blob: 57d41b778b258d431656bc4a682fabc0418828f5 [file] [log] [blame]
Kunihiko Hayashi7a40ec02019-07-05 10:03:18 +09001// SPDX-License-Identifier: GPL-2.0+
2/*
3 * uniphier_spi.c - Socionext UniPhier SPI driver
4 * Copyright 2019 Socionext, Inc.
5 */
6
7#include <clk.h>
8#include <common.h>
9#include <dm.h>
Simon Glass0f2af882020-05-10 11:40:05 -060010#include <log.h>
Simon Glass495a5dc2019-11-14 12:57:30 -070011#include <time.h>
Simon Glass9bc15642020-02-03 07:36:16 -070012#include <dm/device_compat.h>
Kunihiko Hayashi7a40ec02019-07-05 10:03:18 +090013#include <linux/bitfield.h>
14#include <linux/io.h>
15#include <spi.h>
16#include <wait_bit.h>
17
18DECLARE_GLOBAL_DATA_PTR;
19
20#define SSI_CTL 0x00
21#define SSI_CTL_EN BIT(0)
22
23#define SSI_CKS 0x04
24#define SSI_CKS_CKRAT_MASK GENMASK(7, 0)
25#define SSI_CKS_CKPHS BIT(14)
26#define SSI_CKS_CKINIT BIT(13)
27#define SSI_CKS_CKDLY BIT(12)
28
29#define SSI_TXWDS 0x08
30#define SSI_TXWDS_WDLEN_MASK GENMASK(13, 8)
31#define SSI_TXWDS_TDTF_MASK GENMASK(7, 6)
32#define SSI_TXWDS_DTLEN_MASK GENMASK(5, 0)
33
34#define SSI_RXWDS 0x0c
35#define SSI_RXWDS_RDTF_MASK GENMASK(7, 6)
36#define SSI_RXWDS_DTLEN_MASK GENMASK(5, 0)
37
38#define SSI_FPS 0x10
39#define SSI_FPS_FSPOL BIT(15)
40#define SSI_FPS_FSTRT BIT(14)
41
42#define SSI_SR 0x14
43#define SSI_SR_BUSY BIT(7)
44#define SSI_SR_TNF BIT(5)
45#define SSI_SR_RNE BIT(0)
46
47#define SSI_IE 0x18
48
49#define SSI_IC 0x1c
50#define SSI_IC_TCIC BIT(4)
51#define SSI_IC_RCIC BIT(3)
52#define SSI_IC_RORIC BIT(0)
53
54#define SSI_FC 0x20
55#define SSI_FC_TXFFL BIT(12)
56#define SSI_FC_TXFTH_MASK GENMASK(11, 8)
57#define SSI_FC_RXFFL BIT(4)
58#define SSI_FC_RXFTH_MASK GENMASK(3, 0)
59
60#define SSI_XDR 0x24 /* TXDR for write, RXDR for read */
61
62#define SSI_FIFO_DEPTH 8U
63
64#define SSI_REG_TIMEOUT (CONFIG_SYS_HZ / 100) /* 10 ms */
65#define SSI_XFER_TIMEOUT (CONFIG_SYS_HZ) /* 1 sec */
66
67#define SSI_CLK 50000000 /* internal I/O clock: 50MHz */
68
69struct uniphier_spi_platdata {
70 void __iomem *base;
71 u32 frequency; /* input frequency */
72 u32 speed_hz;
73 uint deactivate_delay_us; /* Delay to wait after deactivate */
74 uint activate_delay_us; /* Delay to wait after activate */
75};
76
77struct uniphier_spi_priv {
78 void __iomem *base;
79 u8 mode;
80 u8 fifo_depth;
81 u8 bits_per_word;
82 ulong last_transaction_us; /* Time of last transaction end */
83};
84
85static void uniphier_spi_enable(struct uniphier_spi_priv *priv, int enable)
86{
87 u32 val;
88
89 val = readl(priv->base + SSI_CTL);
90 if (enable)
91 val |= SSI_CTL_EN;
92 else
93 val &= ~SSI_CTL_EN;
94 writel(val, priv->base + SSI_CTL);
95}
96
97static void uniphier_spi_regdump(struct uniphier_spi_priv *priv)
98{
99 pr_debug("CTL %08x\n", readl(priv->base + SSI_CTL));
100 pr_debug("CKS %08x\n", readl(priv->base + SSI_CKS));
101 pr_debug("TXWDS %08x\n", readl(priv->base + SSI_TXWDS));
102 pr_debug("RXWDS %08x\n", readl(priv->base + SSI_RXWDS));
