dva[i].dva_word[0] == 0 && bp->blk_dva[i].dva_word[1] == 0)
523 continue;
524
525 if ((zfs_to_cpu64(bp->blk_dva[i].dva_word[1], endian)>>63) & 1) {
526 err = zio_read_gang(bp, endian, &bp->blk_dva[i], buf, data);
527 } else {
528 /* read in a data block */
529 offset = dva_get_offset(&bp->blk_dva[i], endian);
530 sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
531
532 err = zfs_devread(sector, 0, psize, buf);
533 }
534
535 if (!err) {
536 /*Check the underlying checksum before we rule this DVA as "good"*/
537 uint32_t checkalgo = (zfs_to_cpu64((bp)->blk_prop, endian) >> 40) & 0xff;
538
539 err = zio_checksum_verify(bp->blk_cksum, checkalgo, endian, buf, psize);
540 if (!err)
541 return ZFS_ERR_NONE;
542 }
543
544 /* If read failed or checksum bad, reset the error. Hopefully we've got some more DVA's to try.*/
545 }
546
547 if (!err) {
548 printf("couldn't find a valid DVA\n");
549 err = ZFS_ERR_BAD_FS;
550 }
551
552 return err;
553}
554
555/*
556 * Read in a block of data, verify its checksum, decompress if needed,
557 * and put the uncompressed data in buf.
558 */
559static int
560zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf,
561 size_t *size, struct zfs_data *data)
562{
563 size_t lsize, psize;
564 unsigned int comp;
565 char *compbuf = NULL;
566 int err;
567
568 *buf = NULL;
569
570 comp = (zfs_to_cpu64((bp)->blk_prop, endian)>>32) & 0xff;
571 lsize = (BP_IS_HOLE(bp) ? 0 :
572 (((zfs_to_cpu64((bp)->blk_prop, endian) & 0xffff) + 1)
573 << SPA_MINBLOCKSHIFT));
574 psize = get_psize(bp, endian);
575
576 if (size)
577 *size = lsize;
578
579 if (comp >= ZIO_COMPRESS_FUNCTIONS) {
580 printf("compression algorithm %u not supported\n", (unsigned int) comp);
581 return ZFS_ERR_NOT_IMPLEMENTED_YET;
582 }
583
584 if (comp != ZIO_COMPRESS_OFF && decomp_table[comp].decomp_func == NULL) {
585 printf("compression algorithm %s not supported\n", decomp_table[comp].name);
586 return ZFS_ERR_NOT_IMPLEMENTED_YET;
587 }
588
589 if (comp != ZIO_COMPRESS_OFF) {
590 compbuf = malloc(psize);
591 if (!compbuf)
592 return ZFS_ERR_OUT_OF_MEMORY;
593 } else {
594 compbuf = *buf = malloc(lsize);
595 }
596
597 err = zio_read_data(bp, endian, compbuf, data);
598 if (err) {
599 free(compbuf);
600 *buf = NULL;
601 return err;
602 }
603
604 if (comp != ZIO_COMPRESS_OFF) {
605 *buf = malloc(lsize);
606 if (!*buf) {
607 free(compbuf);
608 return ZFS_ERR_OUT_OF_MEMORY;
609 }
610
611 err = decomp_table[comp].decomp_func(compbuf, *buf, psize, lsize);
612 free(compbuf);
613 if (err) {
614 free(*buf);
615 *buf = NULL;
616 return err;
617 }
618 }
619
620 return ZFS_ERR_NONE;
621}
622
623/*
624 * Get the block from a block id.
625 * push the block onto the stack.
626 *
627 */
628static int
629dmu_read(dnode_end_t *dn, uint64_t blkid, void **buf,
630 zfs_endian_t *endian_out, struct zfs_data *data)
631{
632 int idx, level;
633 blkptr_t *bp_array = dn->dn.dn_blkptr;
634 int epbs = dn->dn.dn_indblkshift - SPA_BLKPTRSHIFT;
635 blkptr_t *bp;
636 void *tmpbuf = 0;
637 zfs_endian_t endian;
638 int err = ZFS_ERR_NONE;
639
640 bp = malloc(sizeof(blkptr_t));
641 if (!bp)
642 return ZFS_ERR_OUT_OF_MEMORY;
643
644 endian = dn->endian;
645 for (level = dn->dn.dn_nlevels - 1; level >= 0; level--) {
646 idx = (blkid >> (epbs * level)) & ((1 << epbs) - 1);
647 *bp = bp_array[idx];
648 if (bp_array != dn->dn.dn_blkptr) {
649 free(bp_array);
650 bp_array = 0;
651 }
652
653 if (BP_IS_HOLE(bp)) {
654 size_t size = zfs_to_cpu16(dn->dn.dn_datablkszsec,
655 dn->endian)
656 << SPA_MINBLOCKSHIFT;
657 *buf = malloc(size);
658 if (*buf) {
659 err = ZFS_ERR_OUT_OF_MEMORY;
660 break;
661 }
662 memset(*buf, 0, size);
663 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
664 break;
665 }
666 if (level == 0) {
667 err = zio_read(bp, endian, buf, 0, data);
668 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
669 break;
670 }
671 err = zio_read(bp, endian, &tmpbuf, 0, data);
672 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
673 if (err)
674 break;
675 bp_array = tmpbuf;
676 }
677 if (bp_array != dn->dn.dn_blkptr)
678 free(bp_array);
679 if (endian_out)
680 *endian_out = endian;
681
682 free(bp);
683 return err;
684}
685
686/*
687 * mzap_lookup: Looks up property described by "name" and returns the value
688 * in "value".
689 */
690static int
691mzap_lookup(mzap_phys_t *zapobj, zfs_endian_t endian,
692 int objsize, char *name, uint64_t * value)
693{
694 int i, chunks;
695 mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
696
697 chunks = objsize / MZAP_ENT_LEN - 1;
698 for (i = 0; i < chunks; i++) {
699 if (strcmp(mzap_ent[i].mze_name, name) == 0) {
700 *value = zfs_to_cpu64(mzap_ent[i].mze_value, endian);
701 return ZFS_ERR_NONE;
702 }
703 }
704
705 printf("couldn't find '%s'\n", name);
706 return ZFS_ERR_FILE_NOT_FOUND;
707}
708
709static int
710mzap_iterate(mzap_phys_t *zapobj, zfs_endian_t endian, int objsize,
711 int (*hook)(const char *name,
712 uint64_t val,
713 struct zfs_data *data),
714 struct zfs_data *data)
715{
716 int i, chunks;
717 mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
718
719 chunks = objsize / MZAP_ENT_LEN - 1;
720 for (i = 0; i < chunks; i++) {
721 if (hook(mzap_ent[i].mze_name,
722 zfs_to_cpu64(mzap_ent[i].mze_value, endian),
723 data))
724 return 1;
725 }
726
727 return 0;
728}
729
730static uint64_t
731zap_hash(uint64_t salt, const char *name)
732{
733 static uint64_t table[256];
734 const uint8_t *cp;
735 uint8_t c;
736 uint64_t crc = salt;
737
738 if (table[128] == 0) {
739 uint64_t *ct;
740 int i, j;
741 for (i = 0; i < 256; i++) {
742 for (ct = table + i, *ct = i, j = 8; j > 0; j--)
743 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
744 }
745 }
746
747 for (cp = (const uint8_t *) name; (c = *cp) != '\0'; cp++)
748 crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF];
749
750 /*
751 * Only use 28 bits, since we need 4 bits in the cookie for the
752 * collision differentiator. We MUST use the high bits, since
753 * those are the onces that we first pay attention to when
754 * chosing the bucket.
