blob: e8b8f168380464ae015f20d328a9b0ab43b3209d [file] [log] [blame]
Tom Rini10e47792018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
Stefan Roese2fc10f62009-03-19 15:35:05 +01002/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
Stefan Roese2fc10f62009-03-19 15:35:05 +01007 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
9 */
10
11/*
12 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
13 * the UBIFS B-tree.
14 *
15 * At the moment the locking rules of the TNC tree are quite simple and
16 * straightforward. We just have a mutex and lock it when we traverse the
17 * tree. If a znode is not in memory, we read it from flash while still having
18 * the mutex locked.
19 */
20
Heiko Schocherf5895d12014-06-24 10:10:04 +020021#ifndef __UBOOT__
Simon Glass0f2af882020-05-10 11:40:05 -060022#include <log.h>
Simon Glassd66c5f72020-02-03 07:36:15 -070023#include <dm/devres.h>
Heiko Schocherf5895d12014-06-24 10:10:04 +020024#include <linux/crc32.h>
25#include <linux/slab.h>
Simon Glass48b6c6b2019-11-14 12:57:16 -070026#include <u-boot/crc.h>
Heiko Schocherf5895d12014-06-24 10:10:04 +020027#else
Simon Glass4dcacfc2020-05-10 11:40:13 -060028#include <linux/bitops.h>
Simon Glassc06c1be2020-05-10 11:40:08 -060029#include <linux/bug.h>
Heiko Schocherf5895d12014-06-24 10:10:04 +020030#include <linux/compat.h>
31#include <linux/err.h>
32#include <linux/stat.h>
33#endif
Stefan Roese2fc10f62009-03-19 15:35:05 +010034#include "ubifs.h"
35
36/*
37 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
38 * @NAME_LESS: name corresponding to the first argument is less than second
39 * @NAME_MATCHES: names match
40 * @NAME_GREATER: name corresponding to the second argument is greater than
41 * first
42 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
43 *
44 * These constants were introduce to improve readability.
45 */
46enum {
47 NAME_LESS = 0,
48 NAME_MATCHES = 1,
49 NAME_GREATER = 2,
50 NOT_ON_MEDIA = 3,
51};
52
53/**
54 * insert_old_idx - record an index node obsoleted since the last commit start.
55 * @c: UBIFS file-system description object
56 * @lnum: LEB number of obsoleted index node
57 * @offs: offset of obsoleted index node
58 *
59 * Returns %0 on success, and a negative error code on failure.
60 *
61 * For recovery, there must always be a complete intact version of the index on
62 * flash at all times. That is called the "old index". It is the index as at the
63 * time of the last successful commit. Many of the index nodes in the old index
64 * may be dirty, but they must not be erased until the next successful commit
65 * (at which point that index becomes the old index).
66 *
67 * That means that the garbage collection and the in-the-gaps method of
68 * committing must be able to determine if an index node is in the old index.
69 * Most of the old index nodes can be found by looking up the TNC using the
70 * 'lookup_znode()' function. However, some of the old index nodes may have
71 * been deleted from the current index or may have been changed so much that
72 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
73 * That is what this function does. The RB-tree is ordered by LEB number and
74 * offset because they uniquely identify the old index node.
75 */
76static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
77{
78 struct ubifs_old_idx *old_idx, *o;
79 struct rb_node **p, *parent = NULL;
80
81 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
82 if (unlikely(!old_idx))
83 return -ENOMEM;
84 old_idx->lnum = lnum;
85 old_idx->offs = offs;
86
87 p = &c->old_idx.rb_node;
88 while (*p) {
89 parent = *p;
90 o = rb_entry(parent, struct ubifs_old_idx, rb);
91 if (lnum < o->lnum)
92 p = &(*p)->rb_left;
93 else if (lnum > o->lnum)
94 p = &(*p)->rb_right;
95 else if (offs < o->offs)
96 p = &(*p)->rb_left;
97 else if (offs > o->offs)
98 p = &(*p)->rb_right;
99 else {
Heiko Schocher94b66de2015-10-22 06:19:21 +0200100 ubifs_err(c, "old idx added twice!");
Stefan Roese2fc10f62009-03-19 15:35:05 +0100101 kfree(old_idx);
102 return 0;
103 }
104 }
105 rb_link_node(&old_idx->rb, parent, p);
106 rb_insert_color(&old_idx->rb, &c->old_idx);
107 return 0;
108}
109
110/**
111 * insert_old_idx_znode - record a znode obsoleted since last commit start.
112 * @c: UBIFS file-system description object
113 * @znode: znode of obsoleted index node
114 *
115 * Returns %0 on success, and a negative error code on failure.
116 */
117int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
118{
119 if (znode->parent) {
120 struct ubifs_zbranch *zbr;
121
122 zbr = &znode->parent->zbranch[znode->iip];
123 if (zbr->len)
124 return insert_old_idx(c, zbr->lnum, zbr->offs);
125 } else
126 if (c->zroot.len)
127 return insert_old_idx(c, c->zroot.lnum,
128 c->zroot.offs);
129 return 0;
130}
131
132/**
133 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
134 * @c: UBIFS file-system description object
135 * @znode: znode of obsoleted index node
136 *
137 * Returns %0 on success, and a negative error code on failure.
138 */
139static int ins_clr_old_idx_znode(struct ubifs_info *c,
140 struct ubifs_znode *znode)
141{
142 int err;
143
144 if (znode->parent) {
145 struct ubifs_zbranch *zbr;
146
147 zbr = &znode->parent->zbranch[znode->iip];
148 if (zbr->len) {
149 err = insert_old_idx(c, zbr->lnum, zbr->offs);
150 if (err)
151 return err;
152 zbr->lnum = 0;
153 zbr->offs = 0;
154 zbr->len = 0;
155 }
156 } else
157 if (c->zroot.len) {
158 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
159 if (err)
160 return err;
161 c->zroot.lnum = 0;
162 c->zroot.offs = 0;
163 c->zroot.len = 0;
164 }
165 return 0;
166}
167
168/**
169 * destroy_old_idx - destroy the old_idx RB-tree.
170 * @c: UBIFS file-system description object
171 *
172 * During start commit, the old_idx RB-tree is used to avoid overwriting index
173 * nodes that were in the index last commit but have since been deleted. This
174 * is necessary for recovery i.e. the old index must be kept intact until the
175 * new index is successfully written. The old-idx RB-tree is used for the
176 * in-the-gaps method of writing index nodes and is destroyed every commit.
177 */
178void destroy_old_idx(struct ubifs_info *c)
179{
Heiko Schocherf5895d12014-06-24 10:10:04 +0200180 struct ubifs_old_idx *old_idx, *n;
Stefan Roese2fc10f62009-03-19 15:35:05 +0100181
Heiko Schocherf5895d12014-06-24 10:10:04 +0200182 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
Stefan Roese2fc10f62009-03-19 15:35:05 +0100183 kfree(old_idx);
Heiko Schocherf5895d12014-06-24 10:10:04 +0200184
Stefan Roese2fc10f62009-03-19 15:35:05 +0100185 c->old_idx = RB_ROOT;
186}
187
188/**
189 * copy_znode - copy a dirty znode.
190 * @c: UBIFS file-system description object
191 * @znode: znode to copy
192 *
193 * A dirty znode being committed may not be changed, so it is copied.
194 */
195static struct ubifs_znode *copy_znode(struct ubifs_info *c,
196 struct ubifs_znode *znode)
197{
198 struct ubifs_znode *zn;
199
200 zn = kmalloc(c->max_znode_sz, GFP_NOFS);
201 if (unlikely(!zn))
202 return ERR_PTR(-ENOMEM);
203
204 memcpy(zn, znode, c->max_znode_sz);
205 zn->cnext = NULL;
206 __set_bit(DIRTY_ZNODE, &zn->flags);
207 __clear_bit(COW_ZNODE, &zn->flags);
208
Heiko Schocherf5895d12014-06-24 10:10:04 +0200209 ubifs_assert(!ubifs_zn_obsolete(znode));
Stefan Roese2fc10f62009-03-19 15:35:05 +0100210 __set_bit(OBSOLETE_ZNODE, &znode->flags);
211
212 if (znode->level != 0) {
213 int i;
214 const int n = zn->child_cnt;
215
216 /* The children now have new parent */
217 for (i = 0; i < n; i++) {
218 struct ubifs_zbranch *zbr = &zn->zbranch[i];
219
220 if (zbr->znode)
221 zbr->znode->parent = zn;
222 }
223 }
224
225 atomic_long_inc(&c->dirty_zn_cnt);
226 return zn;
227}
228
229/**
230 * add_idx_dirt - add dirt due to a dirty znode.
231 * @c: UBIFS file-system description object
232 * @lnum: LEB number of index node
233 * @dirt: size of index node
234 *
235 * This function updates lprops dirty space and the new size of the index.
236 */
237static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
238{
239 c->calc_idx_sz -= ALIGN(dirt, 8);
240 return ubifs_add_dirt(c, lnum, dirt);
241}
242
243/**
244 * dirty_cow_znode - ensure a znode is not being committed.
245 * @c: UBIFS file-system description object
246 * @zbr: branch of znode to check
247 *
248 * Returns dirtied znode on success or negative error code on failure.
249 */
250static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
251 struct ubifs_zbranch *zbr)
252{
253 struct ubifs_znode *znode = zbr->znode;
254 struct ubifs_znode *zn;
255 int err;
256
Heiko Schocherf5895d12014-06-24 10:10:04 +0200257 if (!ubifs_zn_cow(znode)) {
Stefan Roese2fc10f62009-03-19 15:35:05 +0100258 /* znode is not being committed */
259 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
260 atomic_long_inc(&c->dirty_zn_cnt);
261 atomic_long_dec(&c->clean_zn_cnt);
262 atomic_long_dec(&ubifs_clean_zn_cnt);
263 err = add_idx_dirt(c, zbr->lnum, zbr->len);
264 if (unlikely(err))
265 return ERR_PTR(err);
266 }
267 return znode;
268 }
269
270 zn = copy_znode(c, znode);
271 if (IS_ERR(zn))
272 return zn;
273
274 if (zbr->len) {
275 err = insert_old_idx(c, zbr->lnum, zbr->offs);
276 if (unlikely(err))
277 return ERR_PTR(err);
278 err = add_idx_dirt(c, zbr->lnum, zbr->len);
279 } else
280 err = 0;
281
282 zbr->znode = zn;
283 zbr->lnum = 0;
284 zbr->offs = 0;
285 zbr->len = 0;
286
287 if (unlikely(err))
288 return ERR_PTR(err);
289 return zn;
290}
291
292/**
293 * lnc_add - add a leaf node to the leaf node cache.
294 * @c: UBIFS file-system description object
295 * @zbr: zbranch of leaf node
296 * @node: leaf node
297 *
298 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
299 * purpose of the leaf node cache is to save re-reading the same leaf node over
300 * and over again. Most things are cached by VFS, however the file system must
301 * cache directory entries for readdir and for resolving hash collisions. The
302 * present implementation of the leaf node cache is extremely simple, and
303 * allows for error returns that are not used but that may be needed if a more
304 * complex implementation is created.
305 *
306 * Note, this function does not add the @node object to LNC directly, but
307 * allocates a copy of the object and adds the copy to LNC. The reason for this
308 * is that @node has been allocated outside of the TNC subsystem and will be
309 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
310 * may be changed at any time, e.g. freed by the shrinker.
311 */
312static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
313 const void *node)
314{
315 int err;
316 void *lnc_node;
317 const struct ubifs_dent_node *dent = node;
318
319 ubifs_assert(!zbr->leaf);
320 ubifs_assert(zbr->len != 0);
321 ubifs_assert(is_hash_key(c, &zbr->key));
322
323 err = ubifs_validate_entry(c, dent);
324 if (err) {
Heiko Schocherf5895d12014-06-24 10:10:04 +0200325 dump_stack();
326 ubifs_dump_node(c, dent);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100327 return err;
328 }
329
Heiko Schocherf5895d12014-06-24 10:10:04 +0200330 lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100331 if (!lnc_node)
332 /* We don't have to have the cache, so no error */
333 return 0;
334
Stefan Roese2fc10f62009-03-19 15:35:05 +0100335 zbr->leaf = lnc_node;
336 return 0;
337}
338
339 /**
340 * lnc_add_directly - add a leaf node to the leaf-node-cache.
341 * @c: UBIFS file-system description object
342 * @zbr: zbranch of leaf node
343 * @node: leaf node
344 *
345 * This function is similar to 'lnc_add()', but it does not create a copy of
346 * @node but inserts @node to TNC directly.
347 */
348static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
349 void *node)
350{
351 int err;
352
353 ubifs_assert(!zbr->leaf);
354 ubifs_assert(zbr->len != 0);
355
356 err = ubifs_validate_entry(c, node);
357 if (err) {
Heiko Schocherf5895d12014-06-24 10:10:04 +0200358 dump_stack();
359 ubifs_dump_node(c, node);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100360 return err;
361 }
362
363 zbr->leaf = node;
364 return 0;
365}
366
367/**
368 * lnc_free - remove a leaf node from the leaf node cache.
369 * @zbr: zbranch of leaf node
370 * @node: leaf node
371 */
372static void lnc_free(struct ubifs_zbranch *zbr)
373{
374 if (!zbr->leaf)
375 return;
376 kfree(zbr->leaf);
377 zbr->leaf = NULL;
378}
379
380/**
381 * tnc_read_node_nm - read a "hashed" leaf node.
382 * @c: UBIFS file-system description object
383 * @zbr: key and position of the node
384 * @node: node is returned here
385 *
386 * This function reads a "hashed" node defined by @zbr from the leaf node cache
387 * (in it is there) or from the hash media, in which case the node is also
388 * added to LNC. Returns zero in case of success or a negative negative error
389 * code in case of failure.