103 pr_debug("FPS %08x\n", readl(priv->base + SSI_FPS));
104 pr_debug("SR %08x\n", readl(priv->base + SSI_SR));
105 pr_debug("IE %08x\n", readl(priv->base + SSI_IE));
106 pr_debug("IC %08x\n", readl(priv->base + SSI_IC));
107 pr_debug("FC %08x\n", readl(priv->base + SSI_FC));
108 pr_debug("XDR %08x\n", readl(priv->base + SSI_XDR));
109}
110
111static void spi_cs_activate(struct udevice *dev)
112{
113 struct udevice *bus = dev->parent;
114 struct uniphier_spi_platdata *plat = bus->platdata;
115 struct uniphier_spi_priv *priv = dev_get_priv(bus);
116 ulong delay_us; /* The delay completed so far */
117 u32 val;
118
119 /* If it's too soon to do another transaction, wait */
120 if (plat->deactivate_delay_us && priv->last_transaction_us) {
121 delay_us = timer_get_us() - priv->last_transaction_us;
122 if (delay_us < plat->deactivate_delay_us)
123 udelay(plat->deactivate_delay_us - delay_us);
124 }
125
126 val = readl(priv->base + SSI_FPS);
127 if (priv->mode & SPI_CS_HIGH)
128 val |= SSI_FPS_FSPOL;
129 else
130 val &= ~SSI_FPS_FSPOL;
131 writel(val, priv->base + SSI_FPS);
132
133 if (plat->activate_delay_us)
134 udelay(plat->activate_delay_us);
135}
136
137static void spi_cs_deactivate(struct udevice *dev)
138{
139 struct udevice *bus = dev->parent;
140 struct uniphier_spi_platdata *plat = bus->platdata;
141 struct uniphier_spi_priv *priv = dev_get_priv(bus);
142 u32 val;
143
144 val = readl(priv->base + SSI_FPS);
145 if (priv->mode & SPI_CS_HIGH)
146 val &= ~SSI_FPS_FSPOL;
147 else
148 val |= SSI_FPS_FSPOL;
149 writel(val, priv->base + SSI_FPS);
150
151 /* Remember time of this transaction so we can honour the bus delay */
152 if (plat->deactivate_delay_us)
153 priv->last_transaction_us = timer_get_us();
154}
155
156static int uniphier_spi_claim_bus(struct udevice *dev)
157{
158 struct udevice *bus = dev->parent;
159 struct uniphier_spi_priv *priv = dev_get_priv(bus);
160 u32 val, size;
161
162 uniphier_spi_enable(priv, false);
163
164 /* disable interrupts */
165 writel(0, priv->base + SSI_IE);
166
167 /* bits_per_word */
168 size = priv->bits_per_word;
169 val = readl(priv->base + SSI_TXWDS);
170 val &= ~(SSI_TXWDS_WDLEN_MASK | SSI_TXWDS_DTLEN_MASK);
171 val |= FIELD_PREP(SSI_TXWDS_WDLEN_MASK, size);
172 val |= FIELD_PREP(SSI_TXWDS_DTLEN_MASK, size);
173 writel(val, priv->base + SSI_TXWDS);
174
175 val = readl(priv->base + SSI_RXWDS);
176 val &= ~SSI_RXWDS_DTLEN_MASK;
177 val |= FIELD_PREP(SSI_RXWDS_DTLEN_MASK, size);
178 writel(val, priv->base + SSI_RXWDS);
179
180 /* reset FIFOs */
181 val = SSI_FC_TXFFL | SSI_FC_RXFFL;
182 writel(val, priv->base + SSI_FC);
183
184 /* FIFO threthold */
185 val = readl(priv->base + SSI_FC);
186 val &= ~(SSI_FC_TXFTH_MASK | SSI_FC_RXFTH_MASK);
187 val |= FIELD_PREP(SSI_FC_TXFTH_MASK, priv->fifo_depth);
188 val |= FIELD_PREP(SSI_FC_RXFTH_MASK, priv->fifo_depth);
189 writel(val, priv->base + SSI_FC);
190
191 /* clear interrupts */
192 writel(SSI_IC_TCIC | SSI_IC_RCIC | SSI_IC_RORIC,
193 priv->base + SSI_IC);
194
