blob: c40ed62959bebedb8c4296c80dcb2bbb8316f44b [file] [log] [blame]
Tom Rini10e47792018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
Heiko Schocherf5895d12014-06-24 10:10:04 +02002/*
3 * Copyright (c) International Business Machines Corp., 2006
4 *
Heiko Schocherf5895d12014-06-24 10:10:04 +02005 * Author: Artem Bityutskiy (Битюцкий Артём)
6 */
7
8/*
9 * UBI attaching sub-system.
10 *
11 * This sub-system is responsible for attaching MTD devices and it also
12 * implements flash media scanning.
13 *
14 * The attaching information is represented by a &struct ubi_attach_info'
15 * object. Information about volumes is represented by &struct ubi_ainf_volume
16 * objects which are kept in volume RB-tree with root at the @volumes field.
17 * The RB-tree is indexed by the volume ID.
18 *
19 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
20 * objects are kept in per-volume RB-trees with the root at the corresponding
21 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
22 * per-volume objects and each of these objects is the root of RB-tree of
23 * per-LEB objects.
24 *
25 * Corrupted physical eraseblocks are put to the @corr list, free physical
26 * eraseblocks are put to the @free list and the physical eraseblock to be
27 * erased are put to the @erase list.
28 *
29 * About corruptions
30 * ~~~~~~~~~~~~~~~~~
31 *
32 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
33 * whether the headers are corrupted or not. Sometimes UBI also protects the
34 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
35 * when it moves the contents of a PEB for wear-leveling purposes.
36 *
37 * UBI tries to distinguish between 2 types of corruptions.
38 *
39 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
40 * tries to handle them gracefully, without printing too many warnings and
41 * error messages. The idea is that we do not lose important data in these
42 * cases - we may lose only the data which were being written to the media just
43 * before the power cut happened, and the upper layers (e.g., UBIFS) are
44 * supposed to handle such data losses (e.g., by using the FS journal).
45 *
46 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
47 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
48 * PEBs in the @erase list are scheduled for erasure later.
49 *
50 * 2. Unexpected corruptions which are not caused by power cuts. During
51 * attaching, such PEBs are put to the @corr list and UBI preserves them.
52 * Obviously, this lessens the amount of available PEBs, and if at some point
53 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
54 * about such PEBs every time the MTD device is attached.
55 *
56 * However, it is difficult to reliably distinguish between these types of
57 * corruptions and UBI's strategy is as follows (in case of attaching by
58 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
59 * the data area does not contain all 0xFFs, and there were no bit-flips or
60 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
61 * area. Otherwise UBI assumes corruption type 1. So the decision criteria
62 * are as follows.
63 * o If the data area contains only 0xFFs, there are no data, and it is safe
64 * to just erase this PEB - this is corruption type 1.
65 * o If the data area has bit-flips or data integrity errors (ECC errors on
66 * NAND), it is probably a PEB which was being erased when power cut
67 * happened, so this is corruption type 1. However, this is just a guess,
68 * which might be wrong.
69 * o Otherwise this is corruption type 2.
70 */
71
Heiko Schocherf5895d12014-06-24 10:10:04 +020072#ifndef __UBOOT__
Simon Glass0f2af882020-05-10 11:40:05 -060073#include <log.h>
Simon Glassd66c5f72020-02-03 07:36:15 -070074#include <dm/devres.h>
Heiko Schocherf5895d12014-06-24 10:10:04 +020075#include <linux/err.h>
76#include <linux/slab.h>
77#include <linux/crc32.h>
78#include <linux/random.h>
Simon Glass48b6c6b2019-11-14 12:57:16 -070079#include <u-boot/crc.h>
Heiko Schocherf5895d12014-06-24 10:10:04 +020080#else
81#include <div64.h>
82#include <linux/err.h>
83#endif
84
85#include <linux/math64.h>
86
87#include <ubi_uboot.h>
88#include "ubi.h"
89
90static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
91
92/* Temporary variables used during scanning */
93static struct ubi_ec_hdr *ech;
94static struct ubi_vid_hdr *vidh;
95
96/**
97 * add_to_list - add physical eraseblock to a list.
98 * @ai: attaching information
99 * @pnum: physical eraseblock number to add
100 * @vol_id: the last used volume id for the PEB
101 * @lnum: the last used LEB number for the PEB
102 * @ec: erase counter of the physical eraseblock
103 * @to_head: if not zero, add to the head of the list
104 * @list: the list to add to
105 *
106 * This function allocates a 'struct ubi_ainf_peb' object for physical
107 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
108 * It stores the @lnum and @vol_id alongside, which can both be
109 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
110 * If @to_head is not zero, PEB will be added to the head of the list, which
111 * basically means it will be processed first later. E.g., we add corrupted
112 * PEBs (corrupted due to power cuts) to the head of the erase list to make
113 * sure we erase them first and get rid of corruptions ASAP. This function
114 * returns zero in case of success and a negative error code in case of
115 * failure.
116 */
117static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
118 int lnum, int ec, int to_head, struct list_head *list)
119{
120 struct ubi_ainf_peb *aeb;
121
122 if (list == &ai->free) {
123 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
124 } else if (list == &ai->erase) {
125 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
126 } else if (list == &ai->alien) {
127 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
128 ai->alien_peb_count += 1;
129 } else
130 BUG();
131
132 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
133 if (!aeb)
134 return -ENOMEM;
135
136 aeb->pnum = pnum;
137 aeb->vol_id = vol_id;
138 aeb->lnum = lnum;
139 aeb->ec = ec;
140 if (to_head)
141 list_add(&aeb->u.list, list);
142 else
143 list_add_tail(&aeb->u.list, list);
144 return 0;
145}
146
147/**
148 * add_corrupted - add a corrupted physical eraseblock.
149 * @ai: attaching information
150 * @pnum: physical eraseblock number to add
151 * @ec: erase counter of the physical eraseblock
152 *
153 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
154 * physical eraseblock @pnum and adds it to the 'corr' list. The corruption
155 * was presumably not caused by a power cut. Returns zero in case of success
156 * and a negative error code in case of failure.
157 */
158static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
159{
160 struct ubi_ainf_peb *aeb;
161
162 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
163
164 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
165 if (!aeb)
166 return -ENOMEM;
167
168 ai->corr_peb_count += 1;
169 aeb->pnum = pnum;
170 aeb->ec = ec;
171 list_add(&aeb->u.list, &ai->corr);
172 return 0;
173}
174
175/**
176 * validate_vid_hdr - check volume identifier header.
Heiko Schocher94b66de2015-10-22 06:19:21 +0200177 * @ubi: UBI device description object
Heiko Schocherf5895d12014-06-24 10:10:04 +0200178 * @vid_hdr: the volume identifier header to check
179 * @av: information about the volume this logical eraseblock belongs to
180 * @pnum: physical eraseblock number the VID header came from
181 *
182 * This function checks that data stored in @vid_hdr is consistent. Returns
183 * non-zero if an inconsistency was found and zero if not.
184 *
185 * Note, UBI does sanity check of everything it reads from the flash media.
186 * Most of the checks are done in the I/O sub-system. Here we check that the
187 * information in the VID header is consistent to the information in other VID
188 * headers of the same volume.
189 */
Heiko Schocher94b66de2015-10-22 06:19:21 +0200190static int validate_vid_hdr(const struct ubi_device *ubi,
191 const struct ubi_vid_hdr *vid_hdr,
Heiko Schocherf5895d12014-06-24 10:10:04 +0200192 const struct ubi_ainf_volume *av, int pnum)
193{
194 int vol_type = vid_hdr->vol_type;
195 int vol_id = be32_to_cpu(vid_hdr->vol_id);
196 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
197 int data_pad = be32_to_cpu(vid_hdr->data_pad);
198
199 if (av->leb_count != 0) {
200 int av_vol_type;
201
202 /*
203 * This is not the first logical eraseblock belonging to this
204 * volume. Ensure that the data in its VID header is consistent
205 * to the data in previous logical eraseblock headers.