390 */
391static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
392 void *node)
393{
394 int err;
395
396 ubifs_assert(is_hash_key(c, &zbr->key));
397
398 if (zbr->leaf) {
399 /* Read from the leaf node cache */
400 ubifs_assert(zbr->len != 0);
401 memcpy(node, zbr->leaf, zbr->len);
402 return 0;
403 }
404
405 err = ubifs_tnc_read_node(c, zbr, node);
406 if (err)
407 return err;
408
409 /* Add the node to the leaf node cache */
410 err = lnc_add(c, zbr, node);
411 return err;
412}
413
414/**
415 * try_read_node - read a node if it is a node.
416 * @c: UBIFS file-system description object
417 * @buf: buffer to read to
418 * @type: node type
419 * @len: node length (not aligned)
420 * @lnum: LEB number of node to read
421 * @offs: offset of node to read
422 *
423 * This function tries to read a node of known type and length, checks it and
424 * stores it in @buf. This function returns %1 if a node is present and %0 if
425 * a node is not present. A negative error code is returned for I/O errors.
426 * This function performs that same function as ubifs_read_node except that
427 * it does not require that there is actually a node present and instead
428 * the return code indicates if a node was read.
429 *
430 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
431 * is true (it is controlled by corresponding mount option). However, if
Heiko Schocherf5895d12014-06-24 10:10:04 +0200432 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
433 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
434 * because during mounting or re-mounting from R/O mode to R/W mode we may read
435 * journal nodes (when replying the journal or doing the recovery) and the
436 * journal nodes may potentially be corrupted, so checking is required.
Stefan Roese2fc10f62009-03-19 15:35:05 +0100437 */
438static int try_read_node(const struct ubifs_info *c, void *buf, int type,
439 int len, int lnum, int offs)
440{
441 int err, node_len;
442 struct ubifs_ch *ch = buf;
443 uint32_t crc, node_crc;
444
445 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
446
Heiko Schocherf5895d12014-06-24 10:10:04 +0200447 err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100448 if (err) {
Heiko Schocher94b66de2015-10-22 06:19:21 +0200449 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
Stefan Roese2fc10f62009-03-19 15:35:05 +0100450 type, lnum, offs, err);
451 return err;
452 }
453
454 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
455 return 0;
456
457 if (ch->node_type != type)
458 return 0;
459
460 node_len = le32_to_cpu(ch->len);
461 if (node_len != len)
462 return 0;
463
Heiko Schocherf5895d12014-06-24 10:10:04 +0200464 if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
465 !c->remounting_rw)
Stefan Roese2fc10f62009-03-19 15:35:05 +0100466 return 1;
467
468 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
469 node_crc = le32_to_cpu(ch->crc);
470 if (crc != node_crc)
471 return 0;
472
473 return 1;
474}
475
476/**
477 * fallible_read_node - try to read a leaf node.
478 * @c: UBIFS file-system description object
479 * @key: key of node to read
480 * @zbr: position of node
481 * @node: node returned
482 *
483 * This function tries to read a node and returns %1 if the node is read, %0
484 * if the node is not present, and a negative error code in the case of error.
485 */
486static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
487 struct ubifs_zbranch *zbr, void *node)
488{
489 int ret;
490
Heiko Schocherf5895d12014-06-24 10:10:04 +0200491 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100492
493 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
494 zbr->offs);
495 if (ret == 1) {
496 union ubifs_key node_key;
497 struct ubifs_dent_node *dent = node;
498
499 /* All nodes have key in the same place */
500 key_read(c, &dent->key, &node_key);
501 if (keys_cmp(c, key, &node_key) != 0)
502 ret = 0;
503 }
504 if (ret == 0 && c->replaying)
Heiko Schocherf5895d12014-06-24 10:10:04 +0200505 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
506 zbr->lnum, zbr->offs, zbr->len);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100507 return ret;
508}
509
510/**
511 * matches_name - determine if a direntry or xattr entry matches a given name.
512 * @c: UBIFS file-system description object
513 * @zbr: zbranch of dent
514 * @nm: name to match
515 *
516 * This function checks if xentry/direntry referred by zbranch @zbr matches name
517 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
518 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
519 * of failure, a negative error code is returned.
520 */
521static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
522 const struct qstr *nm)
523{
524 struct ubifs_dent_node *dent;
525 int nlen, err;
526
527 /* If possible, match against the dent in the leaf node cache */
528 if (!zbr->leaf) {
529 dent = kmalloc(zbr->len, GFP_NOFS);
530 if (!dent)
531 return -ENOMEM;
532
533 err = ubifs_tnc_read_node(c, zbr, dent);
534 if (err)
535 goto out_free;
536
537 /* Add the node to the leaf node cache */
538 err = lnc_add_directly(c, zbr, dent);
539 if (err)
540 goto out_free;
541 } else
542 dent = zbr->leaf;
543
544 nlen = le16_to_cpu(dent->nlen);
545 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
546 if (err == 0) {
547 if (nlen == nm->len)
548 return NAME_MATCHES;
549 else if (nlen < nm->len)
550 return NAME_LESS;
551 else
552 return NAME_GREATER;
553 } else if (err < 0)
554 return NAME_LESS;
555 else
556 return NAME_GREATER;
557
558out_free:
559 kfree(dent);
560 return err;
561}
562
563/**
564 * get_znode - get a TNC znode that may not be loaded yet.
565 * @c: UBIFS file-system description object
566 * @znode: parent znode
567 * @n: znode branch slot number
568 *
569 * This function returns the znode or a negative error code.
570 */
571static struct ubifs_znode *get_znode(struct ubifs_info *c,
572 struct ubifs_znode *znode, int n)
573{
574 struct ubifs_zbranch *zbr;
575
576 zbr = &znode->zbranch[n];
577 if (zbr->znode)
578 znode = zbr->znode;
579 else
580 znode = ubifs_load_znode(c, zbr, znode, n);
581 return znode;
582}
583
584/**
585 * tnc_next - find next TNC entry.
586 * @c: UBIFS file-system description object
587 * @zn: znode is passed and returned here
588 * @n: znode branch slot number is passed and returned here
589 *
590 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
591 * no next entry, or a negative error code otherwise.
592 */
593static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
594{
595 struct ubifs_znode *znode = *zn;
596 int nn = *n;
597
598 nn += 1;
599 if (nn < znode->child_cnt) {
600 *n = nn;
601 return 0;
602 }
603 while (1) {
604 struct ubifs_znode *zp;
605
606 zp = znode->parent;
607 if (!zp)
608 return -ENOENT;
609 nn = znode->iip + 1;
610 znode = zp;
611 if (nn < znode->child_cnt) {
612 znode = get_znode(c, znode, nn);
613 if (IS_ERR(znode))
614 return PTR_ERR(znode);
615 while (znode->level != 0) {
616 znode = get_znode(c, znode, 0);
617 if (IS_ERR(znode))
618 return PTR_ERR(znode);
619 }
620 nn = 0;
621 break;
622 }
623 }
624 *zn = znode;
625 *n = nn;
626 return 0;
627}
628
629/**
630 * tnc_prev - find previous TNC entry.
631 * @c: UBIFS file-system description object
632 * @zn: znode is returned here
633 * @n: znode branch slot number is passed and returned here
634 *
635 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
636 * there is no next entry, or a negative error code otherwise.
637 */
638static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
639{
640 struct ubifs_znode *znode = *zn;
641 int nn = *n;
642
643 if (nn > 0) {
644 *n = nn - 1;
645 return 0;
646 }
647 while (1) {
648 struct ubifs_znode *zp;
649
650 zp = znode->parent;
651 if (!zp)
652 return -ENOENT;
653 nn = znode->iip - 1;
654 znode = zp;
655 if (nn >= 0) {
656 znode = get_znode(c, znode, nn);
657 if (IS_ERR(znode))
658 return PTR_ERR(znode);
659 while (znode->level != 0) {
660 nn = znode->child_cnt - 1;
661 znode = get_znode(c, znode, nn);
662 if (IS_ERR(znode))
663 return PTR_ERR(znode);
664 }
665 nn = znode->child_cnt - 1;
666 break;
667 }
668 }
669 *zn = znode;
670 *n = nn;
671 return 0;
672}
673
674/**
675 * resolve_collision - resolve a collision.
676 * @c: UBIFS file-system description object
677 * @key: key of a directory or extended attribute entry
678 * @zn: znode is returned here
679 * @n: zbranch number is passed and returned here
680 * @nm: name of the entry
681 *
682 * This function is called for "hashed" keys to make sure that the found key
683 * really corresponds to the looked up node (directory or extended attribute
684 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
685 * %0 is returned if @nm is not found and @zn and @n are set to the previous
686 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
687 * This means that @n may be set to %-1 if the leftmost key in @zn is the
688 * previous one. A negative error code is returned on failures.
689 */
690static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
691 struct ubifs_znode **zn, int *n,
692 const struct qstr *nm)
693{
694 int err;
695
696 err = matches_name(c, &(*zn)->zbranch[*n], nm);
697 if (unlikely(err < 0))
698 return err;
699 if (err == NAME_MATCHES)
700 return 1;
701
702 if (err == NAME_GREATER) {
703 /* Look left */
704 while (1) {
705 err = tnc_prev(c, zn, n);
706 if (err == -ENOENT) {
707 ubifs_assert(*n == 0);
708 *n = -1;
709 return 0;
710 }
711 if (err < 0)
712 return err;
713 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
714 /*
715 * We have found the branch after which we would
716 * like to insert, but inserting in this znode
717 * may still be wrong. Consider the following 3
718 * znodes, in the case where we are resolving a
719 * collision with Key2.
720 *
721 * znode zp
722 * ----------------------
723 * level 1 | Key0 | Key1 |
724 * -----------------------
725 * | |
726 * znode za | | znode zb
727 * ------------ ------------
728 * level 0 | Key0 | | Key2 |
729 * ------------ ------------
730 *
731 * The lookup finds Key2 in znode zb. Lets say
732 * there is no match and the name is greater so
733 * we look left. When we find Key0, we end up
734 * here. If we return now, we will insert into
735 * znode za at slot n = 1. But that is invalid
736 * according to the parent's keys. Key2 must
737 * be inserted into znode zb.
738 *
739 * Note, this problem is not relevant for the
740 * case when we go right, because
741 * 'tnc_insert()' would correct the parent key.
742 */
743 if (*n == (*zn)->child_cnt - 1) {
744 err = tnc_next(c, zn, n);
745 if (err) {
746 /* Should be impossible */
747 ubifs_assert(0);
748 if (err == -ENOENT)
749 err = -EINVAL;
750 return err;
751 }
752 ubifs_assert(*n == 0);
753 *n = -1;
754 }
755 return 0;
756 }
757 err = matches_name(c, &(*zn)->zbranch[*n], nm);
758 if (err < 0)
759 return err;
760 if (err == NAME_LESS)
761 return 0;
762 if (err == NAME_MATCHES)
763 return 1;
764 ubifs_assert(err == NAME_GREATER);
765 }
766 } else {
767 int nn = *n;
768 struct ubifs_znode *znode = *zn;
769
770 /* Look right */
771 while (1) {
772 err = tnc_next(c, &znode, &nn);
773 if (err == -ENOENT)
774 return 0;
775 if (err < 0)
776 return err;
777 if (keys_cmp(c, &znode->zbranch[nn].key, key))
778 return 0;
779 err = matches_name(c, &znode->zbranch[nn], nm);
780 if (err < 0)
781 return err;
782 if (err == NAME_GREATER)
783 return 0;
784 *zn = znode;
785 *n = nn;
786 if (err == NAME_MATCHES)
787 return 1;
788 ubifs_assert(err == NAME_LESS);
789 }
790 }
791}
792
793/**
794 * fallible_matches_name - determine if a dent matches a given name.
795 * @c: UBIFS file-system description object
796 * @zbr: zbranch of dent
797 * @nm: name to match
798 *
799 * This is a "fallible" version of 'matches_name()' function which does not
800 * panic if the direntry/xentry referred by @zbr does not exist on the media.
801 *
802 * This function checks if xentry/direntry referred by zbranch @zbr matches name
803 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
804 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
805 * if xentry/direntry referred by @zbr does not exist on the media. A negative
806 * error code is returned in case of failure.
807 */
808static int fallible_matches_name(struct ubifs_info *c,
809 struct ubifs_zbranch *zbr,
810 const struct qstr *nm)
811{
812 struct ubifs_dent_node *dent;
813 int nlen, err;
814
815 /* If possible, match against the dent in the leaf node cache */
816 if (!zbr->leaf) {
817 dent = kmalloc(zbr->len, GFP_NOFS);
818 if (!dent)
819 return -ENOMEM;
820
821 err = fallible_read_node(c, &zbr->key, zbr, dent);
822 if (err < 0)
823 goto out_free;
824 if (err == 0) {
825 /* The node was not present */
826 err = NOT_ON_MEDIA;
827 goto out_free;
828 }
829 ubifs_assert(err == 1);
830
831 err = lnc_add_directly(c, zbr, dent);
832 if (err)
833 goto out_free;
834 } else
835 dent = zbr->leaf;
836
837 nlen = le16_to_cpu(dent->nlen);
838 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
839 if (err == 0) {
840 if (nlen == nm->len)
841 return NAME_MATCHES;
842 else if (nlen < nm->len)
843 return NAME_LESS;
844 else
845 return NAME_GREATER;
846 } else if (err < 0)
847 return NAME_LESS;
848 else
849 return NAME_GREATER;
850
851out_free:
852 kfree(dent);
853 return err;
854}
855
856/**
857 * fallible_resolve_collision - resolve a collision even if nodes are missing.