755 */
756 crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1);
757
758 return crc;
759}
760
761/*
762 * Only to be used on 8-bit arrays.
763 * array_len is actual len in bytes (not encoded le_value_length).
764 * buf is null-terminated.
765 */
766/* XXX */
767static int
768zap_leaf_array_equal(zap_leaf_phys_t *l, zfs_endian_t endian,
769 int blksft, int chunk, int array_len, const char *buf)
770{
771 int bseen = 0;
772
773 while (bseen < array_len) {
774 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
775 int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
776
777 if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
778 return 0;
779
780 if (memcmp(la->la_array, buf + bseen, toread) != 0)
781 break;
782 chunk = zfs_to_cpu16(la->la_next, endian);
783 bseen += toread;
784 }
785 return (bseen == array_len);
786}
787
788/* XXX */
789static int
790zap_leaf_array_get(zap_leaf_phys_t *l, zfs_endian_t endian, int blksft,
791 int chunk, int array_len, char *buf)
792{
793 int bseen = 0;
794
795 while (bseen < array_len) {
796 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
797 int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
798
799 if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
800 /* Don't use errno because this error is to be ignored. */
801 return ZFS_ERR_BAD_FS;
802
803 memcpy(buf + bseen, la->la_array, toread);
804 chunk = zfs_to_cpu16(la->la_next, endian);
805 bseen += toread;
806 }
807 return ZFS_ERR_NONE;
808}
809
810
811/*
812 * Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the
813 * value for the property "name".
814 *
815 */
816/* XXX */
817static int
818zap_leaf_lookup(zap_leaf_phys_t *l, zfs_endian_t endian,
819 int blksft, uint64_t h,
820 const char *name, uint64_t *value)
821{
822 uint16_t chunk;
823 struct zap_leaf_entry *le;
824
825 /* Verify if this is a valid leaf block */
826 if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) {
827 printf("invalid leaf type\n");
828 return ZFS_ERR_BAD_FS;
829 }
830 if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) {
831 printf("invalid leaf magic\n");
832 return ZFS_ERR_BAD_FS;
833 }
834
835 for (chunk = zfs_to_cpu16(l->l_hash[LEAF_HASH(blksft, h)], endian);
836 chunk != CHAIN_END; chunk = le->le_next) {
837
838 if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) {
839 printf("invalid chunk number\n");
840 return ZFS_ERR_BAD_FS;
841 }
842
843 le = ZAP_LEAF_ENTRY(l, blksft, chunk);
844
845 /* Verify the chunk entry */
846 if (le->le_type != ZAP_CHUNK_ENTRY) {
847 printf("invalid chunk entry\n");
848 return ZFS_ERR_BAD_FS;
849 }
850
851 if (zfs_to_cpu64(le->le_hash, endian) != h)
852 continue;
853
854 if (zap_leaf_array_equal(l, endian, blksft,
855 zfs_to_cpu16(le->le_name_chunk, endian),
856 zfs_to_cpu16(le->le_name_length, endian),
857 name)) {
858 struct zap_leaf_array *la;
859
860 if (le->le_int_size != 8 || le->le_value_length != 1) {
861 printf("invalid leaf chunk entry\n");
862 return ZFS_ERR_BAD_FS;
863 }
864 /* get the uint64_t property value */
865 la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array;
866
867 *value = be64_to_cpu(la->la_array64);
868
869 return ZFS_ERR_NONE;
870 }
871 }
872
873 printf("couldn't find '%s'\n", name);
874 return ZFS_ERR_FILE_NOT_FOUND;
875}
876
877
878/* Verify if this is a fat zap header block */
879static int
880zap_verify(zap_phys_t *zap)
881{
882 if (zap->zap_magic != (uint64_t) ZAP_MAGIC) {
883 printf("bad ZAP magic\n");
884 return ZFS_ERR_BAD_FS;
885 }
886
887 if (zap->zap_flags != 0) {
888 printf("bad ZAP flags\n");
889 return ZFS_ERR_BAD_FS;
890 }
891
892 if (zap->zap_salt == 0) {
893 printf("bad ZAP salt\n");
894 return ZFS_ERR_BAD_FS;
895 }
896
897 return ZFS_ERR_NONE;
898}
899
900/*
901 * Fat ZAP lookup
902 *
903 */
904/* XXX */
905static int
906fzap_lookup(dnode_end_t *zap_dnode, zap_phys_t *zap,
907 char *name, uint64_t *value, struct zfs_data *data)
908{
909 void *l;
910 uint64_t hash, idx, blkid;
911 int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
912 zap_dnode->endian) << DNODE_SHIFT);
913 int err;
914 zfs_endian_t leafendian;
915
916 err = zap_verify(zap);
917 if (err)
918 return err;
919
920 hash = zap_hash(zap->zap_salt, name);
921
922 /* get block id from index */
923 if (zap->zap_ptrtbl.zt_numblks != 0) {
924 printf("external pointer tables not supported\n");
925 return ZFS_ERR_NOT_IMPLEMENTED_YET;
926 }
927 idx = ZAP_HASH_IDX(hash, zap->zap_ptrtbl.zt_shift);
928 blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))];
929
930 /* Get the leaf block */
931 if ((1U << blksft) < sizeof(zap_leaf_phys_t)) {
932 printf("ZAP leaf is too small\n");
933 return ZFS_ERR_BAD_FS;
934 }
935 err = dmu_read(zap_dnode, blkid, &l, &leafendian, data);
936 if (err)
937 return err;
938
939 err = zap_leaf_lookup(l, leafendian, blksft, hash, name, value);
940 free(l);
941 return err;
942}
943
944/* XXX */
945static int
946fzap_iterate(dnode_end_t *zap_dnode, zap_phys_t *zap,
947 int (*hook)(const char *name,
948 uint64_t val,
949 struct zfs_data *data),
950 struct zfs_data *data)
951{
952 zap_leaf_phys_t *l;
953 void *l_in;
954 uint64_t idx, blkid;
955 uint16_t chunk;
956 int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
957 zap_dnode->endian) << DNODE_SHIFT);
958 int err;
959 zfs_endian_t endian;
960
961 if (zap_verify(zap))
962 return 0;
963
964 /* get block id from index */
965 if (zap->zap_ptrtbl.zt_numblks != 0) {
966 printf("external pointer tables not supported\n");
967 return 0;
968 }
969 /* Get the leaf block */
970 if ((1U << blksft) < sizeof(zap_leaf_phys_t)) {
971 printf("ZAP leaf is too small\n");
972 return 0;
973 }
974 for (idx = 0; idx < zap->zap_ptrtbl.zt_numblks; idx++) {
975 blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))];
976
977 err = dmu_read(zap_dnode, blkid, &l_in, &endian, data);
978 l = l_in;
979 if (err)
980 continue;
981
982 /* Verify if this is a valid leaf block */
983 if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) {
984 free(l);
985 continue;
986 }
987 if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) {
988 free(l);
989 continue;
990 }
991
992 for (chunk = 0; chunk < ZAP_LEAF_NUMCHUNKS(blksft); chunk++) {
993 char *buf;
994 struct zap_leaf_array *la;
995 struct zap_leaf_entry *le;
996 uint64_t val;
997 le = ZAP_LEAF_ENTRY(l, blksft, chunk);
998
999 /* Verify the chunk entry */
1000 if (le->le_type != ZAP_CHUNK_ENTRY)
1001 continue;
1002
1003 buf = malloc(zfs_to_cpu16(le->le_name_length, endian)
1004 + 1);
1005 if (zap_leaf_array_get(l, endian, blksft, le->le_name_chunk,
1006 le->le_name_length, buf)) {
1007 free(buf);
1008 continue;
1009 }
1010 buf[le->le_name_length] = 0;
1011
1012 if (le->le_int_size != 8
1013 || zfs_to_cpu16(le->le_value_length, endian) != 1)
1014 continue;
1015
1016 /* get the uint64_t property value */
1017 la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array;
1018 val = be64_to_cpu(la->la_array64);
1019 if (hook(buf, val, data))
1020 return 1;
1021 free(buf);
1022 }
1023 }
1024 return 0;
1025}
1026
1027
1028/*
1029 * Read in the data of a zap object and find the value for a matching
1030 * property name.
