blob: 42e7f22b28ddb4ea2db55b6eef8c5558bbb3ecf6 [file] [log] [blame]
Alexey Brodkin544c5f52014-02-04 12:56:13 +04001/*
2 * Copyright (C) 2013-2014 Synopsys, Inc. All rights reserved.
3 *
4 * SPDX-License-Identifier: GPL-2.0+
5 */
6
7#ifndef __ASM_ARC_IO_H
8#define __ASM_ARC_IO_H
9
10#include <linux/types.h>
11#include <asm/byteorder.h>
12
Alexey Brodkinb686ce72016-06-08 08:24:54 +030013#ifdef CONFIG_ISA_ARCV2
14
15/*
16 * ARCv2 based HS38 cores are in-order issue, but still weakly ordered
17 * due to micro-arch buffering/queuing of load/store, cache hit vs. miss ...
18 *
19 * Explicit barrier provided by DMB instruction
20 * - Operand supports fine grained load/store/load+store semantics
21 * - Ensures that selected memory operation issued before it will complete
22 * before any subsequent memory operation of same type
23 * - DMB guarantees SMP as well as local barrier semantics
24 * (asm-generic/barrier.h ensures sane smp_*mb if not defined here, i.e.
25 * UP: barrier(), SMP: smp_*mb == *mb)
26 * - DSYNC provides DMB+completion_of_cache_bpu_maintenance_ops hence not needed
27 * in the general case. Plus it only provides full barrier.
28 */
29
30#define mb() asm volatile("dmb 3\n" : : : "memory")
31#define rmb() asm volatile("dmb 1\n" : : : "memory")
32#define wmb() asm volatile("dmb 2\n" : : : "memory")
33
34#else
35
36/*
37 * ARCompact based cores (ARC700) only have SYNC instruction which is super
38 * heavy weight as it flushes the pipeline as well.
39 * There are no real SMP implementations of such cores.
40 */
41
42#define mb() asm volatile("sync\n" : : : "memory")
43#endif
44
45#ifdef CONFIG_ISA_ARCV2
46#define __iormb() rmb()
47#define __iowmb() wmb()
48#else
49#define __iormb() do { } while (0)
50#define __iowmb() do { } while (0)
51#endif
52
Alexey Brodkin6207e882015-11-10 11:13:42 +030053/*
54 * Given a physical address and a length, return a virtual address
55 * that can be used to access the memory range with the caching
56 * properties specified by "flags".
57 */
58#define MAP_NOCACHE (0)
59#define MAP_WRCOMBINE (0)
60#define MAP_WRBACK (0)
61#define MAP_WRTHROUGH (0)
62
63static inline void *
64map_physmem(phys_addr_t paddr, unsigned long len, unsigned long flags)
65{
66 return (void *)((unsigned long)paddr);
67}
68
69/*
70 * Take down a mapping set up by map_physmem().
