Abdellatif El Khlifi | e1ab990 | 2023-04-17 10:11:58 +0100 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * Functional tests for UCLASS_FFA class |
| 4 | * |
| 5 | * Copyright 2023 Arm Limited and/or its affiliates <open-source-office@arm.com> |
| 6 | * |
| 7 | * Authors: |
| 8 | * Abdellatif El Khlifi <abdellatif.elkhlifi@arm.com> |
| 9 | */ |
| 10 | |
Abdellatif El Khlifi | e1ab990 | 2023-04-17 10:11:58 +0100 | [diff] [blame] | 11 | #include <blk.h> |
| 12 | #include <console.h> |
| 13 | #include <dm.h> |
| 14 | #include <mapmem.h> |
| 15 | #include <dm/test.h> |
| 16 | #include <linux/bitops.h> |
| 17 | #include <test/test.h> |
| 18 | #include <test/ut.h> |
Rui Miguel Silva | d5cf7a0 | 2023-06-12 09:09:16 +0100 | [diff] [blame] | 19 | #include <nvmxip.h> |
Abdellatif El Khlifi | e1ab990 | 2023-04-17 10:11:58 +0100 | [diff] [blame] | 20 | |
| 21 | /* NVMXIP devices described in the device tree */ |
| 22 | #define SANDBOX_NVMXIP_DEVICES 2 |
| 23 | |
| 24 | /* reference device tree data for the probed devices */ |
| 25 | static struct nvmxip_plat nvmqspi_refdata[SANDBOX_NVMXIP_DEVICES] = { |
| 26 | {0x08000000, 9, 4096}, {0x08200000, 9, 2048} |
| 27 | }; |
| 28 | |
| 29 | #define NVMXIP_BLK_START_PATTERN 0x1122334455667788ULL |
| 30 | #define NVMXIP_BLK_END_PATTERN 0xa1a2a3a4a5a6a7a8ULL |
| 31 | |
| 32 | /** |
| 33 | * dm_nvmxip_flash_sanity() - check flash data |
| 34 | * @uts: test state |
| 35 | * @device_idx: the NVMXIP device index |
| 36 | * @buffer: the user buffer where the blocks data is copied to |
| 37 | * |
| 38 | * Mode 1: When buffer is NULL, initialize the flash with pattern data at the start |
| 39 | * and at the end of each block. This pattern data will be used to check data consistency |
| 40 | * when verifying the data read. |
| 41 | * Mode 2: When the user buffer is provided in the argument (not NULL), compare the data |
| 42 | * of the start and the end of each block in the user buffer with the expected pattern data. |
| 43 | * Return an error when the check fails. |
| 44 | * |
| 45 | * Return: |
| 46 | * |
| 47 | * 0 on success. Otherwise, failure |
| 48 | */ |
| 49 | static int dm_nvmxip_flash_sanity(struct unit_test_state *uts, u8 device_idx, void *buffer) |
| 50 | { |
| 51 | int i; |
| 52 | u64 *ptr; |
| 53 | u8 *base; |
| 54 | unsigned long blksz; |
| 55 | |
| 56 | blksz = BIT(nvmqspi_refdata[device_idx].lba_shift); |
| 57 | |
| 58 | if (!buffer) { |
| 59 | /* Mode 1: point at the flash start address. Pattern data will be written */ |
| 60 | base = map_sysmem(nvmqspi_refdata[device_idx].phys_base, 0); |
| 61 | } else { |
| 62 | /* Mode 2: point at the user buffer containing the data read and to be verified */ |
| 63 | base = buffer; |
| 64 | } |
| 65 | |
| 66 | for (i = 0; i < nvmqspi_refdata[device_idx].lba ; i++) { |
| 67 | ptr = (u64 *)(base + i * blksz); |
| 68 | |
| 69 | /* write an 8 bytes pattern at the start of the current block */ |