858 * @c: UBIFS file-system description object
859 * @key: key
860 * @zn: znode is returned here
861 * @n: branch number is passed and returned here
862 * @nm: name of directory entry
863 * @adding: indicates caller is adding a key to the TNC
864 *
865 * This is a "fallible" version of the 'resolve_collision()' function which
866 * does not panic if one of the nodes referred to by TNC does not exist on the
867 * media. This may happen when replaying the journal if a deleted node was
868 * Garbage-collected and the commit was not done. A branch that refers to a node
869 * that is not present is called a dangling branch. The following are the return
870 * codes for this function:
871 * o if @nm was found, %1 is returned and @zn and @n are set to the found
872 * branch;
873 * o if we are @adding and @nm was not found, %0 is returned;
874 * o if we are not @adding and @nm was not found, but a dangling branch was
875 * found, then %1 is returned and @zn and @n are set to the dangling branch;
876 * o a negative error code is returned in case of failure.
877 */
878static int fallible_resolve_collision(struct ubifs_info *c,
879 const union ubifs_key *key,
880 struct ubifs_znode **zn, int *n,
881 const struct qstr *nm, int adding)
882{
883 struct ubifs_znode *o_znode = NULL, *znode = *zn;
884 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
885
886 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
887 if (unlikely(cmp < 0))
888 return cmp;
889 if (cmp == NAME_MATCHES)
890 return 1;
891 if (cmp == NOT_ON_MEDIA) {
892 o_znode = znode;
893 o_n = nn;
894 /*
895 * We are unlucky and hit a dangling branch straight away.
896 * Now we do not really know where to go to find the needed
897 * branch - to the left or to the right. Well, let's try left.
898 */
899 unsure = 1;
900 } else if (!adding)
901 unsure = 1; /* Remove a dangling branch wherever it is */
902
903 if (cmp == NAME_GREATER || unsure) {
904 /* Look left */
905 while (1) {
906 err = tnc_prev(c, zn, n);
907 if (err == -ENOENT) {
908 ubifs_assert(*n == 0);
909 *n = -1;
910 break;
911 }
912 if (err < 0)
913 return err;
914 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
915 /* See comments in 'resolve_collision()' */
916 if (*n == (*zn)->child_cnt - 1) {
917 err = tnc_next(c, zn, n);
918 if (err) {
919 /* Should be impossible */
920 ubifs_assert(0);
921 if (err == -ENOENT)
922 err = -EINVAL;
923 return err;
924 }
925 ubifs_assert(*n == 0);
926 *n = -1;
927 }
928 break;
929 }
930 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
931 if (err < 0)
932 return err;
933 if (err == NAME_MATCHES)
934 return 1;
935 if (err == NOT_ON_MEDIA) {
936 o_znode = *zn;
937 o_n = *n;
938 continue;
939 }
940 if (!adding)
941 continue;
942 if (err == NAME_LESS)
943 break;
944 else
945 unsure = 0;
946 }
947 }
948
949 if (cmp == NAME_LESS || unsure) {
950 /* Look right */
951 *zn = znode;
952 *n = nn;
953 while (1) {
954 err = tnc_next(c, &znode, &nn);
955 if (err == -ENOENT)
956 break;
957 if (err < 0)
958 return err;
959 if (keys_cmp(c, &znode->zbranch[nn].key, key))
960 break;
961 err = fallible_matches_name(c, &znode->zbranch[nn], nm);
962 if (err < 0)
963 return err;
964 if (err == NAME_GREATER)
965 break;
966 *zn = znode;
967 *n = nn;
968 if (err == NAME_MATCHES)
969 return 1;
970 if (err == NOT_ON_MEDIA) {
971 o_znode = znode;
972 o_n = nn;
973 }
974 }
975 }
976
977 /* Never match a dangling branch when adding */
978 if (adding || !o_znode)
979 return 0;
980
Heiko Schocherf5895d12014-06-24 10:10:04 +0200981 dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
Stefan Roese2fc10f62009-03-19 15:35:05 +0100982 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
Heiko Schocherf5895d12014-06-24 10:10:04 +0200983 o_znode->zbranch[o_n].len);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100984 *zn = o_znode;
985 *n = o_n;
986 return 1;
987}
988
989/**
990 * matches_position - determine if a zbranch matches a given position.
991 * @zbr: zbranch of dent
992 * @lnum: LEB number of dent to match
993 * @offs: offset of dent to match
994 *
995 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
996 */
997static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
998{
999 if (zbr->lnum == lnum && zbr->offs == offs)
1000 return 1;
1001 else
1002 return 0;
1003}
1004
1005/**
1006 * resolve_collision_directly - resolve a collision directly.
1007 * @c: UBIFS file-system description object
1008 * @key: key of directory entry
1009 * @zn: znode is passed and returned here
1010 * @n: zbranch number is passed and returned here
1011 * @lnum: LEB number of dent node to match
1012 * @offs: offset of dent node to match
1013 *
1014 * This function is used for "hashed" keys to make sure the found directory or
1015 * extended attribute entry node is what was looked for. It is used when the
1016 * flash address of the right node is known (@lnum:@offs) which makes it much
1017 * easier to resolve collisions (no need to read entries and match full
1018 * names). This function returns %1 and sets @zn and @n if the collision is
1019 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1020 * previous directory entry. Otherwise a negative error code is returned.
1021 */
1022static int resolve_collision_directly(struct ubifs_info *c,
1023 const union ubifs_key *key,
1024 struct ubifs_znode **zn, int *n,
1025 int lnum, int offs)
1026{
1027 struct ubifs_znode *znode;
1028 int nn, err;
1029
1030 znode = *zn;
1031 nn = *n;
1032 if (matches_position(&znode->zbranch[nn], lnum, offs))
1033 return 1;
1034
1035 /* Look left */
1036 while (1) {
1037 err = tnc_prev(c, &znode, &nn);
1038 if (err == -ENOENT)
1039 break;
1040 if (err < 0)
1041 return err;
1042 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1043 break;
1044 if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1045 *zn = znode;
1046 *n = nn;
1047 return 1;
1048 }
1049 }
1050
1051 /* Look right */
1052 znode = *zn;
1053 nn = *n;
1054 while (1) {
1055 err = tnc_next(c, &znode, &nn);
1056 if (err == -ENOENT)
1057 return 0;
1058 if (err < 0)
1059 return err;
1060 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1061 return 0;
1062 *zn = znode;
1063 *n = nn;
1064 if (matches_position(&znode->zbranch[nn], lnum, offs))
1065 return 1;
1066 }
1067}
1068
1069/**
1070 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1071 * @c: UBIFS file-system description object
1072 * @znode: znode to dirty
1073 *
1074 * If we do not have a unique key that resides in a znode, then we cannot
1075 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1076 * This function records the path back to the last dirty ancestor, and then
1077 * dirties the znodes on that path.
1078 */
1079static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1080 struct ubifs_znode *znode)
1081{
1082 struct ubifs_znode *zp;
1083 int *path = c->bottom_up_buf, p = 0;
1084
1085 ubifs_assert(c->zroot.znode);
1086 ubifs_assert(znode);
1087 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1088 kfree(c->bottom_up_buf);
1089 c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1090 GFP_NOFS);
1091 if (!c->bottom_up_buf)
1092 return ERR_PTR(-ENOMEM);
1093 path = c->bottom_up_buf;
1094 }
1095 if (c->zroot.znode->level) {
1096 /* Go up until parent is dirty */
1097 while (1) {
1098 int n;
1099
1100 zp = znode->parent;
1101 if (!zp)
1102 break;
1103 n = znode->iip;
1104 ubifs_assert(p < c->zroot.znode->level);
1105 path[p++] = n;
1106 if (!zp->cnext && ubifs_zn_dirty(znode))
1107 break;
1108 znode = zp;
1109 }
1110 }
1111
1112 /* Come back down, dirtying as we go */
1113 while (1) {
1114 struct ubifs_zbranch *zbr;
1115
1116 zp = znode->parent;
1117 if (zp) {
1118 ubifs_assert(path[p - 1] >= 0);
1119 ubifs_assert(path[p - 1] < zp->child_cnt);
1120 zbr = &zp->zbranch[path[--p]];
1121 znode = dirty_cow_znode(c, zbr);
1122 } else {
1123 ubifs_assert(znode == c->zroot.znode);
1124 znode = dirty_cow_znode(c, &c->zroot);
1125 }
1126 if (IS_ERR(znode) || !p)
1127 break;
1128 ubifs_assert(path[p - 1] >= 0);
1129 ubifs_assert(path[p - 1] < znode->child_cnt);
1130 znode = znode->zbranch[path[p - 1]].znode;
1131 }
1132
1133 return znode;
1134}
1135
1136/**
1137 * ubifs_lookup_level0 - search for zero-level znode.
1138 * @c: UBIFS file-system description object
1139 * @key: key to lookup
1140 * @zn: znode is returned here
1141 * @n: znode branch slot number is returned here
1142 *
1143 * This function looks up the TNC tree and search for zero-level znode which
1144 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1145 * cases:
1146 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1147 * is returned and slot number of the matched branch is stored in @n;
1148 * o not exact match, which means that zero-level znode does not contain
Heiko Schocherf5895d12014-06-24 10:10:04 +02001149 * @key, then %0 is returned and slot number of the closest branch is stored
1150 * in @n;
Stefan Roese2fc10f62009-03-19 15:35:05 +01001151 * o @key is so small that it is even less than the lowest key of the
1152 * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1153 *
1154 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1155 * function reads corresponding indexing nodes and inserts them to TNC. In
1156 * case of failure, a negative error code is returned.
1157 */
1158int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1159 struct ubifs_znode **zn, int *n)
1160{
1161 int err, exact;
1162 struct ubifs_znode *znode;
1163 unsigned long time = get_seconds();
1164
Heiko Schocherf5895d12014-06-24 10:10:04 +02001165 dbg_tnck(key, "search key ");
1166 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
Stefan Roese2fc10f62009-03-19 15:35:05 +01001167
1168 znode = c->zroot.znode;
1169 if (unlikely(!znode)) {
1170 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1171 if (IS_ERR(znode))
1172 return PTR_ERR(znode);
1173 }
1174
1175 znode->time = time;
1176
1177 while (1) {
1178 struct ubifs_zbranch *zbr;
1179
1180 exact = ubifs_search_zbranch(c, znode, key, n);
1181
1182 if (znode->level == 0)
1183 break;
1184
1185 if (*n < 0)
1186 *n = 0;
1187 zbr = &znode->zbranch[*n];
1188
1189 if (zbr->znode) {
1190 znode->time = time;
1191 znode = zbr->znode;
1192 continue;
1193 }
1194
1195 /* znode is not in TNC cache, load it from the media */
1196 znode = ubifs_load_znode(c, zbr, znode, *n);
1197 if (IS_ERR(znode))
1198 return PTR_ERR(znode);
1199 }
1200
1201 *zn = znode;
1202 if (exact || !is_hash_key(c, key) || *n != -1) {
1203 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1204 return exact;
1205 }
1206
1207 /*
1208 * Here is a tricky place. We have not found the key and this is a
1209 * "hashed" key, which may collide. The rest of the code deals with
1210 * situations like this:
1211 *
1212 * | 3 | 5 |
1213 * / \
1214 * | 3 | 5 | | 6 | 7 | (x)
1215 *
1216 * Or more a complex example:
1217 *
1218 * | 1 | 5 |
1219 * / \
1220 * | 1 | 3 | | 5 | 8 |
1221 * \ /
1222 * | 5 | 5 | | 6 | 7 | (x)
1223 *
1224 * In the examples, if we are looking for key "5", we may reach nodes
1225 * marked with "(x)". In this case what we have do is to look at the
1226 * left and see if there is "5" key there. If there is, we have to
1227 * return it.
1228 *
1229 * Note, this whole situation is possible because we allow to have
1230 * elements which are equivalent to the next key in the parent in the
1231 * children of current znode. For example, this happens if we split a
1232 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1233 * like this:
1234 * | 3 | 5 |
1235 * / \
1236 * | 3 | 5 | | 5 | 6 | 7 |
1237 * ^
1238 * And this becomes what is at the first "picture" after key "5" marked
1239 * with "^" is removed. What could be done is we could prohibit
1240 * splitting in the middle of the colliding sequence. Also, when
1241 * removing the leftmost key, we would have to correct the key of the
1242 * parent node, which would introduce additional complications. Namely,
Heiko Schocherf5895d12014-06-24 10:10:04 +02001243 * if we changed the leftmost key of the parent znode, the garbage
Stefan Roese2fc10f62009-03-19 15:35:05 +01001244 * collector would be unable to find it (GC is doing this when GC'ing
1245 * indexing LEBs). Although we already have an additional RB-tree where
1246 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1247 * after the commit. But anyway, this does not look easy to implement
1248 * so we did not try this.
1249 */
1250 err = tnc_prev(c, &znode, n);
1251 if (err == -ENOENT) {
1252 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1253 *n = -1;
1254 return 0;
1255 }
1256 if (unlikely(err < 0))
1257 return err;
1258 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1259 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1260 *n = -1;
1261 return 0;
1262 }
1263
1264 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1265 *zn = znode;
1266 return 1;
1267}
1268
1269/**
1270 * lookup_level0_dirty - search for zero-level znode dirtying.
1271 * @c: UBIFS file-system description object
1272 * @key: key to lookup
1273 * @zn: znode is returned here
1274 * @n: znode branch slot number is returned here
1275 *
1276 * This function looks up the TNC tree and search for zero-level znode which
1277 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1278 * cases:
1279 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1280 * is returned and slot number of the matched branch is stored in @n;
1281 * o not exact match, which means that zero-level znode does not contain @key
1282 * then %0 is returned and slot number of the closed branch is stored in
1283 * @n;
1284 * o @key is so small that it is even less than the lowest key of the
1285 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1286 *
1287 * Additionally all znodes in the path from the root to the located zero-level
1288 * znode are marked as dirty.