71 */
72static inline void unmap_physmem(void *vaddr, unsigned long flags)
73{
74
75}
76
Alexey Brodkin544c5f52014-02-04 12:56:13 +040077static inline void sync(void)
78{
79 /* Not yet implemented */
80}
81
82static inline u8 __raw_readb(const volatile void __iomem *addr)
83{
84 u8 b;
85
86 __asm__ __volatile__("ldb%U1 %0, %1\n"
87 : "=r" (b)
88 : "m" (*(volatile u8 __force *)addr)
89 : "memory");
90 return b;
91}
92
93static inline u16 __raw_readw(const volatile void __iomem *addr)
94{
95 u16 s;
96
97 __asm__ __volatile__("ldw%U1 %0, %1\n"
98 : "=r" (s)
99 : "m" (*(volatile u16 __force *)addr)
100 : "memory");
101 return s;
102}
103
104static inline u32 __raw_readl(const volatile void __iomem *addr)
105{
106 u32 w;
107
108 __asm__ __volatile__("ld%U1 %0, %1\n"
109 : "=r" (w)
110 : "m" (*(volatile u32 __force *)addr)
111 : "memory");
112 return w;
113}
114
Alexey Brodkin544c5f52014-02-04 12:56:13 +0400115static inline void __raw_writeb(u8 b, volatile void __iomem *addr)
116{
117 __asm__ __volatile__("stb%U1 %0, %1\n"
118 :
119 : "r" (b), "m" (*(volatile u8 __force *)addr)
120 : "memory");
121}
122
123static inline void __raw_writew(u16 s, volatile void __iomem *addr)
124{
125 __asm__ __volatile__("stw%U1 %0, %1\n"
126 :
127 : "r" (s), "m" (*(volatile u16 __force *)addr)
128 : "memory");
129}
130
131static inline void __raw_writel(u32 w, volatile void __iomem *addr)
132{
133 __asm__ __volatile__("st%U1 %0, %1\n"
134 :
135 : "r" (w), "m" (*(volatile u32 __force *)addr)
136 : "memory");
137}
138
Alexey Brodkin544c5f52014-02-04 12:56:13 +0400139static inline int __raw_readsb(unsigned int addr, void *data, int bytelen)
140{
141 __asm__ __volatile__ ("1:ld.di r8, [r0]\n"
142 "sub.f r2, r2, 1\n"
143 "bnz.d 1b\n"
144 "stb.ab r8, [r1, 1]\n"
145 :
146 : "r" (addr), "r" (data), "r" (bytelen)
147 : "r8");
148 return bytelen;
149}
150
151static inline int __raw_readsw(unsigned int addr, void *data, int wordlen)
152{
153 __asm__ __volatile__ ("1:ld.di r8, [r0]\n"
154 "sub.f r2, r2, 1\n"
155 "bnz.d 1b\n"
156 "stw.ab r8, [r1, 2]\n"
157 :
158 : "r" (addr), "r" (data), "r" (wordlen)
159 : "r8");
160 return wordlen;
161}
162
163static inline int __raw_readsl(unsigned int addr, void *data, int longlen)
164{
165 __asm__ __volatile__ ("1:ld.di r8, [r0]\n"
166 "sub.f r2, r2, 1\n"
167 "bnz.d 1b\n"
168 "st.ab r8, [r1, 4]\n"
169 :
170 : "r" (addr), "r" (data), "r" (longlen)
171 : "r8");
172 return longlen;
173}
174
175static inline int __raw_writesb(unsigned int addr, void *data, int bytelen)
176{
177 __asm__ __volatile__ ("1:ldb.ab r8, [r1, 1]\n"
178 "sub.f r2, r2, 1\n"
179 "bnz.d 1b\n"
180 "st.di r8, [r0, 0]\n"
181 :
182 : "r" (addr), "r" (data), "r" (bytelen)
183 : "r8");
184 return bytelen;
185}
186
187static inline int __raw_writesw(unsigned int addr, void *data, int wordlen)
188{
189 __asm__ __volatile__ ("1:ldw.ab r8, [r1, 2]\n"
190 "sub.f r2, r2, 1\n"
191 "bnz.d 1b\n"
192 "st.ab.di r8, [r0, 0]\n"
193 :
194 : "r" (addr), "r" (data), "r" (wordlen)
195 : "r8");
196 return wordlen;
197}
198
199static inline int __raw_writesl(unsigned int addr, void *data, int longlen)
200{
201 __asm__ __volatile__ ("1:ld.ab r8, [r1, 4]\n"
202 "sub.f r2, r2, 1\n"
203 "bnz.d 1b\n"
204 "st.ab.di r8, [r0, 0]\n"
205 :
206 : "r" (addr), "r" (data), "r" (longlen)
207 : "r8");
208 return longlen;
209}
210
Alexey Brodkinb686ce72016-06-08 08:24:54 +0300211/*
212 * MMIO can also get buffered/optimized in micro-arch, so barriers needed
213 * Based on ARM model for the typical use case
214 *
215 * <ST [DMA buffer]>
216 * <writel MMIO "go" reg>
217 * or:
218 * <readl MMIO "status" reg>
219 * <LD [DMA buffer]>
220 *
221 * http://lkml.kernel.org/r/20150622133656.GG1583@arm.com
222 */
223#define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; })
224#define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; })
225#define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; })
226
227#define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); })
228#define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); })
229#define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); })
230
231/*
232 * Relaxed API for drivers which can handle barrier ordering themselves
233 *
234 * Also these are defined to perform little endian accesses.
