blob: 7049e740d56969ae7f28cdb793c857e19dad8dba [file] [log] [blame]
Michal Simek0be35ab2022-01-06 09:49:41 +01001// SPDX-License-Identifier: GPL-2.0
2/*
3 * phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT.
4 *
5 * Copyright (C) 2018-2021 Xilinx Inc.
6 *
7 * Author: Anurag Kumar Vulisha <anuragku@xilinx.com>
8 * Author: Subbaraya Sundeep <sundeep.lkml@gmail.com>
9 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10 */
11
Michal Simek0be35ab2022-01-06 09:49:41 +010012#include <clk-uclass.h>
13#include <dm.h>
14#include <generic-phy.h>
15#include <log.h>
16#include <power-domain.h>
17#include <regmap.h>
18#include <syscon.h>
19#include <asm/io.h>
20#include <asm/arch/sys_proto.h>
21#include <asm/arch/hardware.h>
22#include <dm/device.h>
23#include <dm/device_compat.h>
24#include <dm/lists.h>
25#include <dt-bindings/phy/phy.h>
26#include <linux/bitops.h>
27#include <linux/delay.h>
28#include <linux/err.h>
29
30/*
31 * Lane Registers
32 */
33
34/* TX De-emphasis parameters */
35#define L0_TX_ANA_TM_18 0x0048
36#define L0_TX_ANA_TM_118 0x01d8
37#define L0_TX_ANA_TM_118_FORCE_17_0 BIT(0)
38
39/* DN Resistor calibration code parameters */
40#define L0_TXPMA_ST_3 0x0b0c
41#define L0_DN_CALIB_CODE 0x3f
42
43/* PMA control parameters */
44#define L0_TXPMD_TM_45 0x0cb4
45#define L0_TXPMD_TM_48 0x0cc0
46#define L0_TXPMD_TM_45_OVER_DP_MAIN BIT(0)
47#define L0_TXPMD_TM_45_ENABLE_DP_MAIN BIT(1)
48#define L0_TXPMD_TM_45_OVER_DP_POST1 BIT(2)
49#define L0_TXPMD_TM_45_ENABLE_DP_POST1 BIT(3)
50#define L0_TXPMD_TM_45_OVER_DP_POST2 BIT(4)
51#define L0_TXPMD_TM_45_ENABLE_DP_POST2 BIT(5)
52
53/* PCS control parameters */
54#define L0_TM_DIG_6 0x106c
55#define L0_TM_DIS_DESCRAMBLE_DECODER 0x0f
56#define L0_TX_DIG_61 0x00f4
57#define L0_TM_DISABLE_SCRAMBLE_ENCODER 0x0f
58
59/* PLL Test Mode register parameters */
60#define L0_TM_PLL_DIG_37 0x2094
61#define L0_TM_COARSE_CODE_LIMIT 0x10
62
63/* PLL SSC step size offsets */
64#define L0_PLL_SS_STEPS_0_LSB 0x2368
65#define L0_PLL_SS_STEPS_1_MSB 0x236c
66#define L0_PLL_SS_STEP_SIZE_0_LSB 0x2370
67#define L0_PLL_SS_STEP_SIZE_1 0x2374
68#define L0_PLL_SS_STEP_SIZE_2 0x2378
69#define L0_PLL_SS_STEP_SIZE_3_MSB 0x237c
70#define L0_PLL_STATUS_READ_1 0x23e4
71
72/* SSC step size parameters */
73#define STEP_SIZE_0_MASK 0xff
74#define STEP_SIZE_1_MASK 0xff
75#define STEP_SIZE_2_MASK 0xff
76#define STEP_SIZE_3_MASK 0x3
77#define STEP_SIZE_SHIFT 8
78#define FORCE_STEP_SIZE 0x10
79#define FORCE_STEPS 0x20
80#define STEPS_0_MASK 0xff
81#define STEPS_1_MASK 0x07
82
83/* Reference clock selection parameters */
84#define L0_Ln_REF_CLK_SEL(n) (0x2860 + (n) * 4)
85#define L0_REF_CLK_SEL_MASK 0x8f
86
87/* Calibration digital logic parameters */
88#define L3_TM_CALIB_DIG19 0xec4c
89#define L3_CALIB_DONE_STATUS 0xef14
90#define L3_TM_CALIB_DIG18 0xec48
91#define L3_TM_CALIB_DIG19_NSW 0x07
92#define L3_TM_CALIB_DIG18_NSW 0xe0
93#define L3_TM_OVERRIDE_NSW_CODE 0x20
94#define L3_CALIB_DONE 0x02
95#define L3_NSW_SHIFT 5
96#define L3_NSW_PIPE_SHIFT 4
97#define L3_NSW_CALIB_SHIFT 3
98
99#define PHY_REG_OFFSET 0x4000
100
101/*
102 * Global Registers
103 */
104
105/* Refclk selection parameters */
106#define PLL_REF_SEL(n) (0x10000 + (n) * 4)
107#define PLL_FREQ_MASK 0x1f
108#define PLL_STATUS_LOCKED 0x10
109