1031 *
1032 */
1033static int
1034zap_lookup(dnode_end_t *zap_dnode, char *name, uint64_t *val,
1035 struct zfs_data *data)
1036{
1037 uint64_t block_type;
1038 int size;
1039 void *zapbuf;
1040 int err;
1041 zfs_endian_t endian;
1042
1043 /* Read in the first block of the zap object data. */
1044 size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
1045 zap_dnode->endian) << SPA_MINBLOCKSHIFT;
1046 err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data);
1047 if (err)
1048 return err;
1049 block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian);
1050
1051 if (block_type == ZBT_MICRO) {
1052 err = (mzap_lookup(zapbuf, endian, size, name, val));
1053 free(zapbuf);
1054 return err;
1055 } else if (block_type == ZBT_HEADER) {
1056 /* this is a fat zap */
1057 err = (fzap_lookup(zap_dnode, zapbuf, name, val, data));
1058 free(zapbuf);
1059 return err;
1060 }
1061
1062 printf("unknown ZAP type\n");
1063 return ZFS_ERR_BAD_FS;
1064}
1065
1066static int
1067zap_iterate(dnode_end_t *zap_dnode,
1068 int (*hook)(const char *name, uint64_t val,
1069 struct zfs_data *data),
1070 struct zfs_data *data)
1071{
1072 uint64_t block_type;
1073 int size;
1074 void *zapbuf;
1075 int err;
1076 int ret;
1077 zfs_endian_t endian;
1078
1079 /* Read in the first block of the zap object data. */
1080 size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << SPA_MINBLOCKSHIFT;
1081 err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data);
1082 if (err)
1083 return 0;
1084 block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian);
1085
1086 if (block_type == ZBT_MICRO) {
1087 ret = mzap_iterate(zapbuf, endian, size, hook, data);
1088 free(zapbuf);
1089 return ret;
1090 } else if (block_type == ZBT_HEADER) {
1091 /* this is a fat zap */
1092 ret = fzap_iterate(zap_dnode, zapbuf, hook, data);
1093 free(zapbuf);
1094 return ret;
1095 }
1096 printf("unknown ZAP type\n");
1097 return 0;
1098}
1099
1100
1101/*
1102 * Get the dnode of an object number from the metadnode of an object set.
1103 *
1104 * Input
1105 * mdn - metadnode to get the object dnode
1106 * objnum - object number for the object dnode
1107 * buf - data buffer that holds the returning dnode
1108 */
1109static int
1110dnode_get(dnode_end_t *mdn, uint64_t objnum, uint8_t type,
1111 dnode_end_t *buf, struct zfs_data *data)
1112{
1113 uint64_t blkid, blksz; /* the block id this object dnode is in */
1114 int epbs; /* shift of number of dnodes in a block */
1115 int idx; /* index within a block */
1116 void *dnbuf;
1117 int err;
1118 zfs_endian_t endian;
1119
1120 blksz = zfs_to_cpu16(mdn->dn.dn_datablkszsec,
1121 mdn->endian) << SPA_MINBLOCKSHIFT;
1122
1123 epbs = zfs_log2(blksz) - DNODE_SHIFT;
1124 blkid = objnum >> epbs;
1125 idx = objnum & ((1 << epbs) - 1);
1126
1127 if (data->dnode_buf != NULL && memcmp(data->dnode_mdn, mdn,
1128 sizeof(*mdn)) == 0
1129 && objnum >= data->dnode_start && objnum < data->dnode_end) {
1130 memmove(&(buf->dn), &(data->dnode_buf)[idx], DNODE_SIZE);
1131 buf->endian = data->dnode_endian;
1132 if (type && buf->dn.dn_type != type) {
1133 printf("incorrect dnode type: %02X != %02x\n", buf->dn.dn_type, type);
1134 return ZFS_ERR_BAD_FS;
1135 }
1136 return ZFS_ERR_NONE;
1137 }
1138
1139 err = dmu_read(mdn, blkid, &dnbuf, &endian, data);
1140 if (err)
1141 return err;
1142
1143 free(data->dnode_buf);
1144 free(data->dnode_mdn);
1145 data->dnode_mdn = malloc(sizeof(*mdn));
1146 if (!data->dnode_mdn) {
1147 data->dnode_buf = 0;
1148 } else {
1149 memcpy(data->dnode_mdn, mdn, sizeof(*mdn));
1150 data->dnode_buf = dnbuf;
1151 data->dnode_start = blkid << epbs;
1152 data->dnode_end = (blkid + 1) << epbs;
1153 data->dnode_endian = endian;
1154 }
1155
1156 memmove(&(buf->dn), (dnode_phys_t *) dnbuf + idx, DNODE_SIZE);
1157 buf->endian = endian;
1158 if (type && buf->dn.dn_type != type) {
1159 printf("incorrect dnode type\n");
1160 return ZFS_ERR_BAD_FS;
1161 }
1162
1163 return ZFS_ERR_NONE;
1164}
1165
1166/*
1167 * Get the file dnode for a given file name where mdn is the meta dnode
1168 * for this ZFS object set. When found, place the file dnode in dn.
1169 * The 'path' argument will be mangled.
1170 *
1171 */
1172static int
1173dnode_get_path(dnode_end_t *mdn, const char *path_in, dnode_end_t *dn,
1174 struct zfs_data *data)
1175{
1176 uint64_t objnum, version;
1177 char *cname, ch;
1178 int err = ZFS_ERR_NONE;
1179 char *path, *path_buf;
1180 struct dnode_chain {
1181 struct dnode_chain *next;
1182 dnode_end_t dn;
1183 };
1184 struct dnode_chain *dnode_path = 0, *dn_new, *root;
1185
1186 dn_new = malloc(sizeof(*dn_new));
1187 if (!dn_new)
1188 return ZFS_ERR_OUT_OF_MEMORY;
1189 dn_new->next = 0;
1190 dnode_path = root = dn_new;
1191
1192 err = dnode_get(mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
1193 &(dnode_path->dn), data);
1194 if (err) {
1195 free(dn_new);
1196 return err;
1197 }
1198
1199 err = zap_lookup(&(dnode_path->dn), ZPL_VERSION_STR, &version, data);
1200 if (err) {
1201 free(dn_new);
1202 return err;
1203 }
1204 if (version > ZPL_VERSION) {
1205 free(dn_new);
1206 printf("too new ZPL version\n");
1207 return ZFS_ERR_NOT_IMPLEMENTED_YET;
1208 }
1209
1210 err = zap_lookup(&(dnode_path->dn), ZFS_ROOT_OBJ, &objnum, data);
1211 if (err) {
1212 free(dn_new);
1213 return err;
1214 }
1215
1216 err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data);
1217 if (err) {
1218 free(dn_new);
1219 return err;
1220 }
1221
1222 path = path_buf = strdup(path_in);
1223 if (!path_buf) {
1224 free(dn_new);
1225 return ZFS_ERR_OUT_OF_MEMORY;
1226 }
1227
1228 while (1) {
1229 /* skip leading slashes */
1230 while (*path == '/')
1231 path++;
1232 if (!*path)
1233 break;
1234 /* get the next component name */
1235 cname = path;
1236 while (*path && *path != '/')
1237 path++;
1238 /* Skip dot. */
1239 if (cname + 1 == path && cname[0] == '.')