206 */
207
208 if (vol_id != av->vol_id) {
Heiko Schocher94b66de2015-10-22 06:19:21 +0200209 ubi_err(ubi, "inconsistent vol_id");
Heiko Schocherf5895d12014-06-24 10:10:04 +0200210 goto bad;
211 }
212
213 if (av->vol_type == UBI_STATIC_VOLUME)
214 av_vol_type = UBI_VID_STATIC;
215 else
216 av_vol_type = UBI_VID_DYNAMIC;
217
218 if (vol_type != av_vol_type) {
Heiko Schocher94b66de2015-10-22 06:19:21 +0200219 ubi_err(ubi, "inconsistent vol_type");
Heiko Schocherf5895d12014-06-24 10:10:04 +0200220 goto bad;
221 }
222
223 if (used_ebs != av->used_ebs) {
Heiko Schocher94b66de2015-10-22 06:19:21 +0200224 ubi_err(ubi, "inconsistent used_ebs");
Heiko Schocherf5895d12014-06-24 10:10:04 +0200225 goto bad;
226 }
227
228 if (data_pad != av->data_pad) {
Heiko Schocher94b66de2015-10-22 06:19:21 +0200229 ubi_err(ubi, "inconsistent data_pad");
Heiko Schocherf5895d12014-06-24 10:10:04 +0200230 goto bad;
231 }
232 }
233
234 return 0;
235
236bad:
Heiko Schocher94b66de2015-10-22 06:19:21 +0200237 ubi_err(ubi, "inconsistent VID header at PEB %d", pnum);
Heiko Schocherf5895d12014-06-24 10:10:04 +0200238 ubi_dump_vid_hdr(vid_hdr);
239 ubi_dump_av(av);
240 return -EINVAL;
241}
242
243/**
244 * add_volume - add volume to the attaching information.
245 * @ai: attaching information
246 * @vol_id: ID of the volume to add
247 * @pnum: physical eraseblock number
248 * @vid_hdr: volume identifier header
249 *
250 * If the volume corresponding to the @vid_hdr logical eraseblock is already
251 * present in the attaching information, this function does nothing. Otherwise
252 * it adds corresponding volume to the attaching information. Returns a pointer
253 * to the allocated "av" object in case of success and a negative error code in
254 * case of failure.
255 */
256static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
257 int vol_id, int pnum,
258 const struct ubi_vid_hdr *vid_hdr)
259{
260 struct ubi_ainf_volume *av;
261 struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
262
263 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
264
265 /* Walk the volume RB-tree to look if this volume is already present */
266 while (*p) {
267 parent = *p;
268 av = rb_entry(parent, struct ubi_ainf_volume, rb);
269
270 if (vol_id == av->vol_id)
271 return av;
272
273 if (vol_id > av->vol_id)
274 p = &(*p)->rb_left;
275 else
276 p = &(*p)->rb_right;
277 }
278
279 /* The volume is absent - add it */
280 av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
281 if (!av)
282 return ERR_PTR(-ENOMEM);
283
284 av->highest_lnum = av->leb_count = 0;
285 av->vol_id = vol_id;
286 av->root = RB_ROOT;
287 av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
288 av->data_pad = be32_to_cpu(vid_hdr->data_pad);
289 av->compat = vid_hdr->compat;
290 av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
291 : UBI_STATIC_VOLUME;
292 if (vol_id > ai->highest_vol_id)
293 ai->highest_vol_id = vol_id;
294
295 rb_link_node(&av->rb, parent, p);
296 rb_insert_color(&av->rb, &ai->volumes);
297 ai->vols_found += 1;
298 dbg_bld("added volume %d", vol_id);
299 return av;
300}
301
302/**
303 * ubi_compare_lebs - find out which logical eraseblock is newer.
304 * @ubi: UBI device description object
305 * @aeb: first logical eraseblock to compare
306 * @pnum: physical eraseblock number of the second logical eraseblock to
307 * compare
308 * @vid_hdr: volume identifier header of the second logical eraseblock
309 *
310 * This function compares 2 copies of a LEB and informs which one is newer. In
311 * case of success this function returns a positive value, in case of failure, a
312 * negative error code is returned. The success return codes use the following
313 * bits:
314 * o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
315 * second PEB (described by @pnum and @vid_hdr);
316 * o bit 0 is set: the second PEB is newer;
317 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
318 * o bit 1 is set: bit-flips were detected in the newer LEB;
319 * o bit 2 is cleared: the older LEB is not corrupted;
320 * o bit 2 is set: the older LEB is corrupted.
321 */
322int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
323 int pnum, const struct ubi_vid_hdr *vid_hdr)
324{
325 int len, err, second_is_newer, bitflips = 0, corrupted = 0;
326 uint32_t data_crc, crc;
327 struct ubi_vid_hdr *vh = NULL;
328 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
329
330 if (sqnum2 == aeb->sqnum) {
331 /*
332 * This must be a really ancient UBI image which has been
333 * created before sequence numbers support has been added. At
334 * that times we used 32-bit LEB versions stored in logical
335 * eraseblocks. That was before UBI got into mainline. We do not
336 * support these images anymore. Well, those images still work,
337 * but only if no unclean reboots happened.
338 */
Heiko Schocher94b66de2015-10-22 06:19:21 +0200339 ubi_err(ubi, "unsupported on-flash UBI format");
Heiko Schocherf5895d12014-06-24 10:10:04 +0200340 return -EINVAL;
341 }
342
343 /* Obviously the LEB with lower sequence counter is older */
344 second_is_newer = (sqnum2 > aeb->sqnum);
345
346 /*
347 * Now we know which copy is newer. If the copy flag of the PEB with
348 * newer version is not set, then we just return, otherwise we have to
349 * check data CRC. For the second PEB we already have the VID header,
350 * for the first one - we'll need to re-read it from flash.
351 *
352 * Note: this may be optimized so that we wouldn't read twice.
353 */
354
355 if (second_is_newer) {
356 if (!vid_hdr->copy_flag) {
357 /* It is not a copy, so it is newer */
358 dbg_bld("second PEB %d is newer, copy_flag is unset",
359 pnum);
360 return 1;
361 }
362 } else {
363 if (!aeb->copy_flag) {
364 /* It is not a copy, so it is newer */
365 dbg_bld("first PEB %d is newer, copy_flag is unset",
366 pnum);
367 return bitflips << 1;
368 }
369
370 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
371 if (!vh)
372 return -ENOMEM;
373
374 pnum = aeb->pnum;
375 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
376 if (err) {
377 if (err == UBI_IO_BITFLIPS)
378 bitflips = 1;
379 else {
Heiko Schocher94b66de2015-10-22 06:19:21 +0200380 ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d",
Heiko Schocherf5895d12014-06-24 10:10:04 +0200381 pnum, err);
382 if (err > 0)
383 err = -EIO;
384
385 goto out_free_vidh;
386 }
387 }
388
389 vid_hdr = vh;
390 }
391
392 /* Read the data of the copy and check the CRC */
393
394 len = be32_to_cpu(vid_hdr->data_size);
395
396 mutex_lock(&ubi->buf_mutex);
397 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
398 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
399 goto out_unlock;
400
401 data_crc = be32_to_cpu(vid_hdr->data_crc);
402 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
403 if (crc != data_crc) {
404 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
405 pnum, crc, data_crc);
406 corrupted = 1;
407 bitflips = 0;
408 second_is_newer = !second_is_newer;
409 } else {
410 dbg_bld("PEB %d CRC is OK", pnum);
Heiko Schocher94b66de2015-10-22 06:19:21 +0200411 bitflips |= !!err;
Heiko Schocherf5895d12014-06-24 10:10:04 +0200412 }
413 mutex_unlock(&ubi->buf_mutex);
414
415 ubi_free_vid_hdr(ubi, vh);
416
417 if (second_is_newer)
418 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
419 else
420 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
421
422 return second_is_newer | (bitflips << 1) | (corrupted << 2);
423
424out_unlock:
425 mutex_unlock(&ubi->buf_mutex);
426out_free_vidh:
427 ubi_free_vid_hdr(ubi, vh);
428 return err;
429}
430
431/**
432 * ubi_add_to_av - add used physical eraseblock to the attaching information.
