blob: c6e00b8c2082b517aa34e32ccc76f605752124f9 [file] [log] [blame]
Mingkai Hu0e58b512015-10-26 19:47:50 +08001/*
2 * Copyright 2014-2015 Freescale Semiconductor, Inc.
3 *
4 * SPDX-License-Identifier: GPL-2.0+
5 */
6
7#include <common.h>
8#include <asm/io.h>
9#include <asm/errno.h>
10#include <asm/system.h>
11#include <asm/armv8/mmu.h>
12#include <asm/io.h>
13#include <asm/arch/fsl_serdes.h>
14#include <asm/arch/soc.h>
15#include <asm/arch/cpu.h>
16#include <asm/arch/speed.h>
17#ifdef CONFIG_MP
18#include <asm/arch/mp.h>
19#endif
20#include <fm_eth.h>
21#include <fsl_debug_server.h>
22#include <fsl-mc/fsl_mc.h>
23#ifdef CONFIG_FSL_ESDHC
24#include <fsl_esdhc.h>
25#endif
26
27DECLARE_GLOBAL_DATA_PTR;
28
29void cpu_name(char *name)
30{
31 struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
32 unsigned int i, svr, ver;
33
34 svr = gur_in32(&gur->svr);
35 ver = SVR_SOC_VER(svr);
36
37 for (i = 0; i < ARRAY_SIZE(cpu_type_list); i++)
38 if ((cpu_type_list[i].soc_ver & SVR_WO_E) == ver) {
39 strcpy(name, cpu_type_list[i].name);
40
41 if (IS_E_PROCESSOR(svr))
42 strcat(name, "E");
43 break;
44 }
45
46 if (i == ARRAY_SIZE(cpu_type_list))
47 strcpy(name, "unknown");
48}
49
50#ifndef CONFIG_SYS_DCACHE_OFF
51/*
52 * Set the block entries according to the information of the table.
53 */
54static int set_block_entry(const struct sys_mmu_table *list,
55 struct table_info *table)
56{
57 u64 block_size = 0, block_shift = 0;
58 u64 block_addr, index;
59 int j;
60
61 if (table->entry_size == BLOCK_SIZE_L1) {
62 block_size = BLOCK_SIZE_L1;
63 block_shift = SECTION_SHIFT_L1;
64 } else if (table->entry_size == BLOCK_SIZE_L2) {
65 block_size = BLOCK_SIZE_L2;
66 block_shift = SECTION_SHIFT_L2;
67 } else {
68 return -EINVAL;
69 }
70
71 block_addr = list->phys_addr;
72 index = (list->virt_addr - table->table_base) >> block_shift;
73
74 for (j = 0; j < (list->size >> block_shift); j++) {
75 set_pgtable_section(table->ptr,
76 index,
77 block_addr,
78 list->memory_type,
79 list->share);
80 block_addr += block_size;
81 index++;
82 }
83
84 return 0;
85}
86
87/*
88 * Find the corresponding table entry for the list.
89 */
90static int find_table(const struct sys_mmu_table *list,
91 struct table_info *table, u64 *level0_table)
92{
93 u64 index = 0, level = 0;
94 u64 *level_table = level0_table;
95 u64 temp_base = 0, block_size = 0, block_shift = 0;
96
97 while (level < 3) {
98 if (level == 0) {
99 block_size = BLOCK_SIZE_L0;
100 block_shift = SECTION_SHIFT_L0;
101 } else if (level == 1) {
102 block_size = BLOCK_SIZE_L1;
103 block_shift = SECTION_SHIFT_L1;
104 } else if (level == 2) {
105 block_size = BLOCK_SIZE_L2;
106 block_shift = SECTION_SHIFT_L2;
107 }
108
109 index = 0;
110 while (list->virt_addr >= temp_base) {
111 index++;
112 temp_base += block_size;
113 }
114
115 temp_base -= block_size;
116
117 if ((level_table[index - 1] & PMD_TYPE_MASK) ==
118 PMD_TYPE_TABLE) {
119 level_table = (u64 *)(level_table[index - 1] &
120 ~PMD_TYPE_MASK);
121 level++;
122 continue;
123 } else {
124 if (level == 0)
125 return -EINVAL;
126
127 if ((list->phys_addr + list->size) >
128 (temp_base + block_size * NUM_OF_ENTRY))
129 return -EINVAL;
130
131 /*
132 * Check the address and size of the list member is
133 * aligned with the block size.