1240 continue;
1241 /* Handle double dot. */
1242 if (cname + 2 == path && cname[0] == '.' && cname[1] == '.') {
1243 if (dn_new->next) {
1244 dn_new = dnode_path;
1245 dnode_path = dn_new->next;
1246 free(dn_new);
1247 } else {
1248 printf("can't resolve ..\n");
1249 err = ZFS_ERR_FILE_NOT_FOUND;
1250 break;
1251 }
1252 continue;
1253 }
1254
1255 ch = *path;
1256 *path = 0; /* ensure null termination */
1257
1258 if (dnode_path->dn.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) {
1259 free(path_buf);
1260 printf("not a directory\n");
1261 return ZFS_ERR_BAD_FILE_TYPE;
1262 }
1263 err = zap_lookup(&(dnode_path->dn), cname, &objnum, data);
1264 if (err)
1265 break;
1266
1267 dn_new = malloc(sizeof(*dn_new));
1268 if (!dn_new) {
1269 err = ZFS_ERR_OUT_OF_MEMORY;
1270 break;
1271 }
1272 dn_new->next = dnode_path;
1273 dnode_path = dn_new;
1274
1275 objnum = ZFS_DIRENT_OBJ(objnum);
1276 err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data);
1277 if (err)
1278 break;
1279
1280 *path = ch;
1281 }
1282
1283 if (!err)
1284 memcpy(dn, &(dnode_path->dn), sizeof(*dn));
1285
1286 while (dnode_path) {
1287 dn_new = dnode_path->next;
1288 free(dnode_path);
1289 dnode_path = dn_new;
1290 }
1291 free(path_buf);
1292 return err;
1293}
1294
1295
1296/*
1297 * Given a MOS metadnode, get the metadnode of a given filesystem name (fsname),
1298 * e.g. pool/rootfs, or a given object number (obj), e.g. the object number
1299 * of pool/rootfs.
1300 *
1301 * If no fsname and no obj are given, return the DSL_DIR metadnode.
1302 * If fsname is given, return its metadnode and its matching object number.
1303 * If only obj is given, return the metadnode for this object number.
1304 *
1305 */
1306static int
1307get_filesystem_dnode(dnode_end_t *mosmdn, char *fsname,
1308 dnode_end_t *mdn, struct zfs_data *data)
1309{
1310 uint64_t objnum;
1311 int err;
1312
1313 err = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT,
1314 DMU_OT_OBJECT_DIRECTORY, mdn, data);
1315 if (err)
1316 return err;
1317
1318 err = zap_lookup(mdn, DMU_POOL_ROOT_DATASET, &objnum, data);
1319 if (err)
1320 return err;
1321
1322 err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
1323 if (err)
1324 return err;
1325
1326 while (*fsname) {
1327 uint64_t childobj;
1328 char *cname, ch;
1329
1330 while (*fsname == '/')
1331 fsname++;
1332
1333 if (!*fsname || *fsname == '@')
1334 break;
1335
1336 cname = fsname;
1337 while (*fsname && !isspace(*fsname) && *fsname != '/')
1338 fsname++;
1339 ch = *fsname;
1340 *fsname = 0;
1341
1342 childobj = zfs_to_cpu64((((dsl_dir_phys_t *) DN_BONUS(&mdn->dn)))->dd_child_dir_zapobj, mdn->endian);
1343 err = dnode_get(mosmdn, childobj,
1344 DMU_OT_DSL_DIR_CHILD_MAP, mdn, data);
1345 if (err)
1346 return err;
1347
1348 err = zap_lookup(mdn, cname, &objnum, data);
1349 if (err)
1350 return err;
1351
1352 err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
1353 if (err)
1354 return err;
1355
1356 *fsname = ch;
1357 }
1358 return ZFS_ERR_NONE;
1359}
1360
1361static int
1362make_mdn(dnode_end_t *mdn, struct zfs_data *data)
1363{
1364 void *osp;
1365 blkptr_t *bp;
1366 size_t ospsize;
1367 int err;
1368
1369 bp = &(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_bp);
1370 err = zio_read(bp, mdn->endian, &osp, &ospsize, data);
1371 if (err)
1372 return err;
1373 if (ospsize < OBJSET_PHYS_SIZE_V14) {
1374 free(osp);
1375 printf("too small osp\n");
1376 return ZFS_ERR_BAD_FS;
1377 }
1378
1379 mdn->endian = (zfs_to_cpu64(bp->blk_prop, mdn->endian)>>63) & 1;
1380 memmove((char *) &(mdn->dn),
1381 (char *) &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
1382 free(osp);
1383 return ZFS_ERR_NONE;
1384}
1385
1386static int
1387dnode_get_fullpath(const char *fullpath, dnode_end_t *mdn,
1388 uint64_t *mdnobj, dnode_end_t *dn, int *isfs,
1389 struct zfs_data *data)
1390{
1391 char *fsname, *snapname;
1392 const char *ptr_at, *filename;
1393 uint64_t headobj;
1394 int err;
1395
1396 ptr_at = strchr(fullpath, '@');
1397 if (!ptr_at) {
1398 *isfs = 1;
1399 filename = 0;
1400 snapname = 0;
1401 fsname = strdup(fullpath);
1402 } else {
1403 const char *ptr_slash = strchr(ptr_at, '/');
1404
1405 *isfs = 0;
1406 fsname = malloc(ptr_at - fullpath + 1);
1407 if (!fsname)
1408 return ZFS_ERR_OUT_OF_MEMORY;
1409 memcpy(fsname, fullpath, ptr_at - fullpath);
1410 fsname[ptr_at - fullpath] = 0;
1411 if (ptr_at[1] && ptr_at[1] != '/') {
1412 snapname = malloc(ptr_slash - ptr_at);
1413 if (!snapname) {
1414 free(fsname);
1415 return ZFS_ERR_OUT_OF_MEMORY;
1416 }
1417 memcpy(snapname, ptr_at + 1, ptr_slash - ptr_at - 1);
1418 snapname[ptr_slash - ptr_at - 1] = 0;
1419 } else {
1420 snapname = 0;
1421 }
1422 if (ptr_slash)
1423 filename = ptr_slash;
1424 else
1425 filename = "/";
1426 printf("zfs fsname = '%s' snapname='%s' filename = '%s'\n",
1427 fsname, snapname, filename);
1428 }
1429
1430
1431 err = get_filesystem_dnode(&(data->mos), fsname, dn, data);
1432
1433 if (err) {
1434 free(fsname);
1435 free(snapname);
1436 return err;
1437 }
1438
1439 headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&dn->dn))->dd_head_dataset_obj, dn->endian);
1440
1441 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data);
1442 if (err) {
1443 free(fsname);
1444 free(snapname);
1445 return err;
1446 }
1447
1448 if (snapname) {
1449 uint64_t snapobj;
1450
1451 snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_snapnames_zapobj, mdn->endian);
1452
1453 err = dnode_get(&(data->mos), snapobj,
1454 DMU_OT_DSL_DS_SNAP_MAP, mdn, data);
1455 if (!err)
1456 err = zap_lookup(mdn, snapname, &headobj, data);
1457 if (!err)
1458 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data);
1459 if (err) {
1460 free(fsname);
1461 free(snapname);
1462 return err;
1463 }
1464 }
1465
1466 if (mdnobj)
1467 *mdnobj = headobj;
1468
1469 make_mdn(mdn, data);
1470
1471 if (*isfs) {
1472 free(fsname);
1473 free(snapname);
1474 return ZFS_ERR_NONE;
1475 }
1476 err = dnode_get_path(mdn, filename, dn, data);
1477 free(fsname);
1478 free(snapname);
1479 return err;
1480}
1481
1482/*
1483 * For a given XDR packed nvlist, verify the first 4 bytes and move on.