433 * @ubi: UBI device description object
434 * @ai: attaching information
435 * @pnum: the physical eraseblock number
436 * @ec: erase counter
437 * @vid_hdr: the volume identifier header
438 * @bitflips: if bit-flips were detected when this physical eraseblock was read
439 *
440 * This function adds information about a used physical eraseblock to the
441 * 'used' tree of the corresponding volume. The function is rather complex
442 * because it has to handle cases when this is not the first physical
443 * eraseblock belonging to the same logical eraseblock, and the newer one has
444 * to be picked, while the older one has to be dropped. This function returns
445 * zero in case of success and a negative error code in case of failure.
446 */
447int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
448 int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
449{
450 int err, vol_id, lnum;
451 unsigned long long sqnum;
452 struct ubi_ainf_volume *av;
453 struct ubi_ainf_peb *aeb;
454 struct rb_node **p, *parent = NULL;
455
456 vol_id = be32_to_cpu(vid_hdr->vol_id);
457 lnum = be32_to_cpu(vid_hdr->lnum);
458 sqnum = be64_to_cpu(vid_hdr->sqnum);
459
460 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
461 pnum, vol_id, lnum, ec, sqnum, bitflips);
462
463 av = add_volume(ai, vol_id, pnum, vid_hdr);
464 if (IS_ERR(av))
465 return PTR_ERR(av);
466
467 if (ai->max_sqnum < sqnum)
468 ai->max_sqnum = sqnum;
469
470 /*
471 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
472 * if this is the first instance of this logical eraseblock or not.
473 */
474 p = &av->root.rb_node;
475 while (*p) {
476 int cmp_res;
477
478 parent = *p;
479 aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
480 if (lnum != aeb->lnum) {
481 if (lnum < aeb->lnum)
482 p = &(*p)->rb_left;
483 else
484 p = &(*p)->rb_right;
485 continue;
486 }
487
488 /*
489 * There is already a physical eraseblock describing the same
490 * logical eraseblock present.
491 */
492
493 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
494 aeb->pnum, aeb->sqnum, aeb->ec);
495
496 /*
497 * Make sure that the logical eraseblocks have different
498 * sequence numbers. Otherwise the image is bad.
499 *
500 * However, if the sequence number is zero, we assume it must
501 * be an ancient UBI image from the era when UBI did not have
502 * sequence numbers. We still can attach these images, unless
503 * there is a need to distinguish between old and new
504 * eraseblocks, in which case we'll refuse the image in
505 * 'ubi_compare_lebs()'. In other words, we attach old clean
506 * images, but refuse attaching old images with duplicated
507 * logical eraseblocks because there was an unclean reboot.
508 */
509 if (aeb->sqnum == sqnum && sqnum != 0) {
Heiko Schocher94b66de2015-10-22 06:19:21 +0200510 ubi_err(ubi, "two LEBs with same sequence number %llu",
Heiko Schocherf5895d12014-06-24 10:10:04 +0200511 sqnum);
512 ubi_dump_aeb(aeb, 0);
513 ubi_dump_vid_hdr(vid_hdr);
514 return -EINVAL;
515 }
516
517 /*
518 * Now we have to drop the older one and preserve the newer
519 * one.
520 */
521 cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
522 if (cmp_res < 0)
523 return cmp_res;
524
525 if (cmp_res & 1) {
526 /*
527 * This logical eraseblock is newer than the one
528 * found earlier.
529 */
Heiko Schocher94b66de2015-10-22 06:19:21 +0200530 err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
Heiko Schocherf5895d12014-06-24 10:10:04 +0200531 if (err)
532 return err;
533
534 err = add_to_list(ai, aeb->pnum, aeb->vol_id,
535 aeb->lnum, aeb->ec, cmp_res & 4,
536 &ai->erase);
537 if (err)
538 return err;
539
540 aeb->ec = ec;
541 aeb->pnum = pnum;
542 aeb->vol_id = vol_id;
543 aeb->lnum = lnum;
544 aeb->scrub = ((cmp_res & 2) || bitflips);
545 aeb->copy_flag = vid_hdr->copy_flag;
546 aeb->sqnum = sqnum;
547
548 if (av->highest_lnum == lnum)
549 av->last_data_size =
550 be32_to_cpu(vid_hdr->data_size);
551
552 return 0;
553 } else {
554 /*
555 * This logical eraseblock is older than the one found
556 * previously.
557 */
558 return add_to_list(ai, pnum, vol_id, lnum, ec,
559 cmp_res & 4, &ai->erase);
560 }
561 }
562
563 /*
564 * We've met this logical eraseblock for the first time, add it to the
565 * attaching information.
566 */
567
Heiko Schocher94b66de2015-10-22 06:19:21 +0200568 err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
Heiko Schocherf5895d12014-06-24 10:10:04 +0200569 if (err)
570 return err;
571
572 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
573 if (!aeb)
574 return -ENOMEM;
575
576 aeb->ec = ec;
577 aeb->pnum = pnum;
578 aeb->vol_id = vol_id;
579 aeb->lnum = lnum;
580 aeb->scrub = bitflips;
581 aeb->copy_flag = vid_hdr->copy_flag;
582 aeb->sqnum = sqnum;
583
584 if (av->highest_lnum <= lnum) {
585 av->highest_lnum = lnum;
586 av->last_data_size = be32_to_cpu(vid_hdr->data_size);
587 }
588
589 av->leb_count += 1;
590 rb_link_node(&aeb->u.rb, parent, p);
591 rb_insert_color(&aeb->u.rb, &av->root);
592 return 0;
593}
594
595/**
596 * ubi_find_av - find volume in the attaching information.
597 * @ai: attaching information
598 * @vol_id: the requested volume ID
599 *
600 * This function returns a pointer to the volume description or %NULL if there
601 * are no data about this volume in the attaching information.
602 */
603struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
604 int vol_id)
605{
606 struct ubi_ainf_volume *av;
607 struct rb_node *p = ai->volumes.rb_node;
608
609 while (p) {
610 av = rb_entry(p, struct ubi_ainf_volume, rb);
611
612 if (vol_id == av->vol_id)
613 return av;
614
615 if (vol_id > av->vol_id)
616 p = p->rb_left;
617 else
618 p = p->rb_right;
619 }
620
621 return NULL;
622}
623
624/**
625 * ubi_remove_av - delete attaching information about a volume.
626 * @ai: attaching information
627 * @av: the volume attaching information to delete
628 */
629void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
630{
631 struct rb_node *rb;
632 struct ubi_ainf_peb *aeb;
633
634 dbg_bld("remove attaching information about volume %d", av->vol_id);
635
636 while ((rb = rb_first(&av->root))) {
637 aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
638 rb_erase(&aeb->u.rb, &av->root);
639 list_add_tail(&aeb->u.list, &ai->erase);
640 }
641
642 rb_erase(&av->rb, &ai->volumes);
643 kfree(av);
644 ai->vols_found -= 1;
645}
646
647/**
648 * early_erase_peb - erase a physical eraseblock.
649 * @ubi: UBI device description object
650 * @ai: attaching information
651 * @pnum: physical eraseblock number to erase;
652 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
653 *
654 * This function erases physical eraseblock 'pnum', and writes the erase
655 * counter header to it. This function should only be used on UBI device
656 * initialization stages, when the EBA sub-system had not been yet initialized.