134 */
135 if (((list->phys_addr & (block_size - 1)) != 0) ||
136 ((list->size & (block_size - 1)) != 0))
137 return -EINVAL;
138
139 table->ptr = level_table;
140 table->table_base = temp_base -
141 ((index - 1) << block_shift);
142 table->entry_size = block_size;
143
144 return 0;
145 }
146 }
147 return -EINVAL;
148}
149
150/*
151 * To start MMU before DDR is available, we create MMU table in SRAM.
152 * The base address of SRAM is CONFIG_SYS_FSL_OCRAM_BASE. We use three
153 * levels of translation tables here to cover 40-bit address space.
154 * We use 4KB granule size, with 40 bits physical address, T0SZ=24
155 * Level 0 IA[39], table address @0
156 * Level 1 IA[38:30], table address @0x1000, 0x2000
157 * Level 2 IA[29:21], table address @0x3000, 0x4000
158 * Address above 0x5000 is free for other purpose.
159 */
160static inline void early_mmu_setup(void)
161{
162 unsigned int el, i;
163 u64 *level0_table = (u64 *)CONFIG_SYS_FSL_OCRAM_BASE;
164 u64 *level1_table0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x1000);
165 u64 *level1_table1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x2000);
166 u64 *level2_table0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x3000);
167 u64 *level2_table1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x4000);
168
169 struct table_info table = {level0_table, 0, BLOCK_SIZE_L0};
170
171 /* Invalidate all table entries */
172 memset(level0_table, 0, 0x5000);
173
174 /* Fill in the table entries */
175 set_pgtable_table(level0_table, 0, level1_table0);
176 set_pgtable_table(level0_table, 1, level1_table1);
177 set_pgtable_table(level1_table0, 0, level2_table0);
178
179#ifdef CONFIG_FSL_LSCH3
180 set_pgtable_table(level1_table0,
181 CONFIG_SYS_FLASH_BASE >> SECTION_SHIFT_L1,
182 level2_table1);
Mingkai Hue4e93ea2015-10-26 19:47:51 +0800183#elif defined(CONFIG_FSL_LSCH2)
184 set_pgtable_table(level1_table0, 1, level2_table1);
Mingkai Hu0e58b512015-10-26 19:47:50 +0800185#endif
186 /* Find the table and fill in the block entries */
187 for (i = 0; i < ARRAY_SIZE(early_mmu_table); i++) {
188 if (find_table(&early_mmu_table[i],
189 &table, level0_table) == 0) {
190 /*
191 * If find_table() returns error, it cannot be dealt
192 * with here. Breakpoint can be added for debugging.
193 */
194 set_block_entry(&early_mmu_table[i], &table);
195 /*
196 * If set_block_entry() returns error, it cannot be
197 * dealt with here too.
198 */
199 }
200 }
201
202 el = current_el();
203
204 set_ttbr_tcr_mair(el, (u64)level0_table, LAYERSCAPE_TCR,
205 MEMORY_ATTRIBUTES);
206 set_sctlr(get_sctlr() | CR_M);
207}
208
209/*
210 * The final tables look similar to early tables, but different in detail.
211 * These tables are in DRAM. Sub tables are added to enable cache for
212 * QBMan and OCRAM.
213 *
214 * Level 1 table 0 contains 512 entries for each 1GB from 0 to 512GB.
215 * Level 1 table 1 contains 512 entries for each 1GB from 512GB to 1TB.
216 * Level 2 table 0 contains 512 entries for each 2MB from 0 to 1GB.
217 *
218 * For LSCH3:
219 * Level 2 table 1 contains 512 entries for each 2MB from 32GB to 33GB.