1484 *
1485 * An XDR packed nvlist is encoded as (comments from nvs_xdr_create) :
1486 *
1487 * encoding method/host endian (4 bytes)
1488 * nvl_version (4 bytes)
1489 * nvl_nvflag (4 bytes)
1490 * encoded nvpairs:
1491 * encoded size of the nvpair (4 bytes)
1492 * decoded size of the nvpair (4 bytes)
1493 * name string size (4 bytes)
1494 * name string data (sizeof(NV_ALIGN4(string))
1495 * data type (4 bytes)
1496 * # of elements in the nvpair (4 bytes)
1497 * data
1498 * 2 zero's for the last nvpair
1499 * (end of the entire list) (8 bytes)
1500 *
1501 */
1502
1503static int
1504nvlist_find_value(char *nvlist, char *name, int valtype, char **val,
1505 size_t *size_out, size_t *nelm_out)
1506{
1507 int name_len, type, encode_size;
1508 char *nvpair, *nvp_name;
1509
1510 /* Verify if the 1st and 2nd byte in the nvlist are valid. */
1511 /* NOTE: independently of what endianness header announces all
1512 subsequent values are big-endian. */
1513 if (nvlist[0] != NV_ENCODE_XDR || (nvlist[1] != NV_LITTLE_ENDIAN
1514 && nvlist[1] != NV_BIG_ENDIAN)) {
1515 printf("zfs incorrect nvlist header\n");
1516 return ZFS_ERR_BAD_FS;
1517 }
1518
1519 /* skip the header, nvl_version, and nvl_nvflag */
1520 nvlist = nvlist + 4 * 3;
1521 /*
1522 * Loop thru the nvpair list
1523 * The XDR representation of an integer is in big-endian byte order.
1524 */
1525 while ((encode_size = be32_to_cpu(*(uint32_t *) nvlist))) {
1526 int nelm;
1527
1528 nvpair = nvlist + 4 * 2; /* skip the encode/decode size */
1529
1530 name_len = be32_to_cpu(*(uint32_t *) nvpair);
1531 nvpair += 4;
1532
1533 nvp_name = nvpair;
1534 nvpair = nvpair + ((name_len + 3) & ~3); /* align */
1535
1536 type = be32_to_cpu(*(uint32_t *) nvpair);
1537 nvpair += 4;
1538
1539 nelm = be32_to_cpu(*(uint32_t *) nvpair);
1540 if (nelm < 1) {
1541 printf("empty nvpair\n");
1542 return ZFS_ERR_BAD_FS;
1543 }
1544
1545 nvpair += 4;
1546
1547 if ((strncmp(nvp_name, name, name_len) == 0) && type == valtype) {
1548 *val = nvpair;
1549 *size_out = encode_size;
1550 if (nelm_out)
1551 *nelm_out = nelm;
1552 return 1;
1553 }
1554
1555 nvlist += encode_size; /* goto the next nvpair */
1556 }
1557 return 0;
1558}
1559
1560int
1561zfs_nvlist_lookup_uint64(char *nvlist, char *name, uint64_t *out)
1562{
1563 char *nvpair;
1564 size_t size;
1565 int found;
1566
1567 found = nvlist_find_value(nvlist, name, DATA_TYPE_UINT64, &nvpair, &size, 0);
1568 if (!found)
1569 return 0;
1570 if (size < sizeof(uint64_t)) {
1571 printf("invalid uint64\n");
1572 return ZFS_ERR_BAD_FS;
1573 }
1574
1575 *out = be64_to_cpu(*(uint64_t *) nvpair);
1576 return 1;
1577}
1578
1579char *
1580zfs_nvlist_lookup_string(char *nvlist, char *name)
1581{
1582 char *nvpair;
1583 char *ret;
1584 size_t slen;
1585 size_t size;
1586 int found;
1587
1588 found = nvlist_find_value(nvlist, name, DATA_TYPE_STRING, &nvpair, &size, 0);
1589 if (!found)
1590 return 0;
1591 if (size < 4) {
1592 printf("invalid string\n");
1593 return 0;
1594 }
1595 slen = be32_to_cpu(*(uint32_t *) nvpair);
1596 if (slen > size - 4)
1597 slen = size - 4;
1598 ret = malloc(slen + 1);
1599 if (!ret)
1600 return 0;
1601 memcpy(ret, nvpair + 4, slen);
1602 ret[slen] = 0;
1603 return ret;
1604}
1605
1606char *
1607zfs_nvlist_lookup_nvlist(char *nvlist, char *name)
1608{
1609 char *nvpair;
1610 char *ret;
1611 size_t size;
1612 int found;
1613
1614 found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
1615 &size, 0);
1616 if (!found)
1617 return 0;
1618 ret = calloc(1, size + 3 * sizeof(uint32_t));
1619 if (!ret)
1620 return 0;
1621 memcpy(ret, nvlist, sizeof(uint32_t));
1622
1623 memcpy(ret + sizeof(uint32_t), nvpair, size);
1624 return ret;
1625}
1626
1627int
1628zfs_nvlist_lookup_nvlist_array_get_nelm(char *nvlist, char *name)
1629{
1630 char *nvpair;
1631 size_t nelm, size;
1632 int found;
1633
1634 found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
1635 &size, &nelm);
1636 if (!found)
1637 return -1;
1638 return nelm;
1639}
1640
1641char *
1642zfs_nvlist_lookup_nvlist_array(char *nvlist, char *name,
1643 size_t index)
1644{
1645 char *nvpair, *nvpairptr;
1646 int found;
1647 char *ret;
1648 size_t size;
1649 unsigned i;
1650 size_t nelm;
1651
1652 found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
1653 &size, &nelm);
1654 if (!found)
1655 return 0;
1656 if (index >= nelm) {
1657 printf("trying to lookup past nvlist array\n");
1658 return 0;
1659 }
1660
1661 nvpairptr = nvpair;
1662
1663 for (i = 0; i < index; i++) {
1664 uint32_t encode_size;
1665
1666 /* skip the header, nvl_version, and nvl_nvflag */
1667 nvpairptr = nvpairptr + 4 * 2;
1668
1669 while (nvpairptr < nvpair + size
1670 && (encode_size = be32_to_cpu(*(uint32_t *) nvpairptr)))
1671 nvlist += encode_size; /* goto the next nvpair */
1672
1673 nvlist = nvlist + 4 * 2; /* skip the ending 2 zeros - 8 bytes */
1674 }
1675
1676 if (nvpairptr >= nvpair + size
1677 || nvpairptr + be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2))
1678 >= nvpair + size) {
1679 printf("incorrect nvlist array\n");
1680 return 0;
1681 }
1682
1683 ret = calloc(1, be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2))
1684 + 3 * sizeof(uint32_t));
1685 if (!ret)
1686 return 0;
1687 memcpy(ret, nvlist, sizeof(uint32_t));
1688
1689 memcpy(ret + sizeof(uint32_t), nvpairptr, size);
1690 return ret;
1691}
1692
1693static int
1694int_zfs_fetch_nvlist(struct zfs_data *data, char **nvlist)
1695{
1696 int err;
1697
1698 *nvlist = malloc(VDEV_PHYS_SIZE);
1699 /* Read in the vdev name-value pair list (112K). */
1700 err = zfs_devread(data->vdev_phys_sector, 0, VDEV_PHYS_SIZE, *nvlist);
1701 if (err) {
1702 free(*nvlist);
1703 *nvlist = 0;
1704 return err;
1705 }
1706 return ZFS_ERR_NONE;
1707}
1708
1709/*
1710 * Check the disk label information and retrieve needed vdev name-value pairs.