657 * This function returns zero in case of success and a negative error code in
658 * case of failure.
659 */
660static int early_erase_peb(struct ubi_device *ubi,
661 const struct ubi_attach_info *ai, int pnum, int ec)
662{
663 int err;
664 struct ubi_ec_hdr *ec_hdr;
665
666 if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
667 /*
668 * Erase counter overflow. Upgrade UBI and use 64-bit
669 * erase counters internally.
670 */
Heiko Schocher94b66de2015-10-22 06:19:21 +0200671 ubi_err(ubi, "erase counter overflow at PEB %d, EC %d",
672 pnum, ec);
Heiko Schocherf5895d12014-06-24 10:10:04 +0200673 return -EINVAL;
674 }
675
676 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
677 if (!ec_hdr)
678 return -ENOMEM;
679
680 ec_hdr->ec = cpu_to_be64(ec);
681
682 err = ubi_io_sync_erase(ubi, pnum, 0);
683 if (err < 0)
684 goto out_free;
685
686 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
687
688out_free:
689 kfree(ec_hdr);
690 return err;
691}
692
693/**
694 * ubi_early_get_peb - get a free physical eraseblock.
695 * @ubi: UBI device description object
696 * @ai: attaching information
697 *
698 * This function returns a free physical eraseblock. It is supposed to be
699 * called on the UBI initialization stages when the wear-leveling sub-system is
700 * not initialized yet. This function picks a physical eraseblocks from one of
701 * the lists, writes the EC header if it is needed, and removes it from the
702 * list.
703 *
704 * This function returns a pointer to the "aeb" of the found free PEB in case
705 * of success and an error code in case of failure.
706 */
707struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
708 struct ubi_attach_info *ai)
709{
710 int err = 0;
711 struct ubi_ainf_peb *aeb, *tmp_aeb;
712
713 if (!list_empty(&ai->free)) {
714 aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
715 list_del(&aeb->u.list);
716 dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
717 return aeb;
718 }
719
720 /*
721 * We try to erase the first physical eraseblock from the erase list
722 * and pick it if we succeed, or try to erase the next one if not. And
723 * so forth. We don't want to take care about bad eraseblocks here -
724 * they'll be handled later.
725 */
726 list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
727 if (aeb->ec == UBI_UNKNOWN)
728 aeb->ec = ai->mean_ec;
729
730 err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
731 if (err)
732 continue;
733
734 aeb->ec += 1;
735 list_del(&aeb->u.list);
736 dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
737 return aeb;
738 }
739
Heiko Schocher94b66de2015-10-22 06:19:21 +0200740 ubi_err(ubi, "no free eraseblocks");
Heiko Schocherf5895d12014-06-24 10:10:04 +0200741 return ERR_PTR(-ENOSPC);
742}
743
744/**
745 * check_corruption - check the data area of PEB.
746 * @ubi: UBI device description object
747 * @vid_hdr: the (corrupted) VID header of this PEB
748 * @pnum: the physical eraseblock number to check
749 *
750 * This is a helper function which is used to distinguish between VID header
751 * corruptions caused by power cuts and other reasons. If the PEB contains only
752 * 0xFF bytes in the data area, the VID header is most probably corrupted
753 * because of a power cut (%0 is returned in this case). Otherwise, it was
754 * probably corrupted for some other reasons (%1 is returned in this case). A
755 * negative error code is returned if a read error occurred.
756 *
757 * If the corruption reason was a power cut, UBI can safely erase this PEB.
758 * Otherwise, it should preserve it to avoid possibly destroying important
759 * information.
760 */
761static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
762 int pnum)
763{
764 int err;
765
766 mutex_lock(&ubi->buf_mutex);
767 memset(ubi->peb_buf, 0x00, ubi->leb_size);
768
769 err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
770 ubi->leb_size);
771 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
772 /*
773 * Bit-flips or integrity errors while reading the data area.
774 * It is difficult to say for sure what type of corruption is
775 * this, but presumably a power cut happened while this PEB was
776 * erased, so it became unstable and corrupted, and should be
777 * erased.
778 */
779 err = 0;
780 goto out_unlock;
781 }
782
783 if (err)
784 goto out_unlock;
785
786 if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
787 goto out_unlock;
788
Heiko Schocher94b66de2015-10-22 06:19:21 +0200789 ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
Heiko Schocherf5895d12014-06-24 10:10:04 +0200790 pnum);
Heiko Schocher94b66de2015-10-22 06:19:21 +0200791 ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
Heiko Schocherf5895d12014-06-24 10:10:04 +0200792 ubi_dump_vid_hdr(vid_hdr);
793 pr_err("hexdump of PEB %d offset %d, length %d",
794 pnum, ubi->leb_start, ubi->leb_size);
Alexey Brodkin2d2fa492018-06-05 17:17:57 +0300795 ubi_dbg_print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
Heiko Schocherf5895d12014-06-24 10:10:04 +0200796 ubi->peb_buf, ubi->leb_size, 1);
797 err = 1;
798
799out_unlock:
800 mutex_unlock(&ubi->buf_mutex);
801 return err;
802}
803
804/**
805 * scan_peb - scan and process UBI headers of a PEB.
806 * @ubi: UBI device description object
807 * @ai: attaching information
808 * @pnum: the physical eraseblock number
809 * @vid: The volume ID of the found volume will be stored in this pointer
810 * @sqnum: The sqnum of the found volume will be stored in this pointer
811 *
812 * This function reads UBI headers of PEB @pnum, checks them, and adds
813 * information about this PEB to the corresponding list or RB-tree in the
814 * "attaching info" structure. Returns zero if the physical eraseblock was
815 * successfully handled and a negative error code in case of failure.
816 */
817static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
818 int pnum, int *vid, unsigned long long *sqnum)
819{
820 long long uninitialized_var(ec);
821 int err, bitflips = 0, vol_id = -1, ec_err = 0;
822
823 dbg_bld("scan PEB %d", pnum);
824
825 /* Skip bad physical eraseblocks */
826 err = ubi_io_is_bad(ubi, pnum);
827 if (err < 0)
828 return err;
829 else if (err) {
830 ai->bad_peb_count += 1;
831 return 0;
832 }
833
834 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
835 if (err < 0)
836 return err;
837 switch (err) {
838 case 0:
839 break;
840 case UBI_IO_BITFLIPS:
841 bitflips = 1;
842 break;
843 case UBI_IO_FF:
844 ai->empty_peb_count += 1;
845 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
846 UBI_UNKNOWN, 0, &ai->erase);
847 case UBI_IO_FF_BITFLIPS:
848 ai->empty_peb_count += 1;
849 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
850 UBI_UNKNOWN, 1, &ai->erase);
851 case UBI_IO_BAD_HDR_EBADMSG:
852 case UBI_IO_BAD_HDR:
853 /*
854 * We have to also look at the VID header, possibly it is not
855 * corrupted. Set %bitflips flag in order to make this PEB be
856 * moved and EC be re-created.
857 */
858 ec_err = err;
859 ec = UBI_UNKNOWN;
860 bitflips = 1;
861 break;
862 default:
Heiko Schocher94b66de2015-10-22 06:19:21 +0200863 ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d",
864 err);
Heiko Schocherf5895d12014-06-24 10:10:04 +0200865 return -EINVAL;
866 }
867
868 if (!ec_err) {
869 int image_seq;
870
871 /* Make sure UBI version is OK */
872 if (ech->version != UBI_VERSION) {
Heiko Schocher94b66de2015-10-22 06:19:21 +0200873 ubi_err(ubi, "this UBI version is %d, image version is %d",
Heiko Schocherf5895d12014-06-24 10:10:04 +0200874 UBI_VERSION, (int)ech->version);
875 return -EINVAL;
876 }
877
878 ec = be64_to_cpu(ech->ec);
879 if (ec > UBI_MAX_ERASECOUNTER) {
880 /*
881 * Erase counter overflow. The EC headers have 64 bits
882 * reserved, but we anyway make use of only 31 bit
883 * values, as this seems to be enough for any existing
884 * flash. Upgrade UBI and use 64-bit erase counters
885 * internally.