Mingkai Hue4e93ea2015-10-26 19:47:51 +0800220 * For LSCH2:
221 * Level 2 table 1 contains 512 entries for each 2MB from 1GB to 2GB.
222 * Level 2 table 2 contains 512 entries for each 2MB from 20GB to 21GB.
Mingkai Hu0e58b512015-10-26 19:47:50 +0800223 */
224static inline void final_mmu_setup(void)
225{
226 unsigned int el, i;
227 u64 *level0_table = (u64 *)gd->arch.tlb_addr;
228 u64 *level1_table0 = (u64 *)(gd->arch.tlb_addr + 0x1000);
229 u64 *level1_table1 = (u64 *)(gd->arch.tlb_addr + 0x2000);
230 u64 *level2_table0 = (u64 *)(gd->arch.tlb_addr + 0x3000);
231#ifdef CONFIG_FSL_LSCH3
232 u64 *level2_table1 = (u64 *)(gd->arch.tlb_addr + 0x4000);
Mingkai Hue4e93ea2015-10-26 19:47:51 +0800233#elif defined(CONFIG_FSL_LSCH2)
234 u64 *level2_table1 = (u64 *)(gd->arch.tlb_addr + 0x4000);
235 u64 *level2_table2 = (u64 *)(gd->arch.tlb_addr + 0x5000);
Mingkai Hu0e58b512015-10-26 19:47:50 +0800236#endif
237 struct table_info table = {level0_table, 0, BLOCK_SIZE_L0};
238
239 /* Invalidate all table entries */
240 memset(level0_table, 0, PGTABLE_SIZE);
241
242 /* Fill in the table entries */
243 set_pgtable_table(level0_table, 0, level1_table0);
244 set_pgtable_table(level0_table, 1, level1_table1);
245 set_pgtable_table(level1_table0, 0, level2_table0);
246#ifdef CONFIG_FSL_LSCH3
247 set_pgtable_table(level1_table0,
248 CONFIG_SYS_FSL_QBMAN_BASE >> SECTION_SHIFT_L1,
249 level2_table1);
Mingkai Hue4e93ea2015-10-26 19:47:51 +0800250#elif defined(CONFIG_FSL_LSCH2)
251 set_pgtable_table(level1_table0, 1, level2_table1);
252 set_pgtable_table(level1_table0,
253 CONFIG_SYS_FSL_QBMAN_BASE >> SECTION_SHIFT_L1,
254 level2_table2);
Mingkai Hu0e58b512015-10-26 19:47:50 +0800255#endif
256
257 /* Find the table and fill in the block entries */
258 for (i = 0; i < ARRAY_SIZE(final_mmu_table); i++) {
259 if (find_table(&final_mmu_table[i],
260 &table, level0_table) == 0) {
261 if (set_block_entry(&final_mmu_table[i],
262 &table) != 0) {
263 printf("MMU error: could not set block entry for %p\n",
264 &final_mmu_table[i]);
265 }
266
267 } else {
268 printf("MMU error: could not find the table for %p\n",
269 &final_mmu_table[i]);
270 }
271 }
272
273 /* flush new MMU table */
274 flush_dcache_range(gd->arch.tlb_addr,
275 gd->arch.tlb_addr + gd->arch.tlb_size);
276
Shaohui Xie04643262015-10-26 19:47:54 +0800277#ifdef CONFIG_SYS_DPAA_FMAN
278 flush_dcache_all();
279#endif
Mingkai Hu0e58b512015-10-26 19:47:50 +0800280 /* point TTBR to the new table */
281 el = current_el();
282
283 set_ttbr_tcr_mair(el, (u64)level0_table, LAYERSCAPE_TCR_FINAL,
284 MEMORY_ATTRIBUTES);
285 /*
286 * MMU is already enabled, just need to invalidate TLB to load the
287 * new table. The new table is compatible with the current table, if
288 * MMU somehow walks through the new table before invalidation TLB,
289 * it still works. So we don't need to turn off MMU here.