1289 *
1290 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1291 * function reads corresponding indexing nodes and inserts them to TNC. In
1292 * case of failure, a negative error code is returned.
1293 */
1294static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1295 struct ubifs_znode **zn, int *n)
1296{
1297 int err, exact;
1298 struct ubifs_znode *znode;
1299 unsigned long time = get_seconds();
1300
Heiko Schocherf5895d12014-06-24 10:10:04 +02001301 dbg_tnck(key, "search and dirty key ");
Stefan Roese2fc10f62009-03-19 15:35:05 +01001302
1303 znode = c->zroot.znode;
1304 if (unlikely(!znode)) {
1305 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1306 if (IS_ERR(znode))
1307 return PTR_ERR(znode);
1308 }
1309
1310 znode = dirty_cow_znode(c, &c->zroot);
1311 if (IS_ERR(znode))
1312 return PTR_ERR(znode);
1313
1314 znode->time = time;
1315
1316 while (1) {
1317 struct ubifs_zbranch *zbr;
1318
1319 exact = ubifs_search_zbranch(c, znode, key, n);
1320
1321 if (znode->level == 0)
1322 break;
1323
1324 if (*n < 0)
1325 *n = 0;
1326 zbr = &znode->zbranch[*n];
1327
1328 if (zbr->znode) {
1329 znode->time = time;
1330 znode = dirty_cow_znode(c, zbr);
1331 if (IS_ERR(znode))
1332 return PTR_ERR(znode);
1333 continue;
1334 }
1335
1336 /* znode is not in TNC cache, load it from the media */
1337 znode = ubifs_load_znode(c, zbr, znode, *n);
1338 if (IS_ERR(znode))
1339 return PTR_ERR(znode);
1340 znode = dirty_cow_znode(c, zbr);
1341 if (IS_ERR(znode))
1342 return PTR_ERR(znode);
1343 }
1344
1345 *zn = znode;
1346 if (exact || !is_hash_key(c, key) || *n != -1) {
1347 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1348 return exact;
1349 }
1350
1351 /*
1352 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1353 * code.
1354 */
1355 err = tnc_prev(c, &znode, n);
1356 if (err == -ENOENT) {
1357 *n = -1;
1358 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1359 return 0;
1360 }
1361 if (unlikely(err < 0))
1362 return err;
1363 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1364 *n = -1;
1365 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1366 return 0;
1367 }
1368
1369 if (znode->cnext || !ubifs_zn_dirty(znode)) {
1370 znode = dirty_cow_bottom_up(c, znode);
1371 if (IS_ERR(znode))
1372 return PTR_ERR(znode);
1373 }
1374
1375 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1376 *zn = znode;
1377 return 1;
1378}
1379
1380/**
1381 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1382 * @c: UBIFS file-system description object
1383 * @lnum: LEB number
1384 * @gc_seq1: garbage collection sequence number
1385 *
1386 * This function determines if @lnum may have been garbage collected since
1387 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1388 * %0 is returned.
1389 */
1390static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1391{
Heiko Schocherf5895d12014-06-24 10:10:04 +02001392#ifndef __UBOOT__
1393 int gc_seq2, gced_lnum;
1394
1395 gced_lnum = c->gced_lnum;
1396 smp_rmb();
1397 gc_seq2 = c->gc_seq;
1398 /* Same seq means no GC */
1399 if (gc_seq1 == gc_seq2)
1400 return 0;
1401 /* Different by more than 1 means we don't know */
1402 if (gc_seq1 + 1 != gc_seq2)
1403 return 1;
Stefan Roese2fc10f62009-03-19 15:35:05 +01001404 /*
Heiko Schocherf5895d12014-06-24 10:10:04 +02001405 * We have seen the sequence number has increased by 1. Now we need to
1406 * be sure we read the right LEB number, so read it again.
Stefan Roese2fc10f62009-03-19 15:35:05 +01001407 */
Heiko Schocherf5895d12014-06-24 10:10:04 +02001408 smp_rmb();
1409 if (gced_lnum != c->gced_lnum)
1410 return 1;
1411 /* Finally we can check lnum */
1412 if (gced_lnum == lnum)
1413 return 1;
1414#else
1415 /* No garbage collection in the read-only U-Boot implementation */
1416#endif
Stefan Roese2fc10f62009-03-19 15:35:05 +01001417 return 0;
1418}
1419
1420/**
1421 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1422 * @c: UBIFS file-system description object
1423 * @key: node key to lookup
1424 * @node: the node is returned here
1425 * @lnum: LEB number is returned here
1426 * @offs: offset is returned here
1427 *
Heiko Schocherf5895d12014-06-24 10:10:04 +02001428 * This function looks up and reads node with key @key. The caller has to make
Stefan Roese2fc10f62009-03-19 15:35:05 +01001429 * sure the @node buffer is large enough to fit the node. Returns zero in case
1430 * of success, %-ENOENT if the node was not found, and a negative error code in
1431 * case of failure. The node location can be returned in @lnum and @offs.
1432 */
1433int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1434 void *node, int *lnum, int *offs)
1435{
1436 int found, n, err, safely = 0, gc_seq1;
1437 struct ubifs_znode *znode;
1438 struct ubifs_zbranch zbr, *zt;
1439
1440again:
1441 mutex_lock(&c->tnc_mutex);
1442 found = ubifs_lookup_level0(c, key, &znode, &n);
1443 if (!found) {
1444 err = -ENOENT;
1445 goto out;
1446 } else if (found < 0) {
1447 err = found;
1448 goto out;
1449 }
1450 zt = &znode->zbranch[n];
1451 if (lnum) {
1452 *lnum = zt->lnum;
1453 *offs = zt->offs;
1454 }
1455 if (is_hash_key(c, key)) {
1456 /*
1457 * In this case the leaf node cache gets used, so we pass the
1458 * address of the zbranch and keep the mutex locked
1459 */
1460 err = tnc_read_node_nm(c, zt, node);
1461 goto out;
1462 }
1463 if (safely) {
1464 err = ubifs_tnc_read_node(c, zt, node);
1465 goto out;
1466 }
1467 /* Drop the TNC mutex prematurely and race with garbage collection */
1468 zbr = znode->zbranch[n];
1469 gc_seq1 = c->gc_seq;
1470 mutex_unlock(&c->tnc_mutex);
1471
Heiko Schocherf5895d12014-06-24 10:10:04 +02001472 if (ubifs_get_wbuf(c, zbr.lnum)) {
1473 /* We do not GC journal heads */
1474 err = ubifs_tnc_read_node(c, &zbr, node);
1475 return err;
1476 }
1477
Stefan Roese2fc10f62009-03-19 15:35:05 +01001478 err = fallible_read_node(c, key, &zbr, node);
1479 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1480 /*
1481 * The node may have been GC'ed out from under us so try again
1482 * while keeping the TNC mutex locked.
1483 */
1484 safely = 1;
1485 goto again;
1486 }
1487 return 0;
1488
1489out:
1490 mutex_unlock(&c->tnc_mutex);
1491 return err;
1492}
1493
1494/**
1495 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1496 * @c: UBIFS file-system description object
1497 * @bu: bulk-read parameters and results
1498 *
1499 * Lookup consecutive data node keys for the same inode that reside
1500 * consecutively in the same LEB. This function returns zero in case of success
1501 * and a negative error code in case of failure.
1502 *
1503 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1504 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1505 * maximum possible amount of nodes for bulk-read.
1506 */
1507int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1508{
1509 int n, err = 0, lnum = -1, uninitialized_var(offs);
1510 int uninitialized_var(len);
1511 unsigned int block = key_block(c, &bu->key);
1512 struct ubifs_znode *znode;
1513
1514 bu->cnt = 0;
1515 bu->blk_cnt = 0;
1516 bu->eof = 0;
1517
1518 mutex_lock(&c->tnc_mutex);
1519 /* Find first key */
1520 err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1521 if (err < 0)
1522 goto out;
1523 if (err) {
1524 /* Key found */
1525 len = znode->zbranch[n].len;
1526 /* The buffer must be big enough for at least 1 node */
1527 if (len > bu->buf_len) {
1528 err = -EINVAL;
1529 goto out;
1530 }
1531 /* Add this key */
1532 bu->zbranch[bu->cnt++] = znode->zbranch[n];
1533 bu->blk_cnt += 1;
1534 lnum = znode->zbranch[n].lnum;
1535 offs = ALIGN(znode->zbranch[n].offs + len, 8);
1536 }
1537 while (1) {
1538 struct ubifs_zbranch *zbr;
1539 union ubifs_key *key;
1540 unsigned int next_block;
1541
1542 /* Find next key */
1543 err = tnc_next(c, &znode, &n);
1544 if (err)
1545 goto out;
1546 zbr = &znode->zbranch[n];
1547 key = &zbr->key;
1548 /* See if there is another data key for this file */
1549 if (key_inum(c, key) != key_inum(c, &bu->key) ||
1550 key_type(c, key) != UBIFS_DATA_KEY) {
1551 err = -ENOENT;
1552 goto out;
1553 }
1554 if (lnum < 0) {
1555 /* First key found */
1556 lnum = zbr->lnum;
1557 offs = ALIGN(zbr->offs + zbr->len, 8);
1558 len = zbr->len;
1559 if (len > bu->buf_len) {
1560 err = -EINVAL;
1561 goto out;
1562 }
1563 } else {
1564 /*
1565 * The data nodes must be in consecutive positions in
1566 * the same LEB.
1567 */
1568 if (zbr->lnum != lnum || zbr->offs != offs)
1569 goto out;
1570 offs += ALIGN(zbr->len, 8);
1571 len = ALIGN(len, 8) + zbr->len;
1572 /* Must not exceed buffer length */
1573 if (len > bu->buf_len)
1574 goto out;
1575 }
1576 /* Allow for holes */
1577 next_block = key_block(c, key);
1578 bu->blk_cnt += (next_block - block - 1);
1579 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1580 goto out;
1581 block = next_block;
1582 /* Add this key */
1583 bu->zbranch[bu->cnt++] = *zbr;
1584 bu->blk_cnt += 1;
1585 /* See if we have room for more */
1586 if (bu->cnt >= UBIFS_MAX_BULK_READ)
1587 goto out;
1588 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1589 goto out;
1590 }
1591out:
1592 if (err == -ENOENT) {
1593 bu->eof = 1;
1594 err = 0;
1595 }
1596 bu->gc_seq = c->gc_seq;
1597 mutex_unlock(&c->tnc_mutex);
1598 if (err)
1599 return err;
1600 /*
1601 * An enormous hole could cause bulk-read to encompass too many
1602 * page cache pages, so limit the number here.
1603 */
1604 if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1605 bu->blk_cnt = UBIFS_MAX_BULK_READ;
1606 /*
1607 * Ensure that bulk-read covers a whole number of page cache
1608 * pages.
1609 */
1610 if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1611 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1612 return 0;
1613 if (bu->eof) {
1614 /* At the end of file we can round up */
1615 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1616 return 0;
1617 }
1618 /* Exclude data nodes that do not make up a whole page cache page */
1619 block = key_block(c, &bu->key) + bu->blk_cnt;
1620 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1621 while (bu->cnt) {
1622 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1623 break;
1624 bu->cnt -= 1;
1625 }
1626 return 0;
1627}
1628
1629/**
Heiko Schocherf5895d12014-06-24 10:10:04 +02001630 * read_wbuf - bulk-read from a LEB with a wbuf.
1631 * @wbuf: wbuf that may overlap the read
1632 * @buf: buffer into which to read
1633 * @len: read length
1634 * @lnum: LEB number from which to read
1635 * @offs: offset from which to read
1636 *
1637 * This functions returns %0 on success or a negative error code on failure.
1638 */
1639static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1640 int offs)
1641{
1642 const struct ubifs_info *c = wbuf->c;
1643 int rlen, overlap;
1644
1645 dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1646 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1647 ubifs_assert(!(offs & 7) && offs < c->leb_size);
1648 ubifs_assert(offs + len <= c->leb_size);
1649
1650 spin_lock(&wbuf->lock);
1651 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1652 if (!overlap) {
1653 /* We may safely unlock the write-buffer and read the data */
1654 spin_unlock(&wbuf->lock);
1655 return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1656 }
1657
1658 /* Don't read under wbuf */
1659 rlen = wbuf->offs - offs;
1660 if (rlen < 0)
1661 rlen = 0;
1662
1663 /* Copy the rest from the write-buffer */
1664 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1665 spin_unlock(&wbuf->lock);
1666
1667 if (rlen > 0)
1668 /* Read everything that goes before write-buffer */
1669 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1670
1671 return 0;
1672}
1673
1674/**
Stefan Roese2fc10f62009-03-19 15:35:05 +01001675 * validate_data_node - validate data nodes for bulk-read.
1676 * @c: UBIFS file-system description object
1677 * @buf: buffer containing data node to validate
1678 * @zbr: zbranch of data node to validate
1679 *
1680 * This functions returns %0 on success or a negative error code on failure.