235 * To provide the typical device register semantics of fixed endian,
236 * swap the byte order for Big Endian
237 *
238 * http://lkml.kernel.org/r/201603100845.30602.arnd@arndb.de
239 */
240#define readb_relaxed(c) __raw_readb(c)
241#define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \
242 __raw_readw(c)); __r; })
243#define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \
244 __raw_readl(c)); __r; })
245
246#define writeb_relaxed(v,c) __raw_writeb(v,c)
247#define writew_relaxed(v,c) __raw_writew((__force u16) cpu_to_le16(v),c)
248#define writel_relaxed(v,c) __raw_writel((__force u32) cpu_to_le32(v),c)
249
Alexey Brodkin544c5f52014-02-04 12:56:13 +0400250#define out_arch(type, endian, a, v) __raw_write##type(cpu_to_##endian(v), a)
251#define in_arch(type, endian, a) endian##_to_cpu(__raw_read##type(a))
252
253#define out_le32(a, v) out_arch(l, le32, a, v)
254#define out_le16(a, v) out_arch(w, le16, a, v)
255
256#define in_le32(a) in_arch(l, le32, a)
257#define in_le16(a) in_arch(w, le16, a)
258
259#define out_be32(a, v) out_arch(l, be32, a, v)
260#define out_be16(a, v) out_arch(w, be16, a, v)
261
262#define in_be32(a) in_arch(l, be32, a)
263#define in_be16(a) in_arch(w, be16, a)
264
265#define out_8(a, v) __raw_writeb(v, a)
266#define in_8(a) __raw_readb(a)
267
268/*
269 * Clear and set bits in one shot. These macros can be used to clear and
270 * set multiple bits in a register using a single call. These macros can
271 * also be used to set a multiple-bit bit pattern using a mask, by
272 * specifying the mask in the 'clear' parameter and the new bit pattern
273 * in the 'set' parameter.
274 */
275
276#define clrbits(type, addr, clear) \
277 out_##type((addr), in_##type(addr) & ~(clear))
278
279#define setbits(type, addr, set) \
280 out_##type((addr), in_##type(addr) | (set))
281
282#define clrsetbits(type, addr, clear, set) \
283 out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
284
285#define clrbits_be32(addr, clear) clrbits(be32, addr, clear)
286#define setbits_be32(addr, set) setbits(be32, addr, set)
287#define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
288
289#define clrbits_le32(addr, clear) clrbits(le32, addr, clear)
290#define setbits_le32(addr, set) setbits(le32, addr, set)
291#define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
292
293#define clrbits_be16(addr, clear) clrbits(be16, addr, clear)
294#define setbits_be16(addr, set) setbits(be16, addr, set)
295#define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
296
297#define clrbits_le16(addr, clear) clrbits(le16, addr, clear)
298#define setbits_le16(addr, set) setbits(le16, addr, set)
299#define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
300
301#define clrbits_8(addr, clear) clrbits(8, addr, clear)
302#define setbits_8(addr, set) setbits(8, addr, set)
303#define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
304
Alexey Brodkincc2ea6c2016-04-08 09:21:12 -0700305static inline phys_addr_t virt_to_phys(void *vaddr)
306{
307 return (phys_addr_t)((unsigned long)vaddr);
308}
309
Alexey Brodkin544c5f52014-02-04 12:56:13 +0400310#endif /* __ASM_ARC_IO_H */