110/* Inter Connect Matrix parameters */
111#define ICM_CFG0 0x10010
112#define ICM_CFG1 0x10014
113#define ICM_CFG0_L0_MASK 0x07
114#define ICM_CFG0_L1_MASK 0x70
115#define ICM_CFG1_L2_MASK 0x07
116#define ICM_CFG2_L3_MASK 0x70
117#define ICM_CFG_SHIFT 4
118
119/* Inter Connect Matrix allowed protocols */
120#define ICM_PROTOCOL_PD 0x0
121#define ICM_PROTOCOL_PCIE 0x1
122#define ICM_PROTOCOL_SATA 0x2
123#define ICM_PROTOCOL_USB 0x3
124#define ICM_PROTOCOL_DP 0x4
125#define ICM_PROTOCOL_SGMII 0x5
126
127/* Test Mode common reset control parameters */
128#define TM_CMN_RST 0x10018
129#define TM_CMN_RST_EN 0x1
130#define TM_CMN_RST_SET 0x2
131#define TM_CMN_RST_MASK 0x3
132
133/* Bus width parameters */
134#define TX_PROT_BUS_WIDTH 0x10040
135#define RX_PROT_BUS_WIDTH 0x10044
136#define PROT_BUS_WIDTH_10 0x0
137#define PROT_BUS_WIDTH_20 0x1
138#define PROT_BUS_WIDTH_40 0x2
139#define PROT_BUS_WIDTH_MASK 0x3
140#define PROT_BUS_WIDTH_SHIFT 2
141
142/* Number of GT lanes */
143#define NUM_LANES 4
144
145/* SIOU SATA control register */
146#define SATA_CONTROL_OFFSET 0x0100
147
148/* Total number of controllers */
149#define CONTROLLERS_PER_LANE 5
150
151/* Protocol Type parameters */
152enum {
153 XPSGTR_TYPE_USB0 = 0, /* USB controller 0 */
154 XPSGTR_TYPE_USB1 = 1, /* USB controller 1 */
155 XPSGTR_TYPE_SATA_0 = 2, /* SATA controller lane 0 */
156 XPSGTR_TYPE_SATA_1 = 3, /* SATA controller lane 1 */
157 XPSGTR_TYPE_PCIE_0 = 4, /* PCIe controller lane 0 */
158 XPSGTR_TYPE_PCIE_1 = 5, /* PCIe controller lane 1 */
159 XPSGTR_TYPE_PCIE_2 = 6, /* PCIe controller lane 2 */
160 XPSGTR_TYPE_PCIE_3 = 7, /* PCIe controller lane 3 */
161 XPSGTR_TYPE_DP_0 = 8, /* Display Port controller lane 0 */
162 XPSGTR_TYPE_DP_1 = 9, /* Display Port controller lane 1 */
163 XPSGTR_TYPE_SGMII0 = 10, /* Ethernet SGMII controller 0 */
164 XPSGTR_TYPE_SGMII1 = 11, /* Ethernet SGMII controller 1 */
165 XPSGTR_TYPE_SGMII2 = 12, /* Ethernet SGMII controller 2 */
166 XPSGTR_TYPE_SGMII3 = 13, /* Ethernet SGMII controller 3 */
167};
168
169/* Timeout values */
Ashok Reddy Somad5a63342022-05-10 07:12:34 -0600170#define TIMEOUT_US 10000
Michal Simek0be35ab2022-01-06 09:49:41 +0100171
172#define IOU_SLCR_GEM_CLK_CTRL 0x308
173#define GEM_CTRL_GEM_SGMII_MODE BIT(2)
174#define GEM_CTRL_GEM_REF_SRC_SEL BIT(1)
175
176#define IOU_SLCR_GEM_CTRL 0x360
177#define GEM_CTRL_GEM_SGMII_SD BIT(0)
178
179/**
180 * struct xpsgtr_ssc - structure to hold SSC settings for a lane
181 * @refclk_rate: PLL reference clock frequency
182 * @pll_ref_clk: value to be written to register for corresponding ref clk rate
183 * @steps: number of steps of SSC (Spread Spectrum Clock)
184 * @step_size: step size of each step
185 */
186struct xpsgtr_ssc {
187 u32 refclk_rate;
188 u8 pll_ref_clk;
189 u32 steps;
190 u32 step_size;
191};
192
193/**
194 * struct xpsgtr_phy - representation of a lane
195 * @dev: pointer to the xpsgtr_dev instance
196 * @refclk: reference clock index
197 * @type: controller which uses this lane
198 * @lane: lane number
199 * @protocol: protocol in which the lane operates
200 */
201struct xpsgtr_phy {
202 struct xpsgtr_dev *dev;
203 unsigned int refclk;
204 u8 type;
205 u8 lane;
206 u8 protocol;
207};
208
209/**
210 * struct xpsgtr_dev - representation of a ZynMP GT device
211 * @dev: pointer to device