| 70 | if (!buffer) |
| 71 | *ptr = NVMXIP_BLK_START_PATTERN; |
| 72 | else |
| 73 | ut_asserteq_64(NVMXIP_BLK_START_PATTERN, *ptr); |
| 74 | |
| 75 | ptr = (u64 *)((u8 *)ptr + blksz - sizeof(u64)); |
| 76 | |
| 77 | /* write an 8 bytes pattern at the end of the current block */ |
| 78 | if (!buffer) |
| 79 | *ptr = NVMXIP_BLK_END_PATTERN; |
| 80 | else |
| 81 | ut_asserteq_64(NVMXIP_BLK_END_PATTERN, *ptr); |
| 82 | } |
| 83 | |
| 84 | if (!buffer) |
| 85 | unmap_sysmem(base); |
| 86 | |
| 87 | return 0; |
| 88 | } |
| 89 | |
| 90 | /** |
| 91 | * dm_test_nvmxip() - check flash data |
| 92 | * @uts: test state |
| 93 | * Return: |
| 94 | * |
| 95 | * CMD_RET_SUCCESS on success. Otherwise, failure |
| 96 | */ |
| 97 | static int dm_test_nvmxip(struct unit_test_state *uts) |
| 98 | { |
| 99 | struct nvmxip_plat *plat_data = NULL; |
| 100 | struct udevice *dev = NULL, *bdev = NULL; |
| 101 | u8 device_idx; |
| 102 | void *buffer = NULL; |
| 103 | unsigned long flashsz; |
| 104 | |
Marek Vasut | a78f3b4 | 2023-08-23 02:18:20 +0200 | [diff] [blame] | 105 | sandbox_set_enable_memio(true); |
| 106 | |
Abdellatif El Khlifi | e1ab990 | 2023-04-17 10:11:58 +0100 | [diff] [blame] | 107 | /* set the flash content first for both devices */ |
| 108 | dm_nvmxip_flash_sanity(uts, 0, NULL); |
| 109 | dm_nvmxip_flash_sanity(uts, 1, NULL); |
| 110 | |
| 111 | /* probing all NVM XIP QSPI devices */ |
| 112 | for (device_idx = 0, uclass_first_device(UCLASS_NVMXIP, &dev); |
| 113 | dev; |
| 114 | uclass_next_device(&dev), device_idx++) { |
| 115 | plat_data = dev_get_plat(dev); |
| 116 | |
| 117 | /* device tree entries checks */ |
| 118 | ut_assertok(nvmqspi_refdata[device_idx].phys_base != plat_data->phys_base); |
| 119 | ut_assertok(nvmqspi_refdata[device_idx].lba_shift != plat_data->lba_shift); |
| 120 | ut_assertok(nvmqspi_refdata[device_idx].lba != plat_data->lba); |
| 121 | |
| 122 | /* before reading all the flash blocks, let's calculate the flash size */ |
| 123 | flashsz = plat_data->lba << plat_data->lba_shift; |
| 124 | |
| 125 | /* allocate the user buffer where to copy the blocks data to */ |
| 126 | buffer = calloc(flashsz, 1); |
| 127 | ut_assertok(!buffer); |
| 128 | |
| 129 | /* the block device is the child of the parent device probed with DT */ |
| 130 | ut_assertok(device_find_first_child(dev, &bdev)); |
| 131 | |
| 132 | /* reading all the flash blocks */ |
| 133 | ut_asserteq(plat_data->lba, blk_read(bdev, 0, plat_data->lba, buffer)); |
| 134 | |
| 135 | /* compare the data read from flash with the expected data */ |
| 136 | dm_nvmxip_flash_sanity(uts, device_idx, buffer); |
| 137 | |
| 138 | free(buffer); |
| 139 | } |
| 140 | |
| 141 | ut_assertok(device_idx != SANDBOX_NVMXIP_DEVICES); |
| 142 | |
| 143 | return CMD_RET_SUCCESS; |
| 144 | } |
| 145 | |
Simon Glass | 1a92f83 | 2024-08-22 07:57:48 -0600 | [diff] [blame^] | 146 | DM_TEST(dm_test_nvmxip, UTF_SCAN_FDT | UTF_CONSOLE_REC); |