886 */
Heiko Schocher94b66de2015-10-22 06:19:21 +0200887 ubi_err(ubi, "erase counter overflow, max is %d",
Heiko Schocherf5895d12014-06-24 10:10:04 +0200888 UBI_MAX_ERASECOUNTER);
889 ubi_dump_ec_hdr(ech);
890 return -EINVAL;
891 }
892
893 /*
894 * Make sure that all PEBs have the same image sequence number.
895 * This allows us to detect situations when users flash UBI
896 * images incorrectly, so that the flash has the new UBI image
897 * and leftovers from the old one. This feature was added
898 * relatively recently, and the sequence number was always
899 * zero, because old UBI implementations always set it to zero.
900 * For this reasons, we do not panic if some PEBs have zero
901 * sequence number, while other PEBs have non-zero sequence
902 * number.
903 */
904 image_seq = be32_to_cpu(ech->image_seq);
905 if (!ubi->image_seq)
906 ubi->image_seq = image_seq;
907 if (image_seq && ubi->image_seq != image_seq) {
Heiko Schocher94b66de2015-10-22 06:19:21 +0200908 ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d",
Heiko Schocherf5895d12014-06-24 10:10:04 +0200909 image_seq, pnum, ubi->image_seq);
910 ubi_dump_ec_hdr(ech);
911 return -EINVAL;
912 }
913 }
914
915 /* OK, we've done with the EC header, let's look at the VID header */
916
917 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
918 if (err < 0)
919 return err;
920 switch (err) {
921 case 0:
922 break;
923 case UBI_IO_BITFLIPS:
924 bitflips = 1;
925 break;
926 case UBI_IO_BAD_HDR_EBADMSG:
927 if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
928 /*
929 * Both EC and VID headers are corrupted and were read
930 * with data integrity error, probably this is a bad
931 * PEB, bit it is not marked as bad yet. This may also
932 * be a result of power cut during erasure.
933 */
934 ai->maybe_bad_peb_count += 1;
935 case UBI_IO_BAD_HDR:
936 if (ec_err)
937 /*
938 * Both headers are corrupted. There is a possibility
939 * that this a valid UBI PEB which has corresponding
940 * LEB, but the headers are corrupted. However, it is
941 * impossible to distinguish it from a PEB which just
942 * contains garbage because of a power cut during erase
943 * operation. So we just schedule this PEB for erasure.
944 *
945 * Besides, in case of NOR flash, we deliberately
946 * corrupt both headers because NOR flash erasure is
947 * slow and can start from the end.
948 */
949 err = 0;
950 else
951 /*
952 * The EC was OK, but the VID header is corrupted. We
953 * have to check what is in the data area.
954 */
955 err = check_corruption(ubi, vidh, pnum);
956
957 if (err < 0)
958 return err;
959 else if (!err)
960 /* This corruption is caused by a power cut */
961 err = add_to_list(ai, pnum, UBI_UNKNOWN,
962 UBI_UNKNOWN, ec, 1, &ai->erase);
963 else
964 /* This is an unexpected corruption */
965 err = add_corrupted(ai, pnum, ec);
966 if (err)
967 return err;
968 goto adjust_mean_ec;
969 case UBI_IO_FF_BITFLIPS:
970 err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
971 ec, 1, &ai->erase);
972 if (err)
973 return err;
974 goto adjust_mean_ec;
975 case UBI_IO_FF:
976 if (ec_err || bitflips)
977 err = add_to_list(ai, pnum, UBI_UNKNOWN,
978 UBI_UNKNOWN, ec, 1, &ai->erase);
979 else
980 err = add_to_list(ai, pnum, UBI_UNKNOWN,
981 UBI_UNKNOWN, ec, 0, &ai->free);
982 if (err)
983 return err;
984 goto adjust_mean_ec;
985 default:
Heiko Schocher94b66de2015-10-22 06:19:21 +0200986 ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d",
Heiko Schocherf5895d12014-06-24 10:10:04 +0200987 err);
988 return -EINVAL;
989 }
990
991 vol_id = be32_to_cpu(vidh->vol_id);
992 if (vid)
993 *vid = vol_id;
994 if (sqnum)
995 *sqnum = be64_to_cpu(vidh->sqnum);
996 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
997 int lnum = be32_to_cpu(vidh->lnum);
998
999 /* Unsupported internal volume */
1000 switch (vidh->compat) {
1001 case UBI_COMPAT_DELETE:
1002 if (vol_id != UBI_FM_SB_VOLUME_ID
1003 && vol_id != UBI_FM_DATA_VOLUME_ID) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001004 ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it",
Heiko Schocherf5895d12014-06-24 10:10:04 +02001005 vol_id, lnum);
1006 }
1007 err = add_to_list(ai, pnum, vol_id, lnum,
1008 ec, 1, &ai->erase);
1009 if (err)
1010 return err;
1011 return 0;
1012
1013 case UBI_COMPAT_RO:
Heiko Schocher94b66de2015-10-22 06:19:21 +02001014 ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode",
Heiko Schocherf5895d12014-06-24 10:10:04 +02001015 vol_id, lnum);
1016 ubi->ro_mode = 1;
1017 break;
1018
1019 case UBI_COMPAT_PRESERVE:
Heiko Schocher94b66de2015-10-22 06:19:21 +02001020 ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found",
Heiko Schocherf5895d12014-06-24 10:10:04 +02001021 vol_id, lnum);
1022 err = add_to_list(ai, pnum, vol_id, lnum,
1023 ec, 0, &ai->alien);
1024 if (err)
1025 return err;
1026 return 0;
1027
1028 case UBI_COMPAT_REJECT:
Heiko Schocher94b66de2015-10-22 06:19:21 +02001029 ubi_err(ubi, "incompatible internal volume %d:%d found",
Heiko Schocherf5895d12014-06-24 10:10:04 +02001030 vol_id, lnum);
1031 return -EINVAL;
1032 }
1033 }
1034
1035 if (ec_err)
Heiko Schocher94b66de2015-10-22 06:19:21 +02001036 ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d",
Heiko Schocherf5895d12014-06-24 10:10:04 +02001037 pnum);
1038 err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1039 if (err)
1040 return err;
1041
1042adjust_mean_ec:
1043 if (!ec_err) {
1044 ai->ec_sum += ec;
1045 ai->ec_count += 1;
1046 if (ec > ai->max_ec)
1047 ai->max_ec = ec;
1048 if (ec < ai->min_ec)
1049 ai->min_ec = ec;
1050 }
1051
1052 return 0;
1053}
1054
1055/**
1056 * late_analysis - analyze the overall situation with PEB.
1057 * @ubi: UBI device description object
1058 * @ai: attaching information
1059 *
1060 * This is a helper function which takes a look what PEBs we have after we
1061 * gather information about all of them ("ai" is compete). It decides whether
1062 * the flash is empty and should be formatted of whether there are too many
1063 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1064 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1065 */
1066static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1067{
1068 struct ubi_ainf_peb *aeb;
1069 int max_corr, peb_count;
1070
1071 peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1072 max_corr = peb_count / 20 ?: 8;
1073
1074 /*
1075 * Few corrupted PEBs is not a problem and may be just a result of
1076 * unclean reboots. However, many of them may indicate some problems
1077 * with the flash HW or driver.