212 * @serdes: serdes base address
213 * @siou: siou base address
214 * @phys: PHY lanes
215 * @refclk_sscs: spread spectrum settings for the reference clocks
216 * @clk: reference clocks
217 */
218struct xpsgtr_dev {
219 struct udevice *dev;
220 u8 *serdes;
221 u8 *siou;
222 struct xpsgtr_phy phys[NUM_LANES];
223 const struct xpsgtr_ssc *refclk_sscs[NUM_LANES];
224 struct clk clk[NUM_LANES];
225};
226
227/* Configuration Data */
228/* lookup table to hold all settings needed for a ref clock frequency */
229static const struct xpsgtr_ssc ssc_lookup[] = {
230 { 19200000, 0x05, 608, 264020 },
231 { 20000000, 0x06, 634, 243454 },
232 { 24000000, 0x07, 760, 168973 },
233 { 26000000, 0x08, 824, 143860 },
234 { 27000000, 0x09, 856, 86551 },
235 { 38400000, 0x0a, 1218, 65896 },
236 { 40000000, 0x0b, 634, 243454 },
237 { 52000000, 0x0c, 824, 143860 },
238 { 100000000, 0x0d, 1058, 87533 },
239 { 108000000, 0x0e, 856, 86551 },
240 { 125000000, 0x0f, 992, 119497 },
241 { 135000000, 0x10, 1070, 55393 },
242 { 150000000, 0x11, 792, 187091 }
243};
244
245/* I/O Accessors */
246static u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg)
247{
248 return readl(gtr_dev->serdes + reg);
249}
250
251static void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value)
252{
253 writel(value, gtr_dev->serdes + reg);
254}
255
256static void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg,
257 u32 clr, u32 set)
258{
259 u32 value = xpsgtr_read(gtr_dev, reg);
260
261 value &= ~clr;
262 value |= set;
263 xpsgtr_write(gtr_dev, reg, value);
264}
265
266static u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg)
267{
268 void __iomem *addr = gtr_phy->dev->serdes
269 + gtr_phy->lane * PHY_REG_OFFSET + reg;
270
271 return readl(addr);
272}
273
274static void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy,
275 u32 reg, u32 value)
276{
277 void __iomem *addr = gtr_phy->dev->serdes
278 + gtr_phy->lane * PHY_REG_OFFSET + reg;
279
280 writel(value, addr);
281}
282
283static void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy,
284 u32 reg, u32 clr, u32 set)
285{
286 void __iomem *addr = gtr_phy->dev->serdes
287 + gtr_phy->lane * PHY_REG_OFFSET + reg;
288
289 writel((readl(addr) & ~clr) | set, addr);
290}
291
292/* Configure PLL and spread-sprectrum clock. */
293static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy)
294{
295 const struct xpsgtr_ssc *ssc;
296 u32 step_size;
297
298 ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk];
299 step_size = ssc->step_size;
300
301 xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane),
302 PLL_FREQ_MASK, ssc->pll_ref_clk);
303
304 /* Enable lane clock sharing, if required */
305 if (gtr_phy->refclk != gtr_phy->lane) {
306 /* Lane3 Ref Clock Selection Register */
307 xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane),
308 L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk);
309 }
310
311 /* SSC step size [7:0] */
312 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB,
313 STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK);
314
315 /* SSC step size [15:8] */
316 step_size >>= STEP_SIZE_SHIFT;
317 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1,
318 STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK);
319
320 /* SSC step size [23:16] */