1681 */
1682static int validate_data_node(struct ubifs_info *c, void *buf,
1683 struct ubifs_zbranch *zbr)
1684{
1685 union ubifs_key key1;
1686 struct ubifs_ch *ch = buf;
1687 int err, len;
1688
1689 if (ch->node_type != UBIFS_DATA_NODE) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001690 ubifs_err(c, "bad node type (%d but expected %d)",
Stefan Roese2fc10f62009-03-19 15:35:05 +01001691 ch->node_type, UBIFS_DATA_NODE);
1692 goto out_err;
1693 }
1694
1695 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1696 if (err) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001697 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
Stefan Roese2fc10f62009-03-19 15:35:05 +01001698 goto out;
1699 }
1700
1701 len = le32_to_cpu(ch->len);
1702 if (len != zbr->len) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001703 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
Stefan Roese2fc10f62009-03-19 15:35:05 +01001704 goto out_err;
1705 }
1706
1707 /* Make sure the key of the read node is correct */
1708 key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1709 if (!keys_eq(c, &zbr->key, &key1)) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001710 ubifs_err(c, "bad key in node at LEB %d:%d",
Stefan Roese2fc10f62009-03-19 15:35:05 +01001711 zbr->lnum, zbr->offs);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001712 dbg_tnck(&zbr->key, "looked for key ");
1713 dbg_tnck(&key1, "found node's key ");
Stefan Roese2fc10f62009-03-19 15:35:05 +01001714 goto out_err;
1715 }
1716
1717 return 0;
1718
1719out_err:
1720 err = -EINVAL;
1721out:
Heiko Schocher94b66de2015-10-22 06:19:21 +02001722 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001723 ubifs_dump_node(c, buf);
1724 dump_stack();
Stefan Roese2fc10f62009-03-19 15:35:05 +01001725 return err;
1726}
1727
1728/**
1729 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1730 * @c: UBIFS file-system description object
1731 * @bu: bulk-read parameters and results
1732 *
1733 * This functions reads and validates the data nodes that were identified by the
1734 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1735 * -EAGAIN to indicate a race with GC, or another negative error code on
1736 * failure.
1737 */
1738int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1739{
1740 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
Heiko Schocherf5895d12014-06-24 10:10:04 +02001741 struct ubifs_wbuf *wbuf;
Stefan Roese2fc10f62009-03-19 15:35:05 +01001742 void *buf;
1743
1744 len = bu->zbranch[bu->cnt - 1].offs;
1745 len += bu->zbranch[bu->cnt - 1].len - offs;
1746 if (len > bu->buf_len) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001747 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
Stefan Roese2fc10f62009-03-19 15:35:05 +01001748 return -EINVAL;
1749 }
1750
1751 /* Do the read */
Heiko Schocherf5895d12014-06-24 10:10:04 +02001752 wbuf = ubifs_get_wbuf(c, lnum);
1753 if (wbuf)
1754 err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1755 else
1756 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
Stefan Roese2fc10f62009-03-19 15:35:05 +01001757
1758 /* Check for a race with GC */
1759 if (maybe_leb_gced(c, lnum, bu->gc_seq))
1760 return -EAGAIN;
1761
1762 if (err && err != -EBADMSG) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001763 ubifs_err(c, "failed to read from LEB %d:%d, error %d",
Stefan Roese2fc10f62009-03-19 15:35:05 +01001764 lnum, offs, err);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001765 dump_stack();
1766 dbg_tnck(&bu->key, "key ");
Stefan Roese2fc10f62009-03-19 15:35:05 +01001767 return err;
1768 }
1769
1770 /* Validate the nodes read */
1771 buf = bu->buf;
1772 for (i = 0; i < bu->cnt; i++) {
1773 err = validate_data_node(c, buf, &bu->zbranch[i]);
1774 if (err)
1775 return err;
1776 buf = buf + ALIGN(bu->zbranch[i].len, 8);
1777 }
1778
1779 return 0;
1780}
1781
1782/**
1783 * do_lookup_nm- look up a "hashed" node.
1784 * @c: UBIFS file-system description object
1785 * @key: node key to lookup
1786 * @node: the node is returned here
1787 * @nm: node name
1788 *
1789 * This function look up and reads a node which contains name hash in the key.
1790 * Since the hash may have collisions, there may be many nodes with the same
1791 * key, so we have to sequentially look to all of them until the needed one is
1792 * found. This function returns zero in case of success, %-ENOENT if the node
1793 * was not found, and a negative error code in case of failure.
1794 */
1795static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1796 void *node, const struct qstr *nm)
1797{
1798 int found, n, err;
1799 struct ubifs_znode *znode;
1800
Heiko Schocherf5895d12014-06-24 10:10:04 +02001801 dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name);
Stefan Roese2fc10f62009-03-19 15:35:05 +01001802 mutex_lock(&c->tnc_mutex);
1803 found = ubifs_lookup_level0(c, key, &znode, &n);
1804 if (!found) {
1805 err = -ENOENT;
1806 goto out_unlock;
1807 } else if (found < 0) {
1808 err = found;
1809 goto out_unlock;
1810 }
1811
1812 ubifs_assert(n >= 0);
1813
1814 err = resolve_collision(c, key, &znode, &n, nm);
1815 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1816 if (unlikely(err < 0))
1817 goto out_unlock;
1818 if (err == 0) {
1819 err = -ENOENT;
1820 goto out_unlock;
1821 }
1822
1823 err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1824
1825out_unlock:
1826 mutex_unlock(&c->tnc_mutex);
1827 return err;
1828}
1829
1830/**
1831 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1832 * @c: UBIFS file-system description object
1833 * @key: node key to lookup
1834 * @node: the node is returned here
1835 * @nm: node name
1836 *
1837 * This function look up and reads a node which contains name hash in the key.
1838 * Since the hash may have collisions, there may be many nodes with the same
1839 * key, so we have to sequentially look to all of them until the needed one is
1840 * found. This function returns zero in case of success, %-ENOENT if the node
1841 * was not found, and a negative error code in case of failure.
1842 */
1843int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1844 void *node, const struct qstr *nm)
1845{
1846 int err, len;
1847 const struct ubifs_dent_node *dent = node;
1848
1849 /*
1850 * We assume that in most of the cases there are no name collisions and
1851 * 'ubifs_tnc_lookup()' returns us the right direntry.
1852 */
1853 err = ubifs_tnc_lookup(c, key, node);
1854 if (err)
1855 return err;
1856
1857 len = le16_to_cpu(dent->nlen);
1858 if (nm->len == len && !memcmp(dent->name, nm->name, len))
1859 return 0;
1860
1861 /*
1862 * Unluckily, there are hash collisions and we have to iterate over
1863 * them look at each direntry with colliding name hash sequentially.
1864 */
1865 return do_lookup_nm(c, key, node, nm);
1866}
1867
1868/**
1869 * correct_parent_keys - correct parent znodes' keys.
1870 * @c: UBIFS file-system description object
1871 * @znode: znode to correct parent znodes for
1872 *
1873 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1874 * zbranch changes, keys of parent znodes have to be corrected. This helper
1875 * function is called in such situations and corrects the keys if needed.
1876 */
1877static void correct_parent_keys(const struct ubifs_info *c,
1878 struct ubifs_znode *znode)
1879{
1880 union ubifs_key *key, *key1;
1881
1882 ubifs_assert(znode->parent);
1883 ubifs_assert(znode->iip == 0);
1884
1885 key = &znode->zbranch[0].key;
1886 key1 = &znode->parent->zbranch[0].key;
1887
1888 while (keys_cmp(c, key, key1) < 0) {
1889 key_copy(c, key, key1);
1890 znode = znode->parent;
1891 znode->alt = 1;
1892 if (!znode->parent || znode->iip)
1893 break;
1894 key1 = &znode->parent->zbranch[0].key;
1895 }
1896}
1897
1898/**
1899 * insert_zbranch - insert a zbranch into a znode.
1900 * @znode: znode into which to insert
1901 * @zbr: zbranch to insert
1902 * @n: slot number to insert to
1903 *
1904 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1905 * znode's array of zbranches and keeps zbranches consolidated, so when a new
1906 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1907 * slot, zbranches starting from @n have to be moved right.
1908 */
1909static void insert_zbranch(struct ubifs_znode *znode,
1910 const struct ubifs_zbranch *zbr, int n)
1911{
1912 int i;
1913
1914 ubifs_assert(ubifs_zn_dirty(znode));
1915
1916 if (znode->level) {
1917 for (i = znode->child_cnt; i > n; i--) {
1918 znode->zbranch[i] = znode->zbranch[i - 1];
1919 if (znode->zbranch[i].znode)
1920 znode->zbranch[i].znode->iip = i;
1921 }
1922 if (zbr->znode)
1923 zbr->znode->iip = n;
1924 } else
1925 for (i = znode->child_cnt; i > n; i--)
1926 znode->zbranch[i] = znode->zbranch[i - 1];
1927
1928 znode->zbranch[n] = *zbr;
1929 znode->child_cnt += 1;
1930
1931 /*
1932 * After inserting at slot zero, the lower bound of the key range of
1933 * this znode may have changed. If this znode is subsequently split
1934 * then the upper bound of the key range may change, and furthermore
1935 * it could change to be lower than the original lower bound. If that
1936 * happens, then it will no longer be possible to find this znode in the
1937 * TNC using the key from the index node on flash. That is bad because
1938 * if it is not found, we will assume it is obsolete and may overwrite
1939 * it. Then if there is an unclean unmount, we will start using the
1940 * old index which will be broken.
1941 *
1942 * So we first mark znodes that have insertions at slot zero, and then
1943 * if they are split we add their lnum/offs to the old_idx tree.
1944 */
1945 if (n == 0)
1946 znode->alt = 1;
1947}
1948
1949/**
1950 * tnc_insert - insert a node into TNC.
1951 * @c: UBIFS file-system description object
1952 * @znode: znode to insert into
1953 * @zbr: branch to insert
1954 * @n: slot number to insert new zbranch to
1955 *
1956 * This function inserts a new node described by @zbr into znode @znode. If
1957 * znode does not have a free slot for new zbranch, it is split. Parent znodes
1958 * are splat as well if needed. Returns zero in case of success or a negative
1959 * error code in case of failure.
1960 */
1961static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1962 struct ubifs_zbranch *zbr, int n)
1963{
1964 struct ubifs_znode *zn, *zi, *zp;
1965 int i, keep, move, appending = 0;
1966 union ubifs_key *key = &zbr->key, *key1;
1967
1968 ubifs_assert(n >= 0 && n <= c->fanout);
1969
1970 /* Implement naive insert for now */
1971again:
1972 zp = znode->parent;
1973 if (znode->child_cnt < c->fanout) {
1974 ubifs_assert(n != c->fanout);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001975 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
Stefan Roese2fc10f62009-03-19 15:35:05 +01001976
1977 insert_zbranch(znode, zbr, n);
1978
1979 /* Ensure parent's key is correct */
1980 if (n == 0 && zp && znode->iip == 0)
1981 correct_parent_keys(c, znode);
1982
1983 return 0;
1984 }
1985
1986 /*
1987 * Unfortunately, @znode does not have more empty slots and we have to
1988 * split it.
1989 */
Heiko Schocherf5895d12014-06-24 10:10:04 +02001990 dbg_tnck(key, "splitting level %d, key ", znode->level);
Stefan Roese2fc10f62009-03-19 15:35:05 +01001991
1992 if (znode->alt)
1993 /*
1994 * We can no longer be sure of finding this znode by key, so we
1995 * record it in the old_idx tree.
1996 */
1997 ins_clr_old_idx_znode(c, znode);
1998
1999 zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2000 if (!zn)
2001 return -ENOMEM;
2002 zn->parent = zp;
2003 zn->level = znode->level;
2004
2005 /* Decide where to split */
2006 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2007 /* Try not to split consecutive data keys */
2008 if (n == c->fanout) {
2009 key1 = &znode->zbranch[n - 1].key;
2010 if (key_inum(c, key1) == key_inum(c, key) &&
2011 key_type(c, key1) == UBIFS_DATA_KEY)
2012 appending = 1;
2013 } else
2014 goto check_split;
2015 } else if (appending && n != c->fanout) {
2016 /* Try not to split consecutive data keys */
2017 appending = 0;
2018check_split:
2019 if (n >= (c->fanout + 1) / 2) {
2020 key1 = &znode->zbranch[0].key;
2021 if (key_inum(c, key1) == key_inum(c, key) &&
2022 key_type(c, key1) == UBIFS_DATA_KEY) {
2023 key1 = &znode->zbranch[n].key;
2024 if (key_inum(c, key1) != key_inum(c, key) ||
2025 key_type(c, key1) != UBIFS_DATA_KEY) {
2026 keep = n;
2027 move = c->fanout - keep;
2028 zi = znode;
2029 goto do_split;
2030 }
2031 }
2032 }
2033 }
2034
2035 if (appending) {
2036 keep = c->fanout;
2037 move = 0;
2038 } else {
2039 keep = (c->fanout + 1) / 2;
2040 move = c->fanout - keep;
2041 }
2042
2043 /*
2044 * Although we don't at present, we could look at the neighbors and see
2045 * if we can move some zbranches there.