1078 */
1079 if (ai->corr_peb_count) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001080 ubi_err(ubi, "%d PEBs are corrupted and preserved",
Heiko Schocherf5895d12014-06-24 10:10:04 +02001081 ai->corr_peb_count);
1082 pr_err("Corrupted PEBs are:");
1083 list_for_each_entry(aeb, &ai->corr, u.list)
1084 pr_cont(" %d", aeb->pnum);
1085 pr_cont("\n");
1086
1087 /*
1088 * If too many PEBs are corrupted, we refuse attaching,
1089 * otherwise, only print a warning.
1090 */
1091 if (ai->corr_peb_count >= max_corr) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001092 ubi_err(ubi, "too many corrupted PEBs, refusing");
Heiko Schocherf5895d12014-06-24 10:10:04 +02001093 return -EINVAL;
1094 }
1095 }
1096
1097 if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1098 /*
1099 * All PEBs are empty, or almost all - a couple PEBs look like
1100 * they may be bad PEBs which were not marked as bad yet.
1101 *
1102 * This piece of code basically tries to distinguish between
1103 * the following situations:
1104 *
1105 * 1. Flash is empty, but there are few bad PEBs, which are not
1106 * marked as bad so far, and which were read with error. We
1107 * want to go ahead and format this flash. While formatting,
1108 * the faulty PEBs will probably be marked as bad.
1109 *
1110 * 2. Flash contains non-UBI data and we do not want to format
1111 * it and destroy possibly important information.
1112 */
1113 if (ai->maybe_bad_peb_count <= 2) {
1114 ai->is_empty = 1;
Heiko Schocher94b66de2015-10-22 06:19:21 +02001115 ubi_msg(ubi, "empty MTD device detected");
Heiko Schocherf5895d12014-06-24 10:10:04 +02001116 get_random_bytes(&ubi->image_seq,
1117 sizeof(ubi->image_seq));
1118 } else {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001119 ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
Heiko Schocherf5895d12014-06-24 10:10:04 +02001120 return -EINVAL;
1121 }
1122
1123 }
1124
1125 return 0;
1126}
1127
1128/**
1129 * destroy_av - free volume attaching information.
1130 * @av: volume attaching information
1131 * @ai: attaching information
1132 *
1133 * This function destroys the volume attaching information.
1134 */
1135static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1136{
1137 struct ubi_ainf_peb *aeb;
1138 struct rb_node *this = av->root.rb_node;
1139
1140 while (this) {
1141 if (this->rb_left)
1142 this = this->rb_left;
1143 else if (this->rb_right)
1144 this = this->rb_right;
1145 else {
1146 aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1147 this = rb_parent(this);
1148 if (this) {
1149 if (this->rb_left == &aeb->u.rb)
1150 this->rb_left = NULL;
1151 else
1152 this->rb_right = NULL;
1153 }
1154
1155 kmem_cache_free(ai->aeb_slab_cache, aeb);
1156 }
1157 }
1158 kfree(av);
1159}
1160
1161/**
1162 * destroy_ai - destroy attaching information.
1163 * @ai: attaching information
1164 */
1165static void destroy_ai(struct ubi_attach_info *ai)
1166{
1167 struct ubi_ainf_peb *aeb, *aeb_tmp;
1168 struct ubi_ainf_volume *av;
1169 struct rb_node *rb;
1170
1171 list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1172 list_del(&aeb->u.list);
1173 kmem_cache_free(ai->aeb_slab_cache, aeb);
1174 }
1175 list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1176 list_del(&aeb->u.list);
1177 kmem_cache_free(ai->aeb_slab_cache, aeb);
1178 }
1179 list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1180 list_del(&aeb->u.list);
1181 kmem_cache_free(ai->aeb_slab_cache, aeb);
1182 }
1183 list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1184 list_del(&aeb->u.list);
1185 kmem_cache_free(ai->aeb_slab_cache, aeb);
1186 }
1187
1188 /* Destroy the volume RB-tree */
1189 rb = ai->volumes.rb_node;
1190 while (rb) {
1191 if (rb->rb_left)
1192 rb = rb->rb_left;
1193 else if (rb->rb_right)
1194 rb = rb->rb_right;
1195 else {
1196 av = rb_entry(rb, struct ubi_ainf_volume, rb);
1197
1198 rb = rb_parent(rb);
1199 if (rb) {
1200 if (rb->rb_left == &av->rb)
1201 rb->rb_left = NULL;
1202 else
1203 rb->rb_right = NULL;
1204 }
1205
1206 destroy_av(ai, av);
1207 }
1208 }
1209
Heinrich Schuchardt222e09a2017-11-08 22:30:59 +01001210 kmem_cache_destroy(ai->aeb_slab_cache);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001211
1212 kfree(ai);
1213}
1214
1215/**
1216 * scan_all - scan entire MTD device.
1217 * @ubi: UBI device description object
1218 * @ai: attach info object
1219 * @start: start scanning at this PEB
1220 *
1221 * This function does full scanning of an MTD device and returns complete
1222 * information about it in form of a "struct ubi_attach_info" object. In case
1223 * of failure, an error code is returned.
1224 */
1225static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1226 int start)
1227{
1228 int err, pnum;
1229 struct rb_node *rb1, *rb2;
1230 struct ubi_ainf_volume *av;
1231 struct ubi_ainf_peb *aeb;
1232
1233 err = -ENOMEM;
1234
1235 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1236 if (!ech)
1237 return err;
1238
1239 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1240 if (!vidh)
1241 goto out_ech;
1242
1243 for (pnum = start; pnum < ubi->peb_count; pnum++) {
1244 cond_resched();
1245
1246 dbg_gen("process PEB %d", pnum);
1247 err = scan_peb(ubi, ai, pnum, NULL, NULL);
1248 if (err < 0)
1249 goto out_vidh;
1250 }
1251
Heiko Schocher94b66de2015-10-22 06:19:21 +02001252 ubi_msg(ubi, "scanning is finished");
Heiko Schocherf5895d12014-06-24 10:10:04 +02001253
1254 /* Calculate mean erase counter */
1255 if (ai->ec_count)
1256 ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1257
1258 err = late_analysis(ubi, ai);
1259 if (err)
1260 goto out_vidh;
1261
1262 /*
1263 * In case of unknown erase counter we use the mean erase counter
1264 * value.
1265 */
1266 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1267 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1268 if (aeb->ec == UBI_UNKNOWN)
1269 aeb->ec = ai->mean_ec;
1270 }
1271
1272 list_for_each_entry(aeb, &ai->free, u.list) {
1273 if (aeb->ec == UBI_UNKNOWN)
1274 aeb->ec = ai->mean_ec;
1275 }
1276
1277 list_for_each_entry(aeb, &ai->corr, u.list)
1278 if (aeb->ec == UBI_UNKNOWN)
1279 aeb->ec = ai->mean_ec;
1280
1281 list_for_each_entry(aeb, &ai->erase, u.list)
1282 if (aeb->ec == UBI_UNKNOWN)
1283 aeb->ec = ai->mean_ec;
1284
1285 err = self_check_ai(ubi, ai);
1286 if (err)
1287 goto out_vidh;
1288
1289 ubi_free_vid_hdr(ubi, vidh);
1290 kfree(ech);
1291
1292 return 0;
1293
1294out_vidh:
1295 ubi_free_vid_hdr(ubi, vidh);
1296out_ech:
1297 kfree(ech);
1298 return err;
1299}
1300
Heiko Schocher94b66de2015-10-22 06:19:21 +02001301static struct ubi_attach_info *alloc_ai(void)
1302{
1303 struct ubi_attach_info *ai;
1304
1305 ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1306 if (!ai)
1307 return ai;
1308
1309 INIT_LIST_HEAD(&ai->corr);
1310 INIT_LIST_HEAD(&ai->free);
1311 INIT_LIST_HEAD(&ai->erase);
1312 INIT_LIST_HEAD(&ai->alien);
1313 ai->volumes = RB_ROOT;
1314 ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
1315 sizeof(struct ubi_ainf_peb),
1316 0, 0, NULL);
1317 if (!ai->aeb_slab_cache) {
1318 kfree(ai);
1319 ai = NULL;
1320 }
1321
1322 return ai;
1323}
1324
Heiko Schocherf5895d12014-06-24 10:10:04 +02001325#ifdef CONFIG_MTD_UBI_FASTMAP
1326
1327/**
1328 * scan_fastmap - try to find a fastmap and attach from it.