321 step_size >>= STEP_SIZE_SHIFT;
322 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2,
323 STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK);
324
325 /* SSC steps [7:0] */
326 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB,
327 STEPS_0_MASK, ssc->steps & STEPS_0_MASK);
328
329 /* SSC steps [10:8] */
330 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB,
331 STEPS_1_MASK,
332 (ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK);
333
334 /* SSC step size [24:25] */
335 step_size >>= STEP_SIZE_SHIFT;
336 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB,
337 STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) |
338 FORCE_STEP_SIZE | FORCE_STEPS);
339}
340
341/* Configure the lane protocol. */
342static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy)
343{
344 struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
345 u8 protocol = gtr_phy->protocol;
346
347 switch (gtr_phy->lane) {
348 case 0:
349 xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol);
350 break;
351 case 1:
352 xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK,
353 protocol << ICM_CFG_SHIFT);
354 break;
355 case 2:
356 xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol);
357 break;
358 case 3:
359 xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK,
360 protocol << ICM_CFG_SHIFT);
361 break;
362 default:
363 /* We already checked 0 <= lane <= 3 */
364 break;
365 }
366}
367
368/* Bypass (de)scrambler and 8b/10b decoder and encoder. */
369static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy)
370{
371 xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER);
372 xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER);
373}
374
Michal Simek1c5e9912022-02-07 10:36:32 +0100375/* DP-specific initialization. */
376static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy)
377{
378 xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45,
379 L0_TXPMD_TM_45_OVER_DP_MAIN |
380 L0_TXPMD_TM_45_ENABLE_DP_MAIN |
381 L0_TXPMD_TM_45_OVER_DP_POST1 |
382 L0_TXPMD_TM_45_OVER_DP_POST2 |
383 L0_TXPMD_TM_45_ENABLE_DP_POST2);
384 xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118,
385 L0_TX_ANA_TM_118_FORCE_17_0);
386}
387
388/* SATA-specific initialization. */
389static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy)
390{
391 struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
392
393 xpsgtr_bypass_scrambler_8b10b(gtr_phy);
394
395 writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET);
396}
397
Michal Simek0be35ab2022-01-06 09:49:41 +0100398/* SGMII-specific initialization. */
399static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy)
400{
401 struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
402 u32 shift = gtr_phy->lane * PROT_BUS_WIDTH_SHIFT;
403
404 /* Set SGMII protocol TX and RX bus width to 10 bits. */
405 xpsgtr_clr_set(gtr_dev, TX_PROT_BUS_WIDTH, PROT_BUS_WIDTH_MASK << shift,
406 PROT_BUS_WIDTH_10 << shift);
407
408 xpsgtr_clr_set(gtr_dev, RX_PROT_BUS_WIDTH, PROT_BUS_WIDTH_MASK << shift,
409 PROT_BUS_WIDTH_10 << shift);
410
411 xpsgtr_bypass_scrambler_8b10b(gtr_phy);
412
413 /*
414 * Below code is just temporary solution till we have a way how to
415 * do it via firmware interface in sync with Linux. Till that happen
416 * this is the most sensible thing to do here.