2046 */
2047
2048 if (n < keep) {
2049 /* Insert into existing znode */
2050 zi = znode;
2051 move += 1;
2052 keep -= 1;
2053 } else {
2054 /* Insert into new znode */
2055 zi = zn;
2056 n -= keep;
2057 /* Re-parent */
2058 if (zn->level != 0)
2059 zbr->znode->parent = zn;
2060 }
2061
2062do_split:
2063
2064 __set_bit(DIRTY_ZNODE, &zn->flags);
2065 atomic_long_inc(&c->dirty_zn_cnt);
2066
2067 zn->child_cnt = move;
2068 znode->child_cnt = keep;
2069
2070 dbg_tnc("moving %d, keeping %d", move, keep);
2071
2072 /* Move zbranch */
2073 for (i = 0; i < move; i++) {
2074 zn->zbranch[i] = znode->zbranch[keep + i];
2075 /* Re-parent */
2076 if (zn->level != 0)
2077 if (zn->zbranch[i].znode) {
2078 zn->zbranch[i].znode->parent = zn;
2079 zn->zbranch[i].znode->iip = i;
2080 }
2081 }
2082
2083 /* Insert new key and branch */
Heiko Schocherf5895d12014-06-24 10:10:04 +02002084 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
Stefan Roese2fc10f62009-03-19 15:35:05 +01002085
2086 insert_zbranch(zi, zbr, n);
2087
2088 /* Insert new znode (produced by spitting) into the parent */
2089 if (zp) {
2090 if (n == 0 && zi == znode && znode->iip == 0)
2091 correct_parent_keys(c, znode);
2092
2093 /* Locate insertion point */
2094 n = znode->iip + 1;
2095
2096 /* Tail recursion */
2097 zbr->key = zn->zbranch[0].key;
2098 zbr->znode = zn;
2099 zbr->lnum = 0;
2100 zbr->offs = 0;
2101 zbr->len = 0;
2102 znode = zp;
2103
2104 goto again;
2105 }
2106
2107 /* We have to split root znode */
2108 dbg_tnc("creating new zroot at level %d", znode->level + 1);
2109
2110 zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2111 if (!zi)
2112 return -ENOMEM;
2113
2114 zi->child_cnt = 2;
2115 zi->level = znode->level + 1;
2116
2117 __set_bit(DIRTY_ZNODE, &zi->flags);
2118 atomic_long_inc(&c->dirty_zn_cnt);
2119
2120 zi->zbranch[0].key = znode->zbranch[0].key;
2121 zi->zbranch[0].znode = znode;
2122 zi->zbranch[0].lnum = c->zroot.lnum;
2123 zi->zbranch[0].offs = c->zroot.offs;
2124 zi->zbranch[0].len = c->zroot.len;
2125 zi->zbranch[1].key = zn->zbranch[0].key;
2126 zi->zbranch[1].znode = zn;
2127
2128 c->zroot.lnum = 0;
2129 c->zroot.offs = 0;
2130 c->zroot.len = 0;
2131 c->zroot.znode = zi;
2132
2133 zn->parent = zi;
2134 zn->iip = 1;
2135 znode->parent = zi;
2136 znode->iip = 0;
2137
2138 return 0;
2139}
2140
2141/**
2142 * ubifs_tnc_add - add a node to TNC.
2143 * @c: UBIFS file-system description object
2144 * @key: key to add
2145 * @lnum: LEB number of node
2146 * @offs: node offset
2147 * @len: node length
2148 *
2149 * This function adds a node with key @key to TNC. The node may be new or it may
2150 * obsolete some existing one. Returns %0 on success or negative error code on
2151 * failure.
2152 */
2153int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2154 int offs, int len)
2155{
2156 int found, n, err = 0;
2157 struct ubifs_znode *znode;
2158
2159 mutex_lock(&c->tnc_mutex);
Heiko Schocherf5895d12014-06-24 10:10:04 +02002160 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
Stefan Roese2fc10f62009-03-19 15:35:05 +01002161 found = lookup_level0_dirty(c, key, &znode, &n);
2162 if (!found) {
2163 struct ubifs_zbranch zbr;
2164
2165 zbr.znode = NULL;
2166 zbr.lnum = lnum;
2167 zbr.offs = offs;
2168 zbr.len = len;
2169 key_copy(c, key, &zbr.key);
2170 err = tnc_insert(c, znode, &zbr, n + 1);
2171 } else if (found == 1) {
2172 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2173
2174 lnc_free(zbr);
2175 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2176 zbr->lnum = lnum;
2177 zbr->offs = offs;
2178 zbr->len = len;
2179 } else
2180 err = found;
2181 if (!err)
2182 err = dbg_check_tnc(c, 0);
2183 mutex_unlock(&c->tnc_mutex);
2184
2185 return err;
2186}
2187
2188/**
2189 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2190 * @c: UBIFS file-system description object
2191 * @key: key to add
2192 * @old_lnum: LEB number of old node
2193 * @old_offs: old node offset
2194 * @lnum: LEB number of node
2195 * @offs: node offset
2196 * @len: node length
2197 *
2198 * This function replaces a node with key @key in the TNC only if the old node
2199 * is found. This function is called by garbage collection when node are moved.
2200 * Returns %0 on success or negative error code on failure.
2201 */
2202int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2203 int old_lnum, int old_offs, int lnum, int offs, int len)
2204{
2205 int found, n, err = 0;
2206 struct ubifs_znode *znode;
2207
2208 mutex_lock(&c->tnc_mutex);
Heiko Schocherf5895d12014-06-24 10:10:04 +02002209 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2210 old_offs, lnum, offs, len);
Stefan Roese2fc10f62009-03-19 15:35:05 +01002211 found = lookup_level0_dirty(c, key, &znode, &n);
2212 if (found < 0) {
2213 err = found;
2214 goto out_unlock;
2215 }
2216
2217 if (found == 1) {
2218 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2219
2220 found = 0;
2221 if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2222 lnc_free(zbr);
2223 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2224 if (err)
2225 goto out_unlock;
2226 zbr->lnum = lnum;
2227 zbr->offs = offs;
2228 zbr->len = len;
2229 found = 1;
2230 } else if (is_hash_key(c, key)) {
2231 found = resolve_collision_directly(c, key, &znode, &n,
2232 old_lnum, old_offs);
2233 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2234 found, znode, n, old_lnum, old_offs);
2235 if (found < 0) {
2236 err = found;
2237 goto out_unlock;
2238 }
2239
2240 if (found) {
2241 /* Ensure the znode is dirtied */
2242 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2243 znode = dirty_cow_bottom_up(c, znode);
2244 if (IS_ERR(znode)) {
2245 err = PTR_ERR(znode);
2246 goto out_unlock;
2247 }
2248 }
2249 zbr = &znode->zbranch[n];
2250 lnc_free(zbr);
2251 err = ubifs_add_dirt(c, zbr->lnum,
2252 zbr->len);
2253 if (err)
2254 goto out_unlock;
2255 zbr->lnum = lnum;
2256 zbr->offs = offs;
2257 zbr->len = len;
2258 }
2259 }
2260 }
2261
2262 if (!found)
2263 err = ubifs_add_dirt(c, lnum, len);
2264
2265 if (!err)
2266 err = dbg_check_tnc(c, 0);
2267
2268out_unlock:
2269 mutex_unlock(&c->tnc_mutex);
2270 return err;
2271}
2272
2273/**
2274 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2275 * @c: UBIFS file-system description object
2276 * @key: key to add
2277 * @lnum: LEB number of node
2278 * @offs: node offset
2279 * @len: node length
2280 * @nm: node name
2281 *
2282 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2283 * may have collisions, like directory entry keys.
2284 */
2285int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2286 int lnum, int offs, int len, const struct qstr *nm)
2287{
2288 int found, n, err = 0;
2289 struct ubifs_znode *znode;
2290
2291 mutex_lock(&c->tnc_mutex);
Heiko Schocherf5895d12014-06-24 10:10:04 +02002292 dbg_tnck(key, "LEB %d:%d, name '%.*s', key ",
2293 lnum, offs, nm->len, nm->name);
Stefan Roese2fc10f62009-03-19 15:35:05 +01002294 found = lookup_level0_dirty(c, key, &znode, &n);
2295 if (found < 0) {
2296 err = found;
2297 goto out_unlock;
2298 }
2299
2300 if (found == 1) {
2301 if (c->replaying)
2302 found = fallible_resolve_collision(c, key, &znode, &n,
2303 nm, 1);
2304 else
2305 found = resolve_collision(c, key, &znode, &n, nm);
2306 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2307 if (found < 0) {
2308 err = found;
2309 goto out_unlock;
2310 }
2311
2312 /* Ensure the znode is dirtied */
2313 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2314 znode = dirty_cow_bottom_up(c, znode);
2315 if (IS_ERR(znode)) {
2316 err = PTR_ERR(znode);
2317 goto out_unlock;
2318 }
2319 }
2320
2321 if (found == 1) {
2322 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2323
2324 lnc_free(zbr);
2325 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2326 zbr->lnum = lnum;
2327 zbr->offs = offs;
2328 zbr->len = len;
2329 goto out_unlock;
2330 }
2331 }
2332
2333 if (!found) {
2334 struct ubifs_zbranch zbr;
2335
2336 zbr.znode = NULL;
2337 zbr.lnum = lnum;
2338 zbr.offs = offs;
2339 zbr.len = len;
2340 key_copy(c, key, &zbr.key);
2341 err = tnc_insert(c, znode, &zbr, n + 1);
2342 if (err)
2343 goto out_unlock;
2344 if (c->replaying) {
2345 /*
2346 * We did not find it in the index so there may be a
2347 * dangling branch still in the index. So we remove it
2348 * by passing 'ubifs_tnc_remove_nm()' the same key but
2349 * an unmatchable name.
2350 */
Heiko Schocherf5895d12014-06-24 10:10:04 +02002351 struct qstr noname = { .name = "" };
Stefan Roese2fc10f62009-03-19 15:35:05 +01002352
2353 err = dbg_check_tnc(c, 0);
2354 mutex_unlock(&c->tnc_mutex);
2355 if (err)
2356 return err;
2357 return ubifs_tnc_remove_nm(c, key, &noname);
2358 }
2359 }
2360
2361out_unlock:
2362 if (!err)
2363 err = dbg_check_tnc(c, 0);
2364 mutex_unlock(&c->tnc_mutex);
2365 return err;
2366}
2367
2368/**
2369 * tnc_delete - delete a znode form TNC.
2370 * @c: UBIFS file-system description object
2371 * @znode: znode to delete from
2372 * @n: zbranch slot number to delete
2373 *
2374 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2375 * case of success and a negative error code in case of failure.
2376 */
2377static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2378{
2379 struct ubifs_zbranch *zbr;
2380 struct ubifs_znode *zp;
2381 int i, err;
2382
2383 /* Delete without merge for now */
2384 ubifs_assert(znode->level == 0);
2385 ubifs_assert(n >= 0 && n < c->fanout);
Heiko Schocherf5895d12014-06-24 10:10:04 +02002386 dbg_tnck(&znode->zbranch[n].key, "deleting key ");
Stefan Roese2fc10f62009-03-19 15:35:05 +01002387
2388 zbr = &znode->zbranch[n];
2389 lnc_free(zbr);
2390
2391 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2392 if (err) {
Heiko Schocherf5895d12014-06-24 10:10:04 +02002393 ubifs_dump_znode(c, znode);
Stefan Roese2fc10f62009-03-19 15:35:05 +01002394 return err;
2395 }
2396
2397 /* We do not "gap" zbranch slots */
2398 for (i = n; i < znode->child_cnt - 1; i++)
2399 znode->zbranch[i] = znode->zbranch[i + 1];
2400 znode->child_cnt -= 1;
2401
2402 if (znode->child_cnt > 0)
2403 return 0;
2404
2405 /*
2406 * This was the last zbranch, we have to delete this znode from the
2407 * parent.
2408 */
2409
2410 do {
Heiko Schocherf5895d12014-06-24 10:10:04 +02002411 ubifs_assert(!ubifs_zn_obsolete(znode));
Stefan Roese2fc10f62009-03-19 15:35:05 +01002412 ubifs_assert(ubifs_zn_dirty(znode));
2413
2414 zp = znode->parent;
2415 n = znode->iip;
2416
2417 atomic_long_dec(&c->dirty_zn_cnt);
2418
2419 err = insert_old_idx_znode(c, znode);
2420 if (err)
2421 return err;
2422
2423 if (znode->cnext) {
2424 __set_bit(OBSOLETE_ZNODE, &znode->flags);
2425 atomic_long_inc(&c->clean_zn_cnt);
2426 atomic_long_inc(&ubifs_clean_zn_cnt);
2427 } else
2428 kfree(znode);
2429 znode = zp;
2430 } while (znode->child_cnt == 1); /* while removing last child */
2431
2432 /* Remove from znode, entry n - 1 */
2433 znode->child_cnt -= 1;
2434 ubifs_assert(znode->level != 0);
2435 for (i = n; i < znode->child_cnt; i++) {
2436 znode->zbranch[i] = znode->zbranch[i + 1];
2437 if (znode->zbranch[i].znode)
2438 znode->zbranch[i].znode->iip = i;
2439 }
2440
2441 /*
2442 * If this is the root and it has only 1 child then
2443 * collapse the tree.
2444 */
2445 if (!znode->parent) {
2446 while (znode->child_cnt == 1 && znode->level != 0) {
2447 zp = znode;
2448 zbr = &znode->zbranch[0];
2449 znode = get_znode(c, znode, 0);
2450 if (IS_ERR(znode))
2451 return PTR_ERR(znode);
2452 znode = dirty_cow_znode(c, zbr);
2453 if (IS_ERR(znode))
2454 return PTR_ERR(znode);
2455 znode->parent = NULL;
2456 znode->iip = 0;
2457 if (c->zroot.len) {
2458 err = insert_old_idx(c, c->zroot.lnum,
2459 c->zroot.offs);
2460 if (err)
2461 return err;
2462 }
2463 c->zroot.lnum = zbr->lnum;
2464 c->zroot.offs = zbr->offs;
2465 c->zroot.len = zbr->len;
2466 c->zroot.znode = znode;
Heiko Schocherf5895d12014-06-24 10:10:04 +02002467 ubifs_assert(!ubifs_zn_obsolete(zp));
2468 ubifs_assert(ubifs_zn_dirty(zp));
Stefan Roese2fc10f62009-03-19 15:35:05 +01002469 atomic_long_dec(&c->dirty_zn_cnt);
2470
2471 if (zp->cnext) {
2472 __set_bit(OBSOLETE_ZNODE, &zp->flags);
2473 atomic_long_inc(&c->clean_zn_cnt);
2474 atomic_long_inc(&ubifs_clean_zn_cnt);
2475 } else
2476 kfree(zp);
2477 }
2478 }
2479
2480 return 0;
2481}
2482
2483/**
2484 * ubifs_tnc_remove - remove an index entry of a node.
2485 * @c: UBIFS file-system description object
2486 * @key: key of node
2487 *
2488 * Returns %0 on success or negative error code on failure.