1329 * @ubi: UBI device description object
1330 * @ai: attach info object
1331 *
1332 * Returns 0 on success, negative return values indicate an internal
1333 * error.
1334 * UBI_NO_FASTMAP denotes that no fastmap was found.
1335 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1336 */
Heiko Schocher94b66de2015-10-22 06:19:21 +02001337static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai)
Heiko Schocherf5895d12014-06-24 10:10:04 +02001338{
1339 int err, pnum, fm_anchor = -1;
1340 unsigned long long max_sqnum = 0;
1341
1342 err = -ENOMEM;
1343
1344 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1345 if (!ech)
1346 goto out;
1347
1348 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1349 if (!vidh)
1350 goto out_ech;
1351
1352 for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1353 int vol_id = -1;
1354 unsigned long long sqnum = -1;
1355 cond_resched();
1356
1357 dbg_gen("process PEB %d", pnum);
Heiko Schocher94b66de2015-10-22 06:19:21 +02001358 err = scan_peb(ubi, *ai, pnum, &vol_id, &sqnum);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001359 if (err < 0)
1360 goto out_vidh;
1361
1362 if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1363 max_sqnum = sqnum;
1364 fm_anchor = pnum;
1365 }
1366 }
1367
1368 ubi_free_vid_hdr(ubi, vidh);
1369 kfree(ech);
1370
1371 if (fm_anchor < 0)
1372 return UBI_NO_FASTMAP;
1373
Heiko Schocher94b66de2015-10-22 06:19:21 +02001374 destroy_ai(*ai);
1375 *ai = alloc_ai();
1376 if (!*ai)
1377 return -ENOMEM;
1378
1379 return ubi_scan_fastmap(ubi, *ai, fm_anchor);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001380
1381out_vidh:
1382 ubi_free_vid_hdr(ubi, vidh);
1383out_ech:
1384 kfree(ech);
1385out:
1386 return err;
1387}
1388
1389#endif
1390
Heiko Schocherf5895d12014-06-24 10:10:04 +02001391/**
1392 * ubi_attach - attach an MTD device.
1393 * @ubi: UBI device descriptor
1394 * @force_scan: if set to non-zero attach by scanning
1395 *
1396 * This function returns zero in case of success and a negative error code in
1397 * case of failure.
1398 */
1399int ubi_attach(struct ubi_device *ubi, int force_scan)
1400{
1401 int err;
1402 struct ubi_attach_info *ai;
1403
Heiko Schocher94b66de2015-10-22 06:19:21 +02001404 ai = alloc_ai();
Heiko Schocherf5895d12014-06-24 10:10:04 +02001405 if (!ai)
1406 return -ENOMEM;
1407
1408#ifdef CONFIG_MTD_UBI_FASTMAP
1409 /* On small flash devices we disable fastmap in any case. */
1410 if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1411 ubi->fm_disabled = 1;
1412 force_scan = 1;
1413 }
1414
1415 if (force_scan)
1416 err = scan_all(ubi, ai, 0);
1417 else {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001418 err = scan_fast(ubi, &ai);
1419 if (err > 0 || mtd_is_eccerr(err)) {
Heiko Schocherf5895d12014-06-24 10:10:04 +02001420 if (err != UBI_NO_FASTMAP) {
1421 destroy_ai(ai);
Heiko Schocher94b66de2015-10-22 06:19:21 +02001422 ai = alloc_ai();
Heiko Schocherf5895d12014-06-24 10:10:04 +02001423 if (!ai)
1424 return -ENOMEM;
1425
1426 err = scan_all(ubi, ai, 0);
1427 } else {
1428 err = scan_all(ubi, ai, UBI_FM_MAX_START);
1429 }
1430 }
1431 }
1432#else
1433 err = scan_all(ubi, ai, 0);
1434#endif
1435 if (err)
1436 goto out_ai;
1437
1438 ubi->bad_peb_count = ai->bad_peb_count;
1439 ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1440 ubi->corr_peb_count = ai->corr_peb_count;
1441 ubi->max_ec = ai->max_ec;
1442 ubi->mean_ec = ai->mean_ec;
1443 dbg_gen("max. sequence number: %llu", ai->max_sqnum);
1444
1445 err = ubi_read_volume_table(ubi, ai);
1446 if (err)
1447 goto out_ai;
1448
1449 err = ubi_wl_init(ubi, ai);
1450 if (err)
1451 goto out_vtbl;
1452
1453 err = ubi_eba_init(ubi, ai);
1454 if (err)
1455 goto out_wl;
1456
1457#ifdef CONFIG_MTD_UBI_FASTMAP
Heiko Schocher94b66de2015-10-22 06:19:21 +02001458 if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) {
Heiko Schocherf5895d12014-06-24 10:10:04 +02001459 struct ubi_attach_info *scan_ai;
1460
Heiko Schocher94b66de2015-10-22 06:19:21 +02001461 scan_ai = alloc_ai();
Heiko Schocherf5895d12014-06-24 10:10:04 +02001462 if (!scan_ai) {
1463 err = -ENOMEM;
1464 goto out_wl;
1465 }
1466
1467 err = scan_all(ubi, scan_ai, 0);
1468 if (err) {
1469 destroy_ai(scan_ai);
1470 goto out_wl;
1471 }
1472
1473 err = self_check_eba(ubi, ai, scan_ai);
1474 destroy_ai(scan_ai);
1475
1476 if (err)
1477 goto out_wl;
1478 }
1479#endif
1480
1481 destroy_ai(ai);
1482 return 0;
1483
1484out_wl:
1485 ubi_wl_close(ubi);
1486out_vtbl:
1487 ubi_free_internal_volumes(ubi);
1488 vfree(ubi->vtbl);
1489out_ai:
1490 destroy_ai(ai);
1491 return err;
1492}
1493
1494/**
1495 * self_check_ai - check the attaching information.
1496 * @ubi: UBI device description object
1497 * @ai: attaching information
1498 *
1499 * This function returns zero if the attaching information is all right, and a
1500 * negative error code if not or if an error occurred.
1501 */
1502static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1503{
1504 int pnum, err, vols_found = 0;
1505 struct rb_node *rb1, *rb2;
1506 struct ubi_ainf_volume *av;
1507 struct ubi_ainf_peb *aeb, *last_aeb;
1508 uint8_t *buf;
1509
1510 if (!ubi_dbg_chk_gen(ubi))
1511 return 0;
1512
1513 /*
1514 * At first, check that attaching information is OK.