195 uniphier_spi_enable(priv, true);
196
197 return 0;
198}
199
200static int uniphier_spi_release_bus(struct udevice *dev)
201{
202 struct udevice *bus = dev->parent;
203 struct uniphier_spi_priv *priv = dev_get_priv(bus);
204
205 uniphier_spi_enable(priv, false);
206
207 return 0;
208}
209
210static int uniphier_spi_xfer(struct udevice *dev, unsigned int bitlen,
211 const void *dout, void *din, unsigned long flags)
212{
213 struct udevice *bus = dev->parent;
214 struct uniphier_spi_priv *priv = dev_get_priv(bus);
215 const u8 *tx_buf = dout;
216 u8 *rx_buf = din, buf;
217 u32 len = bitlen / 8;
218 u32 tx_len, rx_len;
219 u32 ts, status;
220 int ret = 0;
221
222 if (bitlen % 8) {
223 dev_err(dev, "Non byte aligned SPI transfer\n");
224 return -EINVAL;
225 }
226
227 if (flags & SPI_XFER_BEGIN)
228 spi_cs_activate(dev);
229
230 uniphier_spi_enable(priv, true);
231
232 ts = get_timer(0);
233 tx_len = len;
234 rx_len = len;
235
236 uniphier_spi_regdump(priv);
237
238 while (tx_len || rx_len) {
239 ret = wait_for_bit_le32(priv->base + SSI_SR, SSI_SR_BUSY, false,
240 SSI_REG_TIMEOUT * 1000, false);
241 if (ret) {
242 if (ret == -ETIMEDOUT)
243 dev_err(dev, "access timeout\n");
244 break;
245 }
246
247 status = readl(priv->base + SSI_SR);
248 /* write the data into TX */
249 if (tx_len && (status & SSI_SR_TNF)) {
250 buf = tx_buf ? *tx_buf++ : 0;
251 writel(buf, priv->base + SSI_XDR);
252 tx_len--;
253 }
254
255 /* read the data from RX */
256 if (rx_len && (status & SSI_SR_RNE)) {
257 buf = readl(priv->base + SSI_XDR);
258 if (rx_buf)
259 *rx_buf++ = buf;
260 rx_len--;
261 }
262
263 if (get_timer(ts) >= SSI_XFER_TIMEOUT) {
264 dev_err(dev, "transfer timeout\n");
265 ret = -ETIMEDOUT;
266 break;
267 }
268 }
269
270 if (flags & SPI_XFER_END)
271 spi_cs_deactivate(dev);
272
273 uniphier_spi_enable(priv, false);
274
275 return ret;
276}
277
278static int uniphier_spi_set_speed(struct udevice *bus, uint speed)
279{
280 struct uniphier_spi_platdata *plat = bus->platdata;
281 struct uniphier_spi_priv *priv = dev_get_priv(bus);
282 u32 val, ckdiv;
283
284 if (speed > plat->frequency)
285 speed = plat->frequency;
286
287 /* baudrate */
288 ckdiv = DIV_ROUND_UP(SSI_CLK, speed);
289 ckdiv = round_up(ckdiv, 2);
290
291 val = readl(priv->base + SSI_CKS);
292 val &= ~SSI_CKS_CKRAT_MASK;
293 val |= ckdiv & SSI_CKS_CKRAT_MASK;
294 writel(val, priv->base + SSI_CKS);
295
296 return 0;
297}
298
299static int uniphier_spi_set_mode(struct udevice *bus, uint mode)
300{
301 struct uniphier_spi_priv *priv = dev_get_priv(bus);
302 u32 val1, val2;
303
304 /*
305 * clock setting
306 * CKPHS capture timing. 0:rising edge, 1:falling edge
307 * CKINIT clock initial level. 0:low, 1:high
308 * CKDLY clock delay. 0:no delay, 1:delay depending on FSTRT
309 * (FSTRT=0: 1 clock, FSTRT=1: 0.5 clock)
310 *
311 * frame setting
312 * FSPOL frame signal porarity. 0: low, 1: high
313 * FSTRT start frame timing
314 * 0: rising edge of clock, 1: falling edge of clock