1711 *
1712 */
1713static int
1714check_pool_label(struct zfs_data *data)
1715{
1716 uint64_t pool_state;
1717 char *nvlist; /* for the pool */
1718 char *vdevnvlist; /* for the vdev */
1719 uint64_t diskguid;
1720 uint64_t version;
1721 int found;
1722 int err;
1723
1724 err = int_zfs_fetch_nvlist(data, &nvlist);
1725 if (err)
1726 return err;
1727
1728 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_STATE,
1729 &pool_state);
1730 if (!found) {
1731 free(nvlist);
1732 printf("zfs pool state not found\n");
1733 return ZFS_ERR_BAD_FS;
1734 }
1735
1736 if (pool_state == POOL_STATE_DESTROYED) {
1737 free(nvlist);
1738 printf("zpool is marked as destroyed\n");
1739 return ZFS_ERR_BAD_FS;
1740 }
1741
1742 data->label_txg = 0;
1743 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_TXG,
1744 &data->label_txg);
1745 if (!found) {
1746 free(nvlist);
1747 printf("zfs pool txg not found\n");
1748 return ZFS_ERR_BAD_FS;
1749 }
1750
1751 /* not an active device */
1752 if (data->label_txg == 0) {
1753 free(nvlist);
1754 printf("zpool is not active\n");
1755 return ZFS_ERR_BAD_FS;
1756 }
1757
1758 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_VERSION,
1759 &version);
1760 if (!found) {
1761 free(nvlist);
1762 printf("zpool config version not found\n");
1763 return ZFS_ERR_BAD_FS;
1764 }
1765
1766 if (version > SPA_VERSION) {
1767 free(nvlist);
1768 printf("SPA version too new %llu > %llu\n",
1769 (unsigned long long) version,
1770 (unsigned long long) SPA_VERSION);
1771 return ZFS_ERR_NOT_IMPLEMENTED_YET;
1772 }
1773
1774 vdevnvlist = zfs_nvlist_lookup_nvlist(nvlist, ZPOOL_CONFIG_VDEV_TREE);
1775 if (!vdevnvlist) {
1776 free(nvlist);
1777 printf("ZFS config vdev tree not found\n");
1778 return ZFS_ERR_BAD_FS;
1779 }
1780
1781 found = zfs_nvlist_lookup_uint64(vdevnvlist, ZPOOL_CONFIG_ASHIFT,
1782 &data->vdev_ashift);
1783 free(vdevnvlist);
1784 if (!found) {
1785 free(nvlist);
1786 printf("ZPOOL config ashift not found\n");
1787 return ZFS_ERR_BAD_FS;
1788 }
1789
1790 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_GUID, &diskguid);
1791 if (!found) {
1792 free(nvlist);
1793 printf("ZPOOL config guid not found\n");
1794 return ZFS_ERR_BAD_FS;
1795 }
1796
1797 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_GUID, &data->pool_guid);
1798 if (!found) {
1799 free(nvlist);
1800 printf("ZPOOL config pool guid not found\n");
1801 return ZFS_ERR_BAD_FS;
1802 }
1803
1804 free(nvlist);
1805
1806 printf("ZFS Pool GUID: %llu (%016llx) Label: GUID: %llu (%016llx), txg: %llu, SPA v%llu, ashift: %llu\n",
1807 (unsigned long long) data->pool_guid,
1808 (unsigned long long) data->pool_guid,
1809 (unsigned long long) diskguid,
1810 (unsigned long long) diskguid,
1811 (unsigned long long) data->label_txg,
1812 (unsigned long long) version,
1813 (unsigned long long) data->vdev_ashift);
1814
1815 return ZFS_ERR_NONE;
1816}
1817
1818/*
1819 * vdev_label_start returns the physical disk offset (in bytes) of
1820 * label "l".
1821 */
1822static uint64_t vdev_label_start(uint64_t psize, int l)
1823{
1824 return (l * sizeof(vdev_label_t) + (l < VDEV_LABELS / 2 ?
1825 0 : psize -
1826 VDEV_LABELS * sizeof(vdev_label_t)));
1827}
1828
1829void
1830zfs_unmount(struct zfs_data *data)
1831{
1832 free(data->dnode_buf);
1833 free(data->dnode_mdn);
1834 free(data->file_buf);
1835 free(data);
1836}
1837
1838/*
1839 * zfs_mount() locates a valid uberblock of the root pool and read in its MOS
1840 * to the memory address MOS.
1841 *
1842 */
1843struct zfs_data *
1844zfs_mount(device_t dev)
1845{
1846 struct zfs_data *data = 0;
1847 int label = 0, bestlabel = -1;
1848 char *ub_array;
1849 uberblock_t *ubbest;
1850 uberblock_t *ubcur = NULL;
1851 void *osp = 0;
1852 size_t ospsize;
1853 int err;
1854
1855 data = malloc(sizeof(*data));
1856 if (!data)
1857 return 0;
1858 memset(data, 0, sizeof(*data));
1859
1860 ub_array = malloc(VDEV_UBERBLOCK_RING);
1861 if (!ub_array) {
1862 zfs_unmount(data);
1863 return 0;
1864 }
1865
1866 ubbest = malloc(sizeof(*ubbest));
1867 if (!ubbest) {
1868 zfs_unmount(data);
1869 return 0;
1870 }
1871 memset(ubbest, 0, sizeof(*ubbest));
1872
1873 /*
1874 * some eltorito stacks don't give us a size and
1875 * we end up setting the size to MAXUINT, further
1876 * some of these devices stop working once a single
1877 * read past the end has been issued. Checking
1878 * for a maximum part_length and skipping the backup
1879 * labels at the end of the slice/partition/device
1880 * avoids breaking down on such devices.
1881 */
1882 const int vdevnum =
1883 dev->part_length == 0 ?