290 */
291}
292
293int arch_cpu_init(void)
294{
295 icache_enable();
296 __asm_invalidate_dcache_all();
297 __asm_invalidate_tlb_all();
298 early_mmu_setup();
299 set_sctlr(get_sctlr() | CR_C);
300 return 0;
301}
302
303/*
304 * This function is called from lib/board.c.
305 * It recreates MMU table in main memory. MMU and d-cache are enabled earlier.
306 * There is no need to disable d-cache for this operation.
307 */
308void enable_caches(void)
309{
310 final_mmu_setup();
311 __asm_invalidate_tlb_all();
312}
313#endif
314
315static inline u32 initiator_type(u32 cluster, int init_id)
316{
317 struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
318 u32 idx = (cluster >> (init_id * 8)) & TP_CLUSTER_INIT_MASK;
319 u32 type = 0;
320
321 type = gur_in32(&gur->tp_ityp[idx]);
322 if (type & TP_ITYP_AV)
323 return type;
324
325 return 0;
326}
327
328u32 cpu_mask(void)
329{
330 struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
331 int i = 0, count = 0;
332 u32 cluster, type, mask = 0;
333
334 do {
335 int j;
336
337 cluster = gur_in32(&gur->tp_cluster[i].lower);
338 for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
339 type = initiator_type(cluster, j);
340 if (type) {
341 if (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
342 mask |= 1 << count;
343 count++;
344 }
345 }
346 i++;
347 } while ((cluster & TP_CLUSTER_EOC) == 0x0);
348
349 return mask;
350}
351
352/*
353 * Return the number of cores on this SOC.
354 */
355int cpu_numcores(void)
356{
357 return hweight32(cpu_mask());
358}
359
360int fsl_qoriq_core_to_cluster(unsigned int core)
361{
362 struct ccsr_gur __iomem *gur =
363 (void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
364 int i = 0, count = 0;
365 u32 cluster;
366
367 do {
368 int j;
369
370 cluster = gur_in32(&gur->tp_cluster[i].lower);
371 for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
372 if (initiator_type(cluster, j)) {
373 if (count == core)
374 return i;
375 count++;
376 }
377 }
378 i++;
379 } while ((cluster & TP_CLUSTER_EOC) == 0x0);
380
381 return -1; /* cannot identify the cluster */
382}
383
384u32 fsl_qoriq_core_to_type(unsigned int core)
385{
386 struct ccsr_gur __iomem *gur =
387 (void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
388 int i = 0, count = 0;
389 u32 cluster, type;
390
391 do {
392 int j;
393
394 cluster = gur_in32(&gur->tp_cluster[i].lower);
395 for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
396 type = initiator_type(cluster, j);
397 if (type) {
398 if (count == core)
399 return type;
400 count++;
401 }
402 }
403 i++;
404 } while ((cluster & TP_CLUSTER_EOC) == 0x0);
405
406 return -1; /* cannot identify the cluster */
407}
408
409#ifdef CONFIG_DISPLAY_CPUINFO
410int print_cpuinfo(void)
411{
412 struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
413 struct sys_info sysinfo;
414 char buf[32];
415 unsigned int i, core;
416 u32 type, rcw;
417
418 puts("SoC: ");
419
420 cpu_name(buf);
421 printf(" %s (0x%x)\n", buf, gur_in32(&gur->svr));
422 memset((u8 *)buf, 0x00, ARRAY_SIZE(buf));
423 get_sys_info(&sysinfo);
424 puts("Clock Configuration:");
425 for_each_cpu(i, core, cpu_numcores(), cpu_mask()) {
426 if (!(i % 3))
427 puts("\n ");
428 type = TP_ITYP_VER(fsl_qoriq_core_to_type(core));
429 printf("CPU%d(%s):%-4s MHz ", core,
430 type == TY_ITYP_VER_A7 ? "A7 " :
431 (type == TY_ITYP_VER_A53 ? "A53" :
432 (type == TY_ITYP_VER_A57 ? "A57" : " ")),
433 strmhz(buf, sysinfo.freq_processor[core]));
434 }
435 printf("\n Bus: %-4s MHz ",
436 strmhz(buf, sysinfo.freq_systembus));
437 printf("DDR: %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus));
Shaohui Xie04643262015-10-26 19:47:54 +0800438#ifdef CONFIG_SYS_DPAA_FMAN
439 printf(" FMAN: %-4s MHz", strmhz(buf, sysinfo.freq_fman[0]));
440#endif
Prabhakar Kushwaha122bcfd2015-11-09 16:42:07 +0530441#ifdef CONFIG_SYS_FSL_HAS_DP_DDR
Mingkai Hu0e58b512015-10-26 19:47:50 +0800442 printf(" DP-DDR: %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus2));
443#endif
444 puts("\n");
445
446 /*
447 * Display the RCW, so that no one gets confused as to what RCW
448 * we're actually using for this boot.