417 */
418 /* GEM I/O Clock Control */
419 clrsetbits_le32(ZYNQMP_IOU_SLCR_BASEADDR + IOU_SLCR_GEM_CLK_CTRL,
420 0xf << shift,
421 (GEM_CTRL_GEM_SGMII_MODE | GEM_CTRL_GEM_REF_SRC_SEL) <<
422 shift);
423
424 /* Setup signal detect */
425 clrsetbits_le32(ZYNQMP_IOU_SLCR_BASEADDR + IOU_SLCR_GEM_CTRL,
426 PROT_BUS_WIDTH_MASK << shift,
427 GEM_CTRL_GEM_SGMII_SD << shift);
428}
429
430static int xpsgtr_init(struct phy *x)
431{
432 struct xpsgtr_dev *gtr_dev = dev_get_priv(x->dev);
433 struct xpsgtr_phy *gtr_phy;
434 u32 phy_lane = x->id;
435
436 gtr_phy = &gtr_dev->phys[phy_lane];
437
438 /* Enable coarse code saturation limiting logic. */
439 xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT);
440
441 /*
442 * Configure the PLL, the lane protocol, and perform protocol-specific
443 * initialization.
444 */
445 xpsgtr_configure_pll(gtr_phy);
446 xpsgtr_lane_set_protocol(gtr_phy);
447
448 switch (gtr_phy->protocol) {
449 case ICM_PROTOCOL_SGMII:
450 xpsgtr_phy_init_sgmii(gtr_phy);
451 break;
Michal Simek0be35ab2022-01-06 09:49:41 +0100452 case ICM_PROTOCOL_SATA:
Michal Simek1c5e9912022-02-07 10:36:32 +0100453 xpsgtr_phy_init_sata(gtr_phy);
454 break;
455 case ICM_PROTOCOL_DP:
456 xpsgtr_phy_init_dp(gtr_phy);
457 break;
Michal Simek0be35ab2022-01-06 09:49:41 +0100458 }
459
460 dev_dbg(gtr_dev->dev, "lane %u (type %u, protocol %u): init done\n",
461 gtr_phy->lane, gtr_phy->type, gtr_phy->protocol);
462
463 return 0;
464}
465
466/* Wait for the PLL to lock (with a timeout). */
467static int xpsgtr_wait_pll_lock(struct phy *phy)
468{
469 struct xpsgtr_dev *gtr_dev = dev_get_priv(phy->dev);
470 struct xpsgtr_phy *gtr_phy;
471 u32 phy_lane = phy->id;
472 int ret = 0;
473 unsigned int timeout = TIMEOUT_US;
474
475 gtr_phy = &gtr_dev->phys[phy_lane];
476
477 dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n");
478
479 while (1) {
480 u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1);
481
482 if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) {
483 ret = 0;
484 break;
485 }
486
487 if (--timeout == 0) {
488 ret = -ETIMEDOUT;
489 break;
490 }
491
492 udelay(1);
493 }
494
495 if (ret == -ETIMEDOUT)
496 dev_err(gtr_dev->dev,
497 "lane %u (type %u, protocol %u): PLL lock timeout\n",
498 gtr_phy->lane, gtr_phy->type, gtr_phy->protocol);
499
500 return ret;
501}
502
503static int xpsgtr_power_on(struct phy *phy)
504{
505 struct xpsgtr_dev *gtr_dev = dev_get_priv(phy->dev);
506 struct xpsgtr_phy *gtr_phy;
507 u32 phy_lane = phy->id;
508 int ret = 0;
509
510 gtr_phy = &gtr_dev->phys[phy_lane];
511
512 /*
513 * Wait for the PLL to lock. For DP, only wait on DP0 to avoid
514 * cumulating waits for both lanes. The user is expected to initialize
515 * lane 0 last.