2489 */
2490int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2491{
2492 int found, n, err = 0;
2493 struct ubifs_znode *znode;
2494
2495 mutex_lock(&c->tnc_mutex);
Heiko Schocherf5895d12014-06-24 10:10:04 +02002496 dbg_tnck(key, "key ");
Stefan Roese2fc10f62009-03-19 15:35:05 +01002497 found = lookup_level0_dirty(c, key, &znode, &n);
2498 if (found < 0) {
2499 err = found;
2500 goto out_unlock;
2501 }
2502 if (found == 1)
2503 err = tnc_delete(c, znode, n);
2504 if (!err)
2505 err = dbg_check_tnc(c, 0);
2506
2507out_unlock:
2508 mutex_unlock(&c->tnc_mutex);
2509 return err;
2510}
2511
2512/**
2513 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2514 * @c: UBIFS file-system description object
2515 * @key: key of node
2516 * @nm: directory entry name
2517 *
2518 * Returns %0 on success or negative error code on failure.
2519 */
2520int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2521 const struct qstr *nm)
2522{
2523 int n, err;
2524 struct ubifs_znode *znode;
2525
2526 mutex_lock(&c->tnc_mutex);
Heiko Schocherf5895d12014-06-24 10:10:04 +02002527 dbg_tnck(key, "%.*s, key ", nm->len, nm->name);
Stefan Roese2fc10f62009-03-19 15:35:05 +01002528 err = lookup_level0_dirty(c, key, &znode, &n);
2529 if (err < 0)
2530 goto out_unlock;
2531
2532 if (err) {
2533 if (c->replaying)
2534 err = fallible_resolve_collision(c, key, &znode, &n,
2535 nm, 0);
2536 else
2537 err = resolve_collision(c, key, &znode, &n, nm);
2538 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2539 if (err < 0)
2540 goto out_unlock;
2541 if (err) {
2542 /* Ensure the znode is dirtied */
2543 if (znode->cnext || !ubifs_zn_dirty(znode)) {
Heiko Schocherf5895d12014-06-24 10:10:04 +02002544 znode = dirty_cow_bottom_up(c, znode);
2545 if (IS_ERR(znode)) {
2546 err = PTR_ERR(znode);
2547 goto out_unlock;
2548 }
Stefan Roese2fc10f62009-03-19 15:35:05 +01002549 }
2550 err = tnc_delete(c, znode, n);
2551 }
2552 }
2553
2554out_unlock:
2555 if (!err)
2556 err = dbg_check_tnc(c, 0);
2557 mutex_unlock(&c->tnc_mutex);
2558 return err;
2559}
2560
2561/**
2562 * key_in_range - determine if a key falls within a range of keys.
2563 * @c: UBIFS file-system description object
2564 * @key: key to check
2565 * @from_key: lowest key in range
2566 * @to_key: highest key in range
2567 *
2568 * This function returns %1 if the key is in range and %0 otherwise.
2569 */
2570static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2571 union ubifs_key *from_key, union ubifs_key *to_key)
2572{
2573 if (keys_cmp(c, key, from_key) < 0)
2574 return 0;
2575 if (keys_cmp(c, key, to_key) > 0)
2576 return 0;
2577 return 1;
2578}
2579
2580/**
2581 * ubifs_tnc_remove_range - remove index entries in range.
2582 * @c: UBIFS file-system description object
2583 * @from_key: lowest key to remove
2584 * @to_key: highest key to remove
2585 *
2586 * This function removes index entries starting at @from_key and ending at
2587 * @to_key. This function returns zero in case of success and a negative error
2588 * code in case of failure.
2589 */
2590int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2591 union ubifs_key *to_key)
2592{
2593 int i, n, k, err = 0;
2594 struct ubifs_znode *znode;
2595 union ubifs_key *key;
2596
2597 mutex_lock(&c->tnc_mutex);
2598 while (1) {
2599 /* Find first level 0 znode that contains keys to remove */
2600 err = ubifs_lookup_level0(c, from_key, &znode, &n);
2601 if (err < 0)
2602 goto out_unlock;
2603
2604 if (err)
2605 key = from_key;
2606 else {
2607 err = tnc_next(c, &znode, &n);
2608 if (err == -ENOENT) {
2609 err = 0;
2610 goto out_unlock;
2611 }
2612 if (err < 0)
2613 goto out_unlock;
2614 key = &znode->zbranch[n].key;
2615 if (!key_in_range(c, key, from_key, to_key)) {
2616 err = 0;
2617 goto out_unlock;
2618 }
2619 }
2620
2621 /* Ensure the znode is dirtied */
2622 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2623 znode = dirty_cow_bottom_up(c, znode);
2624 if (IS_ERR(znode)) {
2625 err = PTR_ERR(znode);
2626 goto out_unlock;
2627 }
2628 }
2629
2630 /* Remove all keys in range except the first */
2631 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2632 key = &znode->zbranch[i].key;
2633 if (!key_in_range(c, key, from_key, to_key))
2634 break;
2635 lnc_free(&znode->zbranch[i]);
2636 err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2637 znode->zbranch[i].len);
2638 if (err) {
Heiko Schocherf5895d12014-06-24 10:10:04 +02002639 ubifs_dump_znode(c, znode);
Stefan Roese2fc10f62009-03-19 15:35:05 +01002640 goto out_unlock;
2641 }
Heiko Schocherf5895d12014-06-24 10:10:04 +02002642 dbg_tnck(key, "removing key ");
Stefan Roese2fc10f62009-03-19 15:35:05 +01002643 }
2644 if (k) {
2645 for (i = n + 1 + k; i < znode->child_cnt; i++)
2646 znode->zbranch[i - k] = znode->zbranch[i];
2647 znode->child_cnt -= k;
2648 }
2649
2650 /* Now delete the first */
2651 err = tnc_delete(c, znode, n);
2652 if (err)
2653 goto out_unlock;
2654 }
2655
2656out_unlock:
2657 if (!err)
2658 err = dbg_check_tnc(c, 0);
2659 mutex_unlock(&c->tnc_mutex);
2660 return err;
2661}
2662
2663/**
2664 * ubifs_tnc_remove_ino - remove an inode from TNC.
2665 * @c: UBIFS file-system description object
2666 * @inum: inode number to remove
2667 *
2668 * This function remove inode @inum and all the extended attributes associated
2669 * with the anode from TNC and returns zero in case of success or a negative
2670 * error code in case of failure.
2671 */
2672int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2673{
2674 union ubifs_key key1, key2;
2675 struct ubifs_dent_node *xent, *pxent = NULL;
2676 struct qstr nm = { .name = NULL };
2677
2678 dbg_tnc("ino %lu", (unsigned long)inum);
2679
2680 /*
2681 * Walk all extended attribute entries and remove them together with
2682 * corresponding extended attribute inodes.
2683 */
2684 lowest_xent_key(c, &key1, inum);
2685 while (1) {
2686 ino_t xattr_inum;
2687 int err;
2688
2689 xent = ubifs_tnc_next_ent(c, &key1, &nm);
2690 if (IS_ERR(xent)) {
2691 err = PTR_ERR(xent);
2692 if (err == -ENOENT)
2693 break;
2694 return err;
2695 }
2696
2697 xattr_inum = le64_to_cpu(xent->inum);
2698 dbg_tnc("xent '%s', ino %lu", xent->name,
2699 (unsigned long)xattr_inum);
2700
Heiko Schocherf5895d12014-06-24 10:10:04 +02002701 nm.name = xent->name;
Stefan Roese2fc10f62009-03-19 15:35:05 +01002702 nm.len = le16_to_cpu(xent->nlen);
2703 err = ubifs_tnc_remove_nm(c, &key1, &nm);
2704 if (err) {
2705 kfree(xent);
2706 return err;
2707 }
2708
2709 lowest_ino_key(c, &key1, xattr_inum);
2710 highest_ino_key(c, &key2, xattr_inum);
2711 err = ubifs_tnc_remove_range(c, &key1, &key2);
2712 if (err) {
2713 kfree(xent);
2714 return err;
2715 }
2716
2717 kfree(pxent);
2718 pxent = xent;
2719 key_read(c, &xent->key, &key1);
2720 }
2721
2722 kfree(pxent);
2723 lowest_ino_key(c, &key1, inum);
2724 highest_ino_key(c, &key2, inum);
2725
2726 return ubifs_tnc_remove_range(c, &key1, &key2);
2727}
2728
2729/**
2730 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2731 * @c: UBIFS file-system description object
2732 * @key: key of last entry
2733 * @nm: name of last entry found or %NULL
2734 *
2735 * This function finds and reads the next directory or extended attribute entry
2736 * after the given key (@key) if there is one. @nm is used to resolve
2737 * collisions.
2738 *
2739 * If the name of the current entry is not known and only the key is known,
2740 * @nm->name has to be %NULL. In this case the semantics of this function is a
2741 * little bit different and it returns the entry corresponding to this key, not
2742 * the next one. If the key was not found, the closest "right" entry is
2743 * returned.
2744 *
2745 * If the fist entry has to be found, @key has to contain the lowest possible
2746 * key value for this inode and @name has to be %NULL.
2747 *
2748 * This function returns the found directory or extended attribute entry node
2749 * in case of success, %-ENOENT is returned if no entry was found, and a
2750 * negative error code is returned in case of failure.
2751 */
2752struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2753 union ubifs_key *key,
2754 const struct qstr *nm)
2755{
2756 int n, err, type = key_type(c, key);
2757 struct ubifs_znode *znode;
2758 struct ubifs_dent_node *dent;
2759 struct ubifs_zbranch *zbr;
2760 union ubifs_key *dkey;
2761
Heiko Schocherf5895d12014-06-24 10:10:04 +02002762 dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)");
Stefan Roese2fc10f62009-03-19 15:35:05 +01002763 ubifs_assert(is_hash_key(c, key));
2764
2765 mutex_lock(&c->tnc_mutex);
2766 err = ubifs_lookup_level0(c, key, &znode, &n);
2767 if (unlikely(err < 0))
2768 goto out_unlock;
2769
2770 if (nm->name) {
2771 if (err) {
2772 /* Handle collisions */
2773 err = resolve_collision(c, key, &znode, &n, nm);
2774 dbg_tnc("rc returned %d, znode %p, n %d",
2775 err, znode, n);
2776 if (unlikely(err < 0))
2777 goto out_unlock;
2778 }
2779
2780 /* Now find next entry */
2781 err = tnc_next(c, &znode, &n);
2782 if (unlikely(err))
2783 goto out_unlock;
2784 } else {
2785 /*
2786 * The full name of the entry was not given, in which case the
2787 * behavior of this function is a little different and it
2788 * returns current entry, not the next one.
2789 */
2790 if (!err) {
2791 /*
2792 * However, the given key does not exist in the TNC
2793 * tree and @znode/@n variables contain the closest
2794 * "preceding" element. Switch to the next one.
2795 */
2796 err = tnc_next(c, &znode, &n);
2797 if (err)
2798 goto out_unlock;
2799 }
2800 }
2801
2802 zbr = &znode->zbranch[n];
2803 dent = kmalloc(zbr->len, GFP_NOFS);
2804 if (unlikely(!dent)) {
2805 err = -ENOMEM;
2806 goto out_unlock;
2807 }
2808
2809 /*
2810 * The above 'tnc_next()' call could lead us to the next inode, check
2811 * this.
2812 */
2813 dkey = &zbr->key;
2814 if (key_inum(c, dkey) != key_inum(c, key) ||
2815 key_type(c, dkey) != type) {
2816 err = -ENOENT;
2817 goto out_free;
2818 }
2819
2820 err = tnc_read_node_nm(c, zbr, dent);
2821 if (unlikely(err))
2822 goto out_free;
2823
2824 mutex_unlock(&c->tnc_mutex);
2825 return dent;
2826
2827out_free:
2828 kfree(dent);
2829out_unlock:
2830 mutex_unlock(&c->tnc_mutex);
2831 return ERR_PTR(err);
2832}
Heiko Schocherf5895d12014-06-24 10:10:04 +02002833
Heiko Schocherf5895d12014-06-24 10:10:04 +02002834/**
2835 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2836 * @c: UBIFS file-system description object
2837 *
2838 * Destroy left-over obsolete znodes from a failed commit.
2839 */
2840static void tnc_destroy_cnext(struct ubifs_info *c)
2841{
2842 struct ubifs_znode *cnext;
2843
2844 if (!c->cnext)
2845 return;
2846 ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2847 cnext = c->cnext;
2848 do {
2849 struct ubifs_znode *znode = cnext;
2850
2851 cnext = cnext->cnext;
2852 if (ubifs_zn_obsolete(znode))
2853 kfree(znode);
2854 } while (cnext && cnext != c->cnext);
2855}
2856
2857/**
2858 * ubifs_tnc_close - close TNC subsystem and free all related resources.
2859 * @c: UBIFS file-system description object
2860 */
2861void ubifs_tnc_close(struct ubifs_info *c)
2862{
2863 tnc_destroy_cnext(c);
2864 if (c->zroot.znode) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02002865 long n, freed;
Heiko Schocherf5895d12014-06-24 10:10:04 +02002866
Heiko Schocherf5895d12014-06-24 10:10:04 +02002867 n = atomic_long_read(&c->clean_zn_cnt);
Heiko Schocher94b66de2015-10-22 06:19:21 +02002868 freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2869 ubifs_assert(freed == n);
Heiko Schocherf5895d12014-06-24 10:10:04 +02002870 atomic_long_sub(n, &ubifs_clean_zn_cnt);
2871 }
2872 kfree(c->gap_lebs);
2873 kfree(c->ilebs);
2874 destroy_old_idx(c);
2875}
Heiko Schocherf5895d12014-06-24 10:10:04 +02002876
2877/**
2878 * left_znode - get the znode to the left.
2879 * @c: UBIFS file-system description object
2880 * @znode: znode
2881 *
2882 * This function returns a pointer to the znode to the left of @znode or NULL if
2883 * there is not one. A negative error code is returned on failure.