315 */
316 val1 = readl(priv->base + SSI_CKS);
317 val2 = readl(priv->base + SSI_FPS);
318
319 switch (mode & (SPI_CPOL | SPI_CPHA)) {
320 case SPI_MODE_0:
321 /* CKPHS=1, CKINIT=0, CKDLY=1, FSTRT=0 */
322 val1 |= SSI_CKS_CKPHS | SSI_CKS_CKDLY;
323 val1 &= ~SSI_CKS_CKINIT;
324 val2 &= ~SSI_FPS_FSTRT;
325 break;
326 case SPI_MODE_1:
327 /* CKPHS=0, CKINIT=0, CKDLY=0, FSTRT=1 */
328 val1 &= ~(SSI_CKS_CKPHS | SSI_CKS_CKINIT | SSI_CKS_CKDLY);
329 val2 |= SSI_FPS_FSTRT;
330 break;
331 case SPI_MODE_2:
332 /* CKPHS=0, CKINIT=1, CKDLY=1, FSTRT=1 */
333 val1 |= SSI_CKS_CKINIT | SSI_CKS_CKDLY;
334 val1 &= ~SSI_CKS_CKPHS;
335 val2 |= SSI_FPS_FSTRT;
336 break;
337 case SPI_MODE_3:
338 /* CKPHS=1, CKINIT=1, CKDLY=0, FSTRT=0 */
339 val1 |= SSI_CKS_CKPHS | SSI_CKS_CKINIT;
340 val1 &= ~SSI_CKS_CKDLY;
341 val2 &= ~SSI_FPS_FSTRT;
342 break;
343 }
344
345 writel(val1, priv->base + SSI_CKS);
346 writel(val2, priv->base + SSI_FPS);
347
348 /* format */
349 val1 = readl(priv->base + SSI_TXWDS);
350 val2 = readl(priv->base + SSI_RXWDS);
351 if (mode & SPI_LSB_FIRST) {
352 val1 |= FIELD_PREP(SSI_TXWDS_TDTF_MASK, 1);
353 val2 |= FIELD_PREP(SSI_RXWDS_RDTF_MASK, 1);
354 }
355 writel(val1, priv->base + SSI_TXWDS);
356 writel(val2, priv->base + SSI_RXWDS);
357
358 priv->mode = mode;
359
360 return 0;
361}
362
363static int uniphier_spi_ofdata_to_platdata(struct udevice *bus)
364{
365 struct uniphier_spi_platdata *plat = bus->platdata;
366 const void *blob = gd->fdt_blob;
367 int node = dev_of_offset(bus);
368
369 plat->base = devfdt_get_addr_ptr(bus);
370
371 plat->frequency =
372 fdtdec_get_int(blob, node, "spi-max-frequency", 12500000);
373 plat->deactivate_delay_us =
374 fdtdec_get_int(blob, node, "spi-deactivate-delay", 0);
375 plat->activate_delay_us =
376 fdtdec_get_int(blob, node, "spi-activate-delay", 0);
377 plat->speed_hz = plat->frequency / 2;
378
379 return 0;
380}
381
382static int uniphier_spi_probe(struct udevice *bus)
383{
384 struct uniphier_spi_platdata *plat = dev_get_platdata(bus);
385 struct uniphier_spi_priv *priv = dev_get_priv(bus);
386
387 priv->base = plat->base;
388 priv->fifo_depth = SSI_FIFO_DEPTH;
389 priv->bits_per_word = 8;
390
391 return 0;
392}
393
394static const struct dm_spi_ops uniphier_spi_ops = {
395 .claim_bus = uniphier_spi_claim_bus,
396 .release_bus = uniphier_spi_release_bus,
397 .xfer = uniphier_spi_xfer,
398 .set_speed = uniphier_spi_set_speed,
399 .set_mode = uniphier_spi_set_mode,
400};
401
402static const struct udevice_id uniphier_spi_ids[] = {
403 { .compatible = "socionext,uniphier-scssi" },
404 { /* Sentinel */ }
405};
406
407U_BOOT_DRIVER(uniphier_spi) = {
408 .name = "uniphier_spi",
409 .id = UCLASS_SPI,
410 .of_match = uniphier_spi_ids,
411 .ops = &uniphier_spi_ops,
412 .ofdata_to_platdata = uniphier_spi_ofdata_to_platdata,
413 .platdata_auto_alloc_size = sizeof(struct uniphier_spi_platdata),
414 .priv_auto_alloc_size = sizeof(struct uniphier_spi_priv),
415 .probe = uniphier_spi_probe,
416};