516 */
517 if (gtr_phy->protocol != ICM_PROTOCOL_DP ||
518 gtr_phy->type == XPSGTR_TYPE_DP_0)
519 ret = xpsgtr_wait_pll_lock(phy);
520
521 return ret;
522}
523
524/*
525 * OF Xlate Support
526 */
527
528/* Set the lane type and protocol based on the PHY type and instance number. */
529static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type,
530 unsigned int phy_instance)
531{
532 unsigned int num_phy_types;
533 const int *phy_types;
534
535 switch (phy_type) {
536 case PHY_TYPE_SATA: {
537 static const int types[] = {
538 XPSGTR_TYPE_SATA_0,
539 XPSGTR_TYPE_SATA_1,
540 };
541
542 phy_types = types;
543 num_phy_types = ARRAY_SIZE(types);
544 gtr_phy->protocol = ICM_PROTOCOL_SATA;
545 break;
546 }
547 case PHY_TYPE_USB3: {
548 static const int types[] = {
549 XPSGTR_TYPE_USB0,
550 XPSGTR_TYPE_USB1,
551 };
552
553 phy_types = types;
554 num_phy_types = ARRAY_SIZE(types);
555 gtr_phy->protocol = ICM_PROTOCOL_USB;
556 break;
557 }
558 case PHY_TYPE_DP: {
559 static const int types[] = {
560 XPSGTR_TYPE_DP_0,
561 XPSGTR_TYPE_DP_1,
562 };
563
564 phy_types = types;
565 num_phy_types = ARRAY_SIZE(types);
566 gtr_phy->protocol = ICM_PROTOCOL_DP;
567 break;
568 }
569 case PHY_TYPE_PCIE: {
570 static const int types[] = {
571 XPSGTR_TYPE_PCIE_0,
572 XPSGTR_TYPE_PCIE_1,
573 XPSGTR_TYPE_PCIE_2,
574 XPSGTR_TYPE_PCIE_3,
575 };
576
577 phy_types = types;
578 num_phy_types = ARRAY_SIZE(types);
579 gtr_phy->protocol = ICM_PROTOCOL_PCIE;
580 break;
581 }
582 case PHY_TYPE_SGMII: {
583 static const int types[] = {
584 XPSGTR_TYPE_SGMII0,
585 XPSGTR_TYPE_SGMII1,
586 XPSGTR_TYPE_SGMII2,
587 XPSGTR_TYPE_SGMII3,
588 };
589
590 phy_types = types;
591 num_phy_types = ARRAY_SIZE(types);
592 gtr_phy->protocol = ICM_PROTOCOL_SGMII;
593 break;
594 }
595 default:
596 return -EINVAL;
597 }
598
599 if (phy_instance >= num_phy_types)
600 return -EINVAL;
601
602 gtr_phy->type = phy_types[phy_instance];
603 return 0;
604}
605
606/*
607 * Valid combinations of controllers and lanes (Interconnect Matrix).
608 */
609static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = {
610 { XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
611 XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII0 },
612 { XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB0,
613 XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII1 },
614 { XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
615 XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII2 },
616 { XPSGTR_TYPE_PCIE_3, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB1,
617 XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII3 }
618};
619
620/* Translate OF phandle and args to PHY instance. */
621static int xpsgtr_of_xlate(struct phy *x,
622 struct ofnode_phandle_args *args)
623{
624 struct xpsgtr_dev *gtr_dev = dev_get_priv(x->dev);
625 struct xpsgtr_phy *gtr_phy;
626 struct udevice *dev = x->dev;
627 unsigned int phy_instance;
628 unsigned int phy_lane;
629 unsigned int phy_type;
630 unsigned int refclk;
631 unsigned int i;
632 int ret;
633
634 if (args->args_count != 4) {
635 dev_err(dev, "Invalid number of cells in 'phy' property\n");
636 return -EINVAL;
637 }
638
639 /*
640 * Get the PHY parameters from the OF arguments and derive the lane
641 * type.