449 */
450 puts("Reset Configuration Word (RCW):");
451 for (i = 0; i < ARRAY_SIZE(gur->rcwsr); i++) {
452 rcw = gur_in32(&gur->rcwsr[i]);
453 if ((i % 4) == 0)
454 printf("\n %08x:", i * 4);
455 printf(" %08x", rcw);
456 }
457 puts("\n");
458
459 return 0;
460}
461#endif
462
463#ifdef CONFIG_FSL_ESDHC
464int cpu_mmc_init(bd_t *bis)
465{
466 return fsl_esdhc_mmc_init(bis);
467}
468#endif
469
470int cpu_eth_init(bd_t *bis)
471{
472 int error = 0;
473
474#ifdef CONFIG_FSL_MC_ENET
475 error = fsl_mc_ldpaa_init(bis);
476#endif
Shaohui Xie04643262015-10-26 19:47:54 +0800477#ifdef CONFIG_FMAN_ENET
478 fm_standard_init(bis);
479#endif
Mingkai Hu0e58b512015-10-26 19:47:50 +0800480 return error;
481}
482
483int arch_early_init_r(void)
484{
485#ifdef CONFIG_MP
486 int rv = 1;
487
488 rv = fsl_layerscape_wake_seconday_cores();
489 if (rv)
490 printf("Did not wake secondary cores\n");
491#endif
492
493#ifdef CONFIG_SYS_HAS_SERDES
494 fsl_serdes_init();
495#endif
Shaohui Xie04643262015-10-26 19:47:54 +0800496#ifdef CONFIG_FMAN_ENET
497 fman_enet_init();
498#endif
Mingkai Hu0e58b512015-10-26 19:47:50 +0800499 return 0;
500}
501
502int timer_init(void)
503{
504 u32 __iomem *cntcr = (u32 *)CONFIG_SYS_FSL_TIMER_ADDR;
505#ifdef CONFIG_FSL_LSCH3
506 u32 __iomem *cltbenr = (u32 *)CONFIG_SYS_FSL_PMU_CLTBENR;
507#endif
508#ifdef COUNTER_FREQUENCY_REAL
509 unsigned long cntfrq = COUNTER_FREQUENCY_REAL;
510
511 /* Update with accurate clock frequency */
512 asm volatile("msr cntfrq_el0, %0" : : "r" (cntfrq) : "memory");
513#endif
514
515#ifdef CONFIG_FSL_LSCH3
516 /* Enable timebase for all clusters.
517 * It is safe to do so even some clusters are not enabled.
518 */
519 out_le32(cltbenr, 0xf);
520#endif
521
522 /* Enable clock for timer
523 * This is a global setting.
524 */
525 out_le32(cntcr, 0x1);
526
527 return 0;
528}
529
530void reset_cpu(ulong addr)
531{
532 u32 __iomem *rstcr = (u32 *)CONFIG_SYS_FSL_RST_ADDR;
533 u32 val;
534
535 /* Raise RESET_REQ_B */
536 val = scfg_in32(rstcr);
537 val |= 0x02;
538 scfg_out32(rstcr, val);
539}