1515 */
1516 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1517 int leb_count = 0;
1518
1519 cond_resched();
1520
1521 vols_found += 1;
1522
1523 if (ai->is_empty) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001524 ubi_err(ubi, "bad is_empty flag");
Heiko Schocherf5895d12014-06-24 10:10:04 +02001525 goto bad_av;
1526 }
1527
1528 if (av->vol_id < 0 || av->highest_lnum < 0 ||
1529 av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1530 av->data_pad < 0 || av->last_data_size < 0) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001531 ubi_err(ubi, "negative values");
Heiko Schocherf5895d12014-06-24 10:10:04 +02001532 goto bad_av;
1533 }
1534
1535 if (av->vol_id >= UBI_MAX_VOLUMES &&
1536 av->vol_id < UBI_INTERNAL_VOL_START) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001537 ubi_err(ubi, "bad vol_id");
Heiko Schocherf5895d12014-06-24 10:10:04 +02001538 goto bad_av;
1539 }
1540
1541 if (av->vol_id > ai->highest_vol_id) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001542 ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there",
Heiko Schocherf5895d12014-06-24 10:10:04 +02001543 ai->highest_vol_id, av->vol_id);
1544 goto out;
1545 }
1546
1547 if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1548 av->vol_type != UBI_STATIC_VOLUME) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001549 ubi_err(ubi, "bad vol_type");
Heiko Schocherf5895d12014-06-24 10:10:04 +02001550 goto bad_av;
1551 }
1552
1553 if (av->data_pad > ubi->leb_size / 2) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001554 ubi_err(ubi, "bad data_pad");
Heiko Schocherf5895d12014-06-24 10:10:04 +02001555 goto bad_av;
1556 }
1557
1558 last_aeb = NULL;
1559 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1560 cond_resched();
1561
1562 last_aeb = aeb;
1563 leb_count += 1;
1564
1565 if (aeb->pnum < 0 || aeb->ec < 0) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001566 ubi_err(ubi, "negative values");
Heiko Schocherf5895d12014-06-24 10:10:04 +02001567 goto bad_aeb;
1568 }
1569
1570 if (aeb->ec < ai->min_ec) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001571 ubi_err(ubi, "bad ai->min_ec (%d), %d found",
Heiko Schocherf5895d12014-06-24 10:10:04 +02001572 ai->min_ec, aeb->ec);
1573 goto bad_aeb;
1574 }
1575
1576 if (aeb->ec > ai->max_ec) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001577 ubi_err(ubi, "bad ai->max_ec (%d), %d found",
Heiko Schocherf5895d12014-06-24 10:10:04 +02001578 ai->max_ec, aeb->ec);
1579 goto bad_aeb;
1580 }
1581
1582 if (aeb->pnum >= ubi->peb_count) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001583 ubi_err(ubi, "too high PEB number %d, total PEBs %d",
Heiko Schocherf5895d12014-06-24 10:10:04 +02001584 aeb->pnum, ubi->peb_count);
1585 goto bad_aeb;
1586 }
1587
1588 if (av->vol_type == UBI_STATIC_VOLUME) {
1589 if (aeb->lnum >= av->used_ebs) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001590 ubi_err(ubi, "bad lnum or used_ebs");
Heiko Schocherf5895d12014-06-24 10:10:04 +02001591 goto bad_aeb;
1592 }
1593 } else {
1594 if (av->used_ebs != 0) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001595 ubi_err(ubi, "non-zero used_ebs");
Heiko Schocherf5895d12014-06-24 10:10:04 +02001596 goto bad_aeb;
1597 }
1598 }
1599
1600 if (aeb->lnum > av->highest_lnum) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001601 ubi_err(ubi, "incorrect highest_lnum or lnum");
Heiko Schocherf5895d12014-06-24 10:10:04 +02001602 goto bad_aeb;
1603 }
1604 }
1605
1606 if (av->leb_count != leb_count) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001607 ubi_err(ubi, "bad leb_count, %d objects in the tree",
Heiko Schocherf5895d12014-06-24 10:10:04 +02001608 leb_count);
1609 goto bad_av;
1610 }
1611
1612 if (!last_aeb)
1613 continue;
1614
1615 aeb = last_aeb;
1616
1617 if (aeb->lnum != av->highest_lnum) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001618 ubi_err(ubi, "bad highest_lnum");
Heiko Schocherf5895d12014-06-24 10:10:04 +02001619 goto bad_aeb;
1620 }
1621 }
1622
1623 if (vols_found != ai->vols_found) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001624 ubi_err(ubi, "bad ai->vols_found %d, should be %d",
Heiko Schocherf5895d12014-06-24 10:10:04 +02001625 ai->vols_found, vols_found);
1626 goto out;
1627 }
1628
1629 /* Check that attaching information is correct */
1630 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1631 last_aeb = NULL;
1632 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1633 int vol_type;
1634
1635 cond_resched();
1636
1637 last_aeb = aeb;
1638
1639 err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1640 if (err && err != UBI_IO_BITFLIPS) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001641 ubi_err(ubi, "VID header is not OK (%d)",
1642 err);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001643 if (err > 0)
1644 err = -EIO;
1645 return err;
1646 }
1647
1648 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1649 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1650 if (av->vol_type != vol_type) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001651 ubi_err(ubi, "bad vol_type");
Heiko Schocherf5895d12014-06-24 10:10:04 +02001652 goto bad_vid_hdr;
1653 }
1654
1655 if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001656 ubi_err(ubi, "bad sqnum %llu", aeb->sqnum);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001657 goto bad_vid_hdr;
1658 }
1659
1660 if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001661 ubi_err(ubi, "bad vol_id %d", av->vol_id);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001662 goto bad_vid_hdr;
1663 }
1664
1665 if (av->compat != vidh->compat) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001666 ubi_err(ubi, "bad compat %d", vidh->compat);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001667 goto bad_vid_hdr;
1668 }
1669
1670 if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001671 ubi_err(ubi, "bad lnum %d", aeb->lnum);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001672 goto bad_vid_hdr;
1673 }
1674
1675 if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001676 ubi_err(ubi, "bad used_ebs %d", av->used_ebs);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001677 goto bad_vid_hdr;
1678 }
1679
1680 if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001681 ubi_err(ubi, "bad data_pad %d", av->data_pad);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001682 goto bad_vid_hdr;
1683 }
1684 }
1685
1686 if (!last_aeb)
1687 continue;
1688
1689 if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001690 ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001691 goto bad_vid_hdr;
1692 }
1693
1694 if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001695 ubi_err(ubi, "bad last_data_size %d",
1696 av->last_data_size);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001697 goto bad_vid_hdr;
1698 }
1699 }
1700
1701 /*
1702 * Make sure that all the physical eraseblocks are in one of the lists
1703 * or trees.
1704 */
1705 buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1706 if (!buf)
1707 return -ENOMEM;
1708
1709 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1710 err = ubi_io_is_bad(ubi, pnum);
1711 if (err < 0) {
1712 kfree(buf);
1713 return err;
1714 } else if (err)
1715 buf[pnum] = 1;
1716 }
1717
1718 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1719 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1720 buf[aeb->pnum] = 1;
1721
1722 list_for_each_entry(aeb, &ai->free, u.list)
1723 buf[aeb->pnum] = 1;
1724
1725 list_for_each_entry(aeb, &ai->corr, u.list)
1726 buf[aeb->pnum] = 1;
1727
1728 list_for_each_entry(aeb, &ai->erase, u.list)
1729 buf[aeb->pnum] = 1;
1730
1731 list_for_each_entry(aeb, &ai->alien, u.list)
1732 buf[aeb->pnum] = 1;
1733
1734 err = 0;
1735 for (pnum = 0; pnum < ubi->peb_count; pnum++)
1736 if (!buf[pnum]) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001737 ubi_err(ubi, "PEB %d is not referred", pnum);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001738 err = 1;
1739 }
1740
1741 kfree(buf);
1742 if (err)
1743 goto out;
1744 return 0;
1745
1746bad_aeb:
Heiko Schocher94b66de2015-10-22 06:19:21 +02001747 ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001748 ubi_dump_aeb(aeb, 0);
1749 ubi_dump_av(av);
1750 goto out;
1751
1752bad_av:
Heiko Schocher94b66de2015-10-22 06:19:21 +02001753 ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001754 ubi_dump_av(av);
1755 goto out;
1756
1757bad_vid_hdr:
Heiko Schocher94b66de2015-10-22 06:19:21 +02001758 ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001759 ubi_dump_av(av);
1760 ubi_dump_vid_hdr(vidh);
1761
1762out:
1763 dump_stack();
1764 return -EINVAL;
1765}