2884 */
2885static struct ubifs_znode *left_znode(struct ubifs_info *c,
2886 struct ubifs_znode *znode)
2887{
2888 int level = znode->level;
2889
2890 while (1) {
2891 int n = znode->iip - 1;
2892
2893 /* Go up until we can go left */
2894 znode = znode->parent;
2895 if (!znode)
2896 return NULL;
2897 if (n >= 0) {
2898 /* Now go down the rightmost branch to 'level' */
2899 znode = get_znode(c, znode, n);
2900 if (IS_ERR(znode))
2901 return znode;
2902 while (znode->level != level) {
2903 n = znode->child_cnt - 1;
2904 znode = get_znode(c, znode, n);
2905 if (IS_ERR(znode))
2906 return znode;
2907 }
2908 break;
2909 }
2910 }
2911 return znode;
2912}
2913
2914/**
2915 * right_znode - get the znode to the right.
2916 * @c: UBIFS file-system description object
2917 * @znode: znode
2918 *
2919 * This function returns a pointer to the znode to the right of @znode or NULL
2920 * if there is not one. A negative error code is returned on failure.
2921 */
2922static struct ubifs_znode *right_znode(struct ubifs_info *c,
2923 struct ubifs_znode *znode)
2924{
2925 int level = znode->level;
2926
2927 while (1) {
2928 int n = znode->iip + 1;
2929
2930 /* Go up until we can go right */
2931 znode = znode->parent;
2932 if (!znode)
2933 return NULL;
2934 if (n < znode->child_cnt) {
2935 /* Now go down the leftmost branch to 'level' */
2936 znode = get_znode(c, znode, n);
2937 if (IS_ERR(znode))
2938 return znode;
2939 while (znode->level != level) {
2940 znode = get_znode(c, znode, 0);
2941 if (IS_ERR(znode))
2942 return znode;
2943 }
2944 break;
2945 }
2946 }
2947 return znode;
2948}
2949
2950/**
2951 * lookup_znode - find a particular indexing node from TNC.
2952 * @c: UBIFS file-system description object
2953 * @key: index node key to lookup
2954 * @level: index node level
2955 * @lnum: index node LEB number
2956 * @offs: index node offset
2957 *
2958 * This function searches an indexing node by its first key @key and its
2959 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2960 * nodes it traverses to TNC. This function is called for indexing nodes which
2961 * were found on the media by scanning, for example when garbage-collecting or
2962 * when doing in-the-gaps commit. This means that the indexing node which is
2963 * looked for does not have to have exactly the same leftmost key @key, because
2964 * the leftmost key may have been changed, in which case TNC will contain a
2965 * dirty znode which still refers the same @lnum:@offs. This function is clever
2966 * enough to recognize such indexing nodes.
2967 *
2968 * Note, if a znode was deleted or changed too much, then this function will
2969 * not find it. For situations like this UBIFS has the old index RB-tree
2970 * (indexed by @lnum:@offs).
2971 *
2972 * This function returns a pointer to the znode found or %NULL if it is not
2973 * found. A negative error code is returned on failure.
2974 */
2975static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2976 union ubifs_key *key, int level,
2977 int lnum, int offs)
2978{
2979 struct ubifs_znode *znode, *zn;
2980 int n, nn;
2981
2982 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
2983
2984 /*
2985 * The arguments have probably been read off flash, so don't assume
2986 * they are valid.
2987 */
2988 if (level < 0)
2989 return ERR_PTR(-EINVAL);
2990
2991 /* Get the root znode */
2992 znode = c->zroot.znode;
2993 if (!znode) {
2994 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
2995 if (IS_ERR(znode))
2996 return znode;
2997 }
2998 /* Check if it is the one we are looking for */
2999 if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3000 return znode;
3001 /* Descend to the parent level i.e. (level + 1) */
3002 if (level >= znode->level)
3003 return NULL;
3004 while (1) {
3005 ubifs_search_zbranch(c, znode, key, &n);
3006 if (n < 0) {
3007 /*
3008 * We reached a znode where the leftmost key is greater
3009 * than the key we are searching for. This is the same
3010 * situation as the one described in a huge comment at
3011 * the end of the 'ubifs_lookup_level0()' function. And
3012 * for exactly the same reasons we have to try to look
3013 * left before giving up.
3014 */
3015 znode = left_znode(c, znode);
3016 if (!znode)
3017 return NULL;
3018 if (IS_ERR(znode))
3019 return znode;
3020 ubifs_search_zbranch(c, znode, key, &n);
3021 ubifs_assert(n >= 0);
3022 }
3023 if (znode->level == level + 1)
3024 break;
3025 znode = get_znode(c, znode, n);
3026 if (IS_ERR(znode))
3027 return znode;
3028 }
3029 /* Check if the child is the one we are looking for */
3030 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3031 return get_znode(c, znode, n);
3032 /* If the key is unique, there is nowhere else to look */
3033 if (!is_hash_key(c, key))
3034 return NULL;
3035 /*
3036 * The key is not unique and so may be also in the znodes to either
3037 * side.
3038 */
3039 zn = znode;
3040 nn = n;
3041 /* Look left */
3042 while (1) {
3043 /* Move one branch to the left */
3044 if (n)
3045 n -= 1;
3046 else {
3047 znode = left_znode(c, znode);
3048 if (!znode)
3049 break;
3050 if (IS_ERR(znode))
3051 return znode;
3052 n = znode->child_cnt - 1;
3053 }
3054 /* Check it */
3055 if (znode->zbranch[n].lnum == lnum &&
3056 znode->zbranch[n].offs == offs)
3057 return get_znode(c, znode, n);
3058 /* Stop if the key is less than the one we are looking for */
3059 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3060 break;
3061 }
3062 /* Back to the middle */
3063 znode = zn;
3064 n = nn;
3065 /* Look right */
3066 while (1) {
3067 /* Move one branch to the right */
3068 if (++n >= znode->child_cnt) {
3069 znode = right_znode(c, znode);
3070 if (!znode)
3071 break;
3072 if (IS_ERR(znode))
3073 return znode;
3074 n = 0;
3075 }
3076 /* Check it */
3077 if (znode->zbranch[n].lnum == lnum &&
3078 znode->zbranch[n].offs == offs)
3079 return get_znode(c, znode, n);
3080 /* Stop if the key is greater than the one we are looking for */
3081 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3082 break;
3083 }
3084 return NULL;
3085}
3086
3087/**
3088 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3089 * @c: UBIFS file-system description object
3090 * @key: key of index node
3091 * @level: index node level
3092 * @lnum: LEB number of index node
3093 * @offs: offset of index node
3094 *
3095 * This function returns %0 if the index node is not referred to in the TNC, %1
3096 * if the index node is referred to in the TNC and the corresponding znode is
3097 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3098 * znode is clean, and a negative error code in case of failure.
3099 *
3100 * Note, the @key argument has to be the key of the first child. Also note,
3101 * this function relies on the fact that 0:0 is never a valid LEB number and
3102 * offset for a main-area node.
3103 */
3104int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3105 int lnum, int offs)
3106{
3107 struct ubifs_znode *znode;
3108
3109 znode = lookup_znode(c, key, level, lnum, offs);
3110 if (!znode)
3111 return 0;
3112 if (IS_ERR(znode))
3113 return PTR_ERR(znode);
3114
3115 return ubifs_zn_dirty(znode) ? 1 : 2;
3116}
3117
3118/**
3119 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3120 * @c: UBIFS file-system description object
3121 * @key: node key
3122 * @lnum: node LEB number
3123 * @offs: node offset
3124 *
3125 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3126 * not, and a negative error code in case of failure.
3127 *
3128 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3129 * and offset for a main-area node.
3130 */
3131static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3132 int lnum, int offs)
3133{
3134 struct ubifs_zbranch *zbr;
3135 struct ubifs_znode *znode, *zn;
3136 int n, found, err, nn;
3137 const int unique = !is_hash_key(c, key);
3138
3139 found = ubifs_lookup_level0(c, key, &znode, &n);
3140 if (found < 0)
3141 return found; /* Error code */
3142 if (!found)
3143 return 0;
3144 zbr = &znode->zbranch[n];
3145 if (lnum == zbr->lnum && offs == zbr->offs)
3146 return 1; /* Found it */
3147 if (unique)
3148 return 0;
3149 /*
3150 * Because the key is not unique, we have to look left
3151 * and right as well
3152 */
3153 zn = znode;
3154 nn = n;
3155 /* Look left */
3156 while (1) {
3157 err = tnc_prev(c, &znode, &n);
3158 if (err == -ENOENT)
3159 break;
3160 if (err)
3161 return err;
3162 if (keys_cmp(c, key, &znode->zbranch[n].key))
3163 break;
3164 zbr = &znode->zbranch[n];
3165 if (lnum == zbr->lnum && offs == zbr->offs)
3166 return 1; /* Found it */
3167 }
3168 /* Look right */
3169 znode = zn;
3170 n = nn;
3171 while (1) {
3172 err = tnc_next(c, &znode, &n);
3173 if (err) {
3174 if (err == -ENOENT)
3175 return 0;
3176 return err;
3177 }
3178 if (keys_cmp(c, key, &znode->zbranch[n].key))
3179 break;
3180 zbr = &znode->zbranch[n];
3181 if (lnum == zbr->lnum && offs == zbr->offs)
3182 return 1; /* Found it */
3183 }
3184 return 0;
3185}
3186
3187/**
3188 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3189 * @c: UBIFS file-system description object
3190 * @key: node key
3191 * @level: index node level (if it is an index node)
3192 * @lnum: node LEB number
3193 * @offs: node offset
3194 * @is_idx: non-zero if the node is an index node
3195 *
3196 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3197 * negative error code in case of failure. For index nodes, @key has to be the
3198 * key of the first child. An index node is considered to be in the TNC only if
3199 * the corresponding znode is clean or has not been loaded.
3200 */
3201int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3202 int lnum, int offs, int is_idx)
3203{
3204 int err;
3205
3206 mutex_lock(&c->tnc_mutex);
3207 if (is_idx) {
3208 err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3209 if (err < 0)
3210 goto out_unlock;
3211 if (err == 1)
3212 /* The index node was found but it was dirty */
3213 err = 0;
3214 else if (err == 2)
3215 /* The index node was found and it was clean */
3216 err = 1;
3217 else
3218 BUG_ON(err != 0);
3219 } else
3220 err = is_leaf_node_in_tnc(c, key, lnum, offs);
3221
3222out_unlock:
3223 mutex_unlock(&c->tnc_mutex);
3224 return err;
3225}
3226
3227/**
3228 * ubifs_dirty_idx_node - dirty an index node.
3229 * @c: UBIFS file-system description object
3230 * @key: index node key
3231 * @level: index node level
3232 * @lnum: index node LEB number
3233 * @offs: index node offset
3234 *
3235 * This function loads and dirties an index node so that it can be garbage
3236 * collected. The @key argument has to be the key of the first child. This
3237 * function relies on the fact that 0:0 is never a valid LEB number and offset
3238 * for a main-area node. Returns %0 on success and a negative error code on
3239 * failure.
3240 */
3241int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3242 int lnum, int offs)
3243{
3244 struct ubifs_znode *znode;
3245 int err = 0;
3246
3247 mutex_lock(&c->tnc_mutex);
3248 znode = lookup_znode(c, key, level, lnum, offs);
3249 if (!znode)
3250 goto out_unlock;
3251 if (IS_ERR(znode)) {
3252 err = PTR_ERR(znode);
3253 goto out_unlock;
3254 }
3255 znode = dirty_cow_bottom_up(c, znode);
3256 if (IS_ERR(znode)) {
3257 err = PTR_ERR(znode);
3258 goto out_unlock;
3259 }
3260
3261out_unlock:
3262 mutex_unlock(&c->tnc_mutex);
3263 return err;
3264}
3265
3266/**
3267 * dbg_check_inode_size - check if inode size is correct.
3268 * @c: UBIFS file-system description object
3269 * @inum: inode number
3270 * @size: inode size
3271 *
3272 * This function makes sure that the inode size (@size) is correct and it does
3273 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3274 * if it has a data page beyond @size, and other negative error code in case of
3275 * other errors.
3276 */
3277int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3278 loff_t size)
3279{
3280 int err, n;
3281 union ubifs_key from_key, to_key, *key;
3282 struct ubifs_znode *znode;
3283 unsigned int block;
3284
3285 if (!S_ISREG(inode->i_mode))
3286 return 0;
3287 if (!dbg_is_chk_gen(c))
3288 return 0;
3289
3290 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3291 data_key_init(c, &from_key, inode->i_ino, block);
3292 highest_data_key(c, &to_key, inode->i_ino);
3293
3294 mutex_lock(&c->tnc_mutex);
3295 err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3296 if (err < 0)
3297 goto out_unlock;
3298
3299 if (err) {
Heiko Schocherf5895d12014-06-24 10:10:04 +02003300 key = &from_key;
3301 goto out_dump;
3302 }
3303
3304 err = tnc_next(c, &znode, &n);
3305 if (err == -ENOENT) {
3306 err = 0;
3307 goto out_unlock;
3308 }
3309 if (err < 0)
3310 goto out_unlock;
3311
3312 ubifs_assert(err == 0);
3313 key = &znode->zbranch[n].key;
3314 if (!key_in_range(c, key, &from_key, &to_key))
3315 goto out_unlock;
3316
3317out_dump:
3318 block = key_block(c, key);
Heiko Schocher94b66de2015-10-22 06:19:21 +02003319 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
Heiko Schocherf5895d12014-06-24 10:10:04 +02003320 (unsigned long)inode->i_ino, size,
3321 ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3322 mutex_unlock(&c->tnc_mutex);
3323 ubifs_dump_inode(c, inode);
3324 dump_stack();
3325 return -EINVAL;
3326
3327out_unlock:
3328 mutex_unlock(&c->tnc_mutex);
3329 return err;
3330}