1884 VDEV_LABELS / 2 : VDEV_LABELS;
1885
1886 /* Size in bytes of the device (disk or partition) aligned to label size*/
1887 uint64_t device_size =
1888 dev->part_length << SECTOR_BITS;
1889
1890 const uint64_t alignedbytes =
1891 P2ALIGN(device_size, (uint64_t) sizeof(vdev_label_t));
1892
1893 for (label = 0; label < vdevnum; label++) {
1894 uint64_t labelstartbytes = vdev_label_start(alignedbytes, label);
1895 uint64_t labelstart = labelstartbytes >> SECTOR_BITS;
1896
1897 debug("zfs reading label %d at sector %llu (byte %llu)\n",
1898 label, (unsigned long long) labelstart,
1899 (unsigned long long) labelstartbytes);
1900
1901 data->vdev_phys_sector = labelstart +
1902 ((VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE) >> SECTOR_BITS);
1903
1904 err = check_pool_label(data);
1905 if (err) {
1906 printf("zfs error checking label %d\n", label);
1907 continue;
1908 }
1909
1910 /* Read in the uberblock ring (128K). */
1911 err = zfs_devread(data->vdev_phys_sector +
1912 (VDEV_PHYS_SIZE >> SECTOR_BITS),
1913 0, VDEV_UBERBLOCK_RING, ub_array);
1914 if (err) {
1915 printf("zfs error reading uberblock ring for label %d\n", label);
1916 continue;
1917 }
1918
1919 ubcur = find_bestub(ub_array, data);
1920 if (!ubcur) {
1921 printf("zfs No good uberblocks found in label %d\n", label);
1922 continue;
1923 }
1924
1925 if (vdev_uberblock_compare(ubcur, ubbest) > 0) {
1926 /* Looks like the block is good, so use it.*/
1927 memcpy(ubbest, ubcur, sizeof(*ubbest));
1928 bestlabel = label;
1929 debug("zfs Current best uberblock found in label %d\n", label);
1930 }
1931 }
1932 free(ub_array);
1933
1934 /* We zero'd the structure to begin with. If we never assigned to it,
1935 magic will still be zero. */
1936 if (!ubbest->ub_magic) {
1937 printf("couldn't find a valid ZFS label\n");
1938 zfs_unmount(data);
1939 free(ubbest);
1940 return 0;
1941 }
1942
1943 debug("zfs ubbest %p in label %d\n", ubbest, bestlabel);
1944
1945 zfs_endian_t ub_endian =
1946 zfs_to_cpu64(ubbest->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC
1947 ? LITTLE_ENDIAN : BIG_ENDIAN;
1948
1949 debug("zfs endian set to %s\n", !ub_endian ? "big" : "little");
1950
1951 err = zio_read(&ubbest->ub_rootbp, ub_endian, &osp, &ospsize, data);
1952
1953 if (err) {
1954 printf("couldn't zio_read object directory\n");
1955 zfs_unmount(data);
1956 free(ubbest);
1957 return 0;
1958 }
1959
1960 if (ospsize < OBJSET_PHYS_SIZE_V14) {
1961 printf("osp too small\n");
1962 zfs_unmount(data);
1963 free(osp);
1964 free(ubbest);
1965 return 0;
1966 }
1967
1968 /* Got the MOS. Save it at the memory addr MOS. */
1969 memmove(&(data->mos.dn), &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
1970 data->mos.endian =
1971 (zfs_to_cpu64(ubbest->ub_rootbp.blk_prop, ub_endian) >> 63) & 1;
1972 memmove(&(data->current_uberblock), ubbest, sizeof(uberblock_t));
1973
1974 free(osp);
1975 free(ubbest);
1976
1977 return data;
1978}
1979
1980int
1981zfs_fetch_nvlist(device_t dev, char **nvlist)
1982{
1983 struct zfs_data *zfs;
1984 int err;
1985
1986 zfs = zfs_mount(dev);
1987 if (!zfs)
1988 return ZFS_ERR_BAD_FS;
1989 err = int_zfs_fetch_nvlist(zfs, nvlist);
1990 zfs_unmount(zfs);
1991 return err;
1992}
1993
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +00001994/*
1995 * zfs_open() locates a file in the rootpool by following the
1996 * MOS and places the dnode of the file in the memory address DNODE.
1997 */
1998int
1999zfs_open(struct zfs_file *file, const char *fsfilename)
2000{
2001 struct zfs_data *data;
2002 int err;
2003 int isfs;
2004
2005 data = zfs_mount(file->device);
2006 if (!data)
2007 return ZFS_ERR_BAD_FS;
2008
2009 err = dnode_get_fullpath(fsfilename, &(data->mdn), 0,
2010 &(data->dnode), &isfs, data);
2011 if (err) {
2012 zfs_unmount(data);
2013 return err;
2014 }
2015
2016 if (isfs) {
2017 zfs_unmount(data);
2018 printf("Missing @ or / separator\n");
2019 return ZFS_ERR_FILE_NOT_FOUND;
2020 }
2021
2022 /* We found the dnode for this file. Verify if it is a plain file. */
2023 if (data->dnode.dn.dn_type != DMU_OT_PLAIN_FILE_CONTENTS) {
2024 zfs_unmount(data);
2025 printf("not a file\n");
2026 return ZFS_ERR_BAD_FILE_TYPE;
2027 }
2028
2029 /* get the file size and set the file position to 0 */
2030
2031 /*
2032 * For DMU_OT_SA we will need to locate the SIZE attribute
2033 * attribute, which could be either in the bonus buffer
2034 * or the "spill" block.
2035 */
2036 if (data->dnode.dn.dn_bonustype == DMU_OT_SA) {
2037 void *sahdrp;
2038 int hdrsize;
2039
2040 if (data->dnode.dn.dn_bonuslen != 0) {
2041 sahdrp = (sa_hdr_phys_t *) DN_BONUS(&data->dnode.dn);
2042 } else if (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2043 blkptr_t *bp = &data->dnode.dn.dn_spill;
2044
2045 err = zio_read(bp, data->dnode.endian, &sahdrp, NULL, data);
2046 if (err)
2047 return err;
2048 } else {
2049 printf("filesystem is corrupt :(\n");
2050 return ZFS_ERR_BAD_FS;
2051 }
2052
2053 hdrsize = SA_HDR_SIZE(((sa_hdr_phys_t *) sahdrp));
2054 file->size = *(uint64_t *) ((char *) sahdrp + hdrsize + SA_SIZE_OFFSET);
2055 } else {
2056 file->size = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&data->dnode.dn))->zp_size, data->dnode.endian);
2057 }
2058
2059 file->data = data;
2060 file->offset = 0;
2061
2062 return ZFS_ERR_NONE;
2063}
2064
2065uint64_t
2066zfs_read(zfs_file_t file, char *buf, uint64_t len)
2067{
2068 struct zfs_data *data = (struct zfs_data *) file->data;
2069 int blksz, movesize;
2070 uint64_t length;
2071 int64_t red;
2072 int err;
2073
2074 if (data->file_buf == NULL) {
2075 data->file_buf = malloc(SPA_MAXBLOCKSIZE);
2076 if (!data->file_buf)
2077 return -1;
2078 data->file_start = data->file_end = 0;
2079 }
2080
2081 /*
2082 * If offset is in memory, move it into the buffer provided and return.
2083 */
2084 if (file->offset >= data->file_start
2085 && file->offset + len <= data->file_end) {
2086 memmove(buf, data->file_buf + file->offset - data->file_start,
2087 len);
2088 return len;
2089 }
2090
2091 blksz = zfs_to_cpu16(data->dnode.dn.dn_datablkszsec,
2092 data->dnode.endian) << SPA_MINBLOCKSHIFT;
2093
2094 /*
2095 * Entire Dnode is too big to fit into the space available. We
2096 * will need to read it in chunks. This could be optimized to
2097 * read in as large a chunk as there is space available, but for
2098 * now, this only reads in one data block at a time.