642 */
643 phy_lane = args->args[0];
644 if (phy_lane >= NUM_LANES) {
645 dev_err(dev, "Invalid lane number %u\n", phy_lane);
646 return -EINVAL;
647 }
648
649 gtr_phy = &gtr_dev->phys[phy_lane];
650 phy_type = args->args[1];
651 phy_instance = args->args[2];
652
653 ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance);
654 if (ret) {
655 dev_err(dev, "Invalid PHY type and/or instance\n");
656 return ret;
657 }
658
659 refclk = args->args[3];
660 if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) ||
661 !gtr_dev->refclk_sscs[refclk]) {
662 dev_err(dev, "Invalid reference clock number %u\n", refclk);
663 return -EINVAL;
664 }
665
666 gtr_phy->refclk = refclk;
667
668 /* This is difference compare to Linux */
669 gtr_phy->dev = gtr_dev;
670 gtr_phy->lane = phy_lane;
671
672 /*
673 * Ensure that the Interconnect Matrix is obeyed, i.e a given lane type
674 * is allowed to operate on the lane.
675 */
676 for (i = 0; i < CONTROLLERS_PER_LANE; i++) {
677 if (icm_matrix[phy_lane][i] == gtr_phy->type) {
678 x->id = phy_lane;
679 return 0;
680 }
681 }
682
683 return -EINVAL;
684}
685
686/*
687 * Probe & Platform Driver
688 */
689static int xpsgtr_get_ref_clocks(struct udevice *dev)
690{
691 unsigned int refclk;
692 struct xpsgtr_dev *gtr_dev = dev_get_priv(dev);
693 int ret;
694
695 for (refclk = 0; refclk < NUM_LANES; ++refclk) {
696 int i;
697 u32 rate;
698 char name[8];
699 struct clk *clk = &gtr_dev->clk[refclk];
700
701 snprintf(name, sizeof(name), "ref%u", refclk);
702 dev_dbg(dev, "Checking name: %s\n", name);
703 ret = clk_get_by_name(dev, name, clk);
704 if (ret == -ENODATA) {
705 dev_dbg(dev, "%s clock not specified (err %d)\n",
706 name, ret);
707 continue;
708 } else if (ret) {
709 dev_dbg(dev, "couldn't get clock %s (err %d)\n",
710 name, ret);
711 return ret;
712 }
713
714 rate = clk_get_rate(clk);
715
716 dev_dbg(dev, "clk rate %d\n", rate);
717
718 ret = clk_enable(clk);
719 if (ret) {
720 dev_err(dev, "failed to enable refclk %d clock\n",
721 refclk);
722 return ret;
723 }
724
725 for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) {
726 if (rate == ssc_lookup[i].refclk_rate) {
727 gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i];
728 dev_dbg(dev, "Found rate %d\n", i);
729 break;
730 }
731 }
732
733 if (i == ARRAY_SIZE(ssc_lookup)) {
734 dev_err(dev,
735 "Invalid rate %u for reference clock %u\n",
736 rate, refclk);
737 return -EINVAL;
738 }
739 }
740
741 return 0;
742}
743
744static int xpsgtr_probe(struct udevice *dev)
745{
746 struct xpsgtr_dev *gtr_dev = dev_get_priv(dev);
747
748 gtr_dev->serdes = dev_remap_addr_name(dev, "serdes");
749 if (!gtr_dev->serdes)
750 return -EINVAL;
751
752 gtr_dev->siou = dev_remap_addr_name(dev, "siou");
753 if (!gtr_dev->siou)
754 return -EINVAL;
755
756 gtr_dev->dev = dev;
757
758 return xpsgtr_get_ref_clocks(dev);
759}
760
761static const struct udevice_id xpsgtr_phy_ids[] = {
762 { .compatible = "xlnx,zynqmp-psgtr-v1.1", },
763 { }
764};
765
766static const struct phy_ops xpsgtr_phy_ops = {
767 .init = xpsgtr_init,
768 .of_xlate = xpsgtr_of_xlate,
769 .power_on = xpsgtr_power_on,
770};
771
772U_BOOT_DRIVER(psgtr_phy) = {
773 .name = "psgtr_phy",
774 .id = UCLASS_PHY,
775 .of_match = xpsgtr_phy_ids,
776 .ops = &xpsgtr_phy_ops,
777 .probe = xpsgtr_probe,
778 .priv_auto = sizeof(struct xpsgtr_dev),
779};