2099 */
2100 length = len;
2101 red = 0;
2102 while (length) {
2103 void *t;
2104 /*
2105 * Find requested blkid and the offset within that block.
2106 */
Alejandro Mery8b773142012-10-31 08:21:33 +00002107 uint64_t blkid = file->offset + red;
2108 blkid = do_div(blkid, blksz);
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +00002109 free(data->file_buf);
2110 data->file_buf = 0;
2111
2112 err = dmu_read(&(data->dnode), blkid, &t,
2113 0, data);
2114 data->file_buf = t;
2115 if (err)
2116 return -1;
2117
2118 data->file_start = blkid * blksz;
2119 data->file_end = data->file_start + blksz;
2120
2121 movesize = MIN(length, data->file_end - (int) file->offset - red);
2122
2123 memmove(buf, data->file_buf + file->offset + red
2124 - data->file_start, movesize);
2125 buf += movesize;
2126 length -= movesize;
2127 red += movesize;
2128 }
2129
2130 return len;
2131}
2132
2133int
2134zfs_close(zfs_file_t file)
2135{
2136 zfs_unmount((struct zfs_data *) file->data);
2137 return ZFS_ERR_NONE;
2138}
2139
2140int
2141zfs_getmdnobj(device_t dev, const char *fsfilename,
2142 uint64_t *mdnobj)
2143{
2144 struct zfs_data *data;
2145 int err;
2146 int isfs;
2147
2148 data = zfs_mount(dev);
2149 if (!data)
2150 return ZFS_ERR_BAD_FS;
2151
2152 err = dnode_get_fullpath(fsfilename, &(data->mdn), mdnobj,
2153 &(data->dnode), &isfs, data);
2154 zfs_unmount(data);
2155 return err;
2156}
2157
2158static void
2159fill_fs_info(struct zfs_dirhook_info *info,
2160 dnode_end_t mdn, struct zfs_data *data)
2161{
2162 int err;
2163 dnode_end_t dn;
2164 uint64_t objnum;
2165 uint64_t headobj;
2166
2167 memset(info, 0, sizeof(*info));
2168
2169 info->dir = 1;
2170
2171 if (mdn.dn.dn_type == DMU_OT_DSL_DIR) {
2172 headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&mdn.dn))->dd_head_dataset_obj, mdn.endian);
2173
2174 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &mdn, data);
2175 if (err) {
2176 printf("zfs failed here 1\n");
2177 return;
2178 }
2179 }
2180 make_mdn(&mdn, data);
2181 err = dnode_get(&mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
2182 &dn, data);
2183 if (err) {
2184 printf("zfs failed here 2\n");
2185 return;
2186 }
2187
2188 err = zap_lookup(&dn, ZFS_ROOT_OBJ, &objnum, data);
2189 if (err) {
2190 printf("zfs failed here 3\n");
2191 return;
2192 }
2193
2194 err = dnode_get(&mdn, objnum, 0, &dn, data);
2195 if (err) {
2196 printf("zfs failed here 4\n");
2197 return;
2198 }
2199
2200 info->mtimeset = 1;
2201 info->mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian);
2202
2203 return;
2204}
2205
2206static int iterate_zap(const char *name, uint64_t val, struct zfs_data *data)
2207{
2208 struct zfs_dirhook_info info;
2209 dnode_end_t dn;
2210
2211 memset(&info, 0, sizeof(info));
2212
2213 dnode_get(&(data->mdn), val, 0, &dn, data);
2214 info.mtimeset = 1;
2215 info.mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian);
2216 info.dir = (dn.dn.dn_type == DMU_OT_DIRECTORY_CONTENTS);
2217 debug("zfs type=%d, name=%s\n",
2218 (int)dn.dn.dn_type, (char *)name);
2219 if (!data->userhook)
2220 return 0;
2221 return data->userhook(name, &info);
2222}
2223
2224static int iterate_zap_fs(const char *name, uint64_t val, struct zfs_data *data)
2225{
2226 struct zfs_dirhook_info info;
2227 dnode_end_t mdn;
2228 int err;
2229 err = dnode_get(&(data->mos), val, 0, &mdn, data);
2230 if (err)
2231 return 0;
2232 if (mdn.dn.dn_type != DMU_OT_DSL_DIR)
2233 return 0;
2234
2235 fill_fs_info(&info, mdn, data);
2236
2237 if (!data->userhook)
2238 return 0;
2239 return data->userhook(name, &info);
2240}
2241
2242static int iterate_zap_snap(const char *name, uint64_t val, struct zfs_data *data)
2243{
2244 struct zfs_dirhook_info info;
2245 char *name2;
2246 int ret = 0;
2247 dnode_end_t mdn;
2248 int err;
2249
2250 err = dnode_get(&(data->mos), val, 0, &mdn, data);
2251 if (err)
2252 return 0;
2253
2254 if (mdn.dn.dn_type != DMU_OT_DSL_DATASET)
2255 return 0;
2256
2257 fill_fs_info(&info, mdn, data);
2258
2259 name2 = malloc(strlen(name) + 2);
2260 name2[0] = '@';
2261 memcpy(name2 + 1, name, strlen(name) + 1);
2262 if (data->userhook)
2263 ret = data->userhook(name2, &info);
2264 free(name2);
2265 return ret;
2266}
2267
2268int
2269zfs_ls(device_t device, const char *path,
2270 int (*hook)(const char *, const struct zfs_dirhook_info *))
2271{
2272 struct zfs_data *data;
2273 int err;
2274 int isfs;
Jorgen Lundman9b4a1f92012-07-19 20:48:25 +00002275
2276 data = zfs_mount(device);
2277 if (!data)
2278 return ZFS_ERR_BAD_FS;
2279
2280 data->userhook = hook;
2281
2282 err = dnode_get_fullpath(path, &(data->mdn), 0, &(data->dnode), &isfs, data);
2283 if (err) {
2284 zfs_unmount(data);
2285 return err;
2286 }
2287 if (isfs) {
2288 uint64_t childobj, headobj;
2289 uint64_t snapobj;
2290 dnode_end_t dn;
2291 struct zfs_dirhook_info info;
2292
2293 fill_fs_info(&info, data->dnode, data);
2294 hook("@", &info);
2295
2296 childobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_child_dir_zapobj, data->dnode.endian);
2297 headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_head_dataset_obj, data->dnode.endian);
2298 err = dnode_get(&(data->mos), childobj,
2299 DMU_OT_DSL_DIR_CHILD_MAP, &dn, data);
2300 if (err) {
2301 zfs_unmount(data);
2302 return err;
2303 }
2304
2305
2306 zap_iterate(&dn, iterate_zap_fs, data);
2307
2308 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &dn, data);
2309 if (err) {
2310 zfs_unmount(data);
2311 return err;
2312 }
2313
2314 snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&dn.dn))->ds_snapnames_zapobj, dn.endian);
2315
2316 err = dnode_get(&(data->mos), snapobj,
2317 DMU_OT_DSL_DS_SNAP_MAP, &dn, data);
2318 if (err) {
2319 zfs_unmount(data);
2320 return err;
2321 }
2322
2323 zap_iterate(&dn, iterate_zap_snap, data);
2324 } else {
2325 if (data->dnode.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) {
2326 zfs_unmount(data);
2327 printf("not a directory\n");
2328 return ZFS_ERR_BAD_FILE_TYPE;
2329 }
2330 zap_iterate(&(data->dnode), iterate_zap, data);
2331 }
2332 zfs_unmount(data);
2333 return ZFS_ERR_NONE;
2334}