blob: ce2a3268732c33b64334544f54096f50eae0e7a4 [file] [log] [blame]
Marek Vasut913a7252011-11-08 23:18:16 +00001/*
2 * Freescale i.MX28 NAND flash driver
3 *
4 * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
5 * on behalf of DENX Software Engineering GmbH
6 *
7 * Based on code from LTIB:
8 * Freescale GPMI NFC NAND Flash Driver
9 *
10 * Copyright (C) 2010 Freescale Semiconductor, Inc.
11 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License along
24 * with this program; if not, write to the Free Software Foundation, Inc.,
25 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 */
27
28#include <linux/mtd/mtd.h>
29#include <linux/mtd/nand.h>
30#include <linux/types.h>
31#include <common.h>
32#include <malloc.h>
33#include <asm/errno.h>
34#include <asm/io.h>
35#include <asm/arch/clock.h>
36#include <asm/arch/imx-regs.h>
37#include <asm/arch/sys_proto.h>
38#include <asm/arch/dma.h>
39
40#define MXS_NAND_DMA_DESCRIPTOR_COUNT 4
41
42#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512
43#define MXS_NAND_METADATA_SIZE 10
44
45#define MXS_NAND_COMMAND_BUFFER_SIZE 32
46
47#define MXS_NAND_BCH_TIMEOUT 10000
48
49struct mxs_nand_info {
50 int cur_chip;
51
52 uint32_t cmd_queue_len;
53
54 uint8_t *cmd_buf;
55 uint8_t *data_buf;
56 uint8_t *oob_buf;
57
58 uint8_t marking_block_bad;
59 uint8_t raw_oob_mode;
60
61 /* Functions with altered behaviour */
62 int (*hooked_read_oob)(struct mtd_info *mtd,
63 loff_t from, struct mtd_oob_ops *ops);
64 int (*hooked_write_oob)(struct mtd_info *mtd,
65 loff_t to, struct mtd_oob_ops *ops);
66 int (*hooked_block_markbad)(struct mtd_info *mtd,
67 loff_t ofs);
68
69 /* DMA descriptors */
70 struct mxs_dma_desc **desc;
71 uint32_t desc_index;
72};
73
74struct nand_ecclayout fake_ecc_layout;
75
76static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
77{
78 struct mxs_dma_desc *desc;
79
80 if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
81 printf("MXS NAND: Too many DMA descriptors requested\n");
82 return NULL;
83 }
84
85 desc = info->desc[info->desc_index];
86 info->desc_index++;
87
88 return desc;
89}
90
91static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
92{
93 int i;
94 struct mxs_dma_desc *desc;
95
96 for (i = 0; i < info->desc_index; i++) {
97 desc = info->desc[i];
98 memset(desc, 0, sizeof(struct mxs_dma_desc));
99 desc->address = (dma_addr_t)desc;
100 }
101
102 info->desc_index = 0;
103}
104
105static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size)
106{
107 return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
108}
109
110static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength)
111{
112 return ecc_strength * 13;
113}
114
115static uint32_t mxs_nand_aux_status_offset(void)
116{
117 return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
118}
119
120static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size,
121 uint32_t page_oob_size)
122{
123 if (page_data_size == 2048)
124 return 8;
125
126 if (page_data_size == 4096) {
127 if (page_oob_size == 128)
128 return 8;
129
130 if (page_oob_size == 218)
131 return 16;
132 }
133
134 return 0;
135}
136
137static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size,
138 uint32_t ecc_strength)
139{
140 uint32_t chunk_data_size_in_bits;
141 uint32_t chunk_ecc_size_in_bits;
142 uint32_t chunk_total_size_in_bits;
143 uint32_t block_mark_chunk_number;
144 uint32_t block_mark_chunk_bit_offset;
145 uint32_t block_mark_bit_offset;
146
147 chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8;
148 chunk_ecc_size_in_bits = mxs_nand_ecc_size_in_bits(ecc_strength);
149
150 chunk_total_size_in_bits =
151 chunk_data_size_in_bits + chunk_ecc_size_in_bits;
152
153 /* Compute the bit offset of the block mark within the physical page. */
154 block_mark_bit_offset = page_data_size * 8;
155
156 /* Subtract the metadata bits. */
157 block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
158
159 /*
160 * Compute the chunk number (starting at zero) in which the block mark
161 * appears.
162 */
163 block_mark_chunk_number =
164 block_mark_bit_offset / chunk_total_size_in_bits;
165
166 /*
167 * Compute the bit offset of the block mark within its chunk, and
168 * validate it.
169 */
170 block_mark_chunk_bit_offset = block_mark_bit_offset -
171 (block_mark_chunk_number * chunk_total_size_in_bits);
172
173 if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
174 return 1;
175
176 /*
177 * Now that we know the chunk number in which the block mark appears,
178 * we can subtract all the ECC bits that appear before it.
179 */
180 block_mark_bit_offset -=
181 block_mark_chunk_number * chunk_ecc_size_in_bits;
182
183 return block_mark_bit_offset;
184}
185
186static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
187{
188 uint32_t ecc_strength;
189 ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
190 return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3;
191}
192
193static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
194{
195 uint32_t ecc_strength;
196 ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
197 return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7;
198}
199
200/*
201 * Wait for BCH complete IRQ and clear the IRQ
202 */
203static int mxs_nand_wait_for_bch_complete(void)
204{
205 struct mx28_bch_regs *bch_regs = (struct mx28_bch_regs *)MXS_BCH_BASE;
206 int timeout = MXS_NAND_BCH_TIMEOUT;
207 int ret;
208
209 ret = mx28_wait_mask_set(&bch_regs->hw_bch_ctrl_reg,
210 BCH_CTRL_COMPLETE_IRQ, timeout);
211
212 writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr);
213
214 return ret;
215}
216
217/*
218 * This is the function that we install in the cmd_ctrl function pointer of the
219 * owning struct nand_chip. The only functions in the reference implementation
220 * that use these functions pointers are cmdfunc and select_chip.
221 *
222 * In this driver, we implement our own select_chip, so this function will only
223 * be called by the reference implementation's cmdfunc. For this reason, we can
224 * ignore the chip enable bit and concentrate only on sending bytes to the NAND
225 * Flash.
226 */
227static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
228{
229 struct nand_chip *nand = mtd->priv;
230 struct mxs_nand_info *nand_info = nand->priv;
231 struct mxs_dma_desc *d;
232 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
233 int ret;
234
235 /*
236 * If this condition is true, something is _VERY_ wrong in MTD
237 * subsystem!
238 */
239 if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
240 printf("MXS NAND: Command queue too long\n");
241 return;
242 }
243
244 /*
245 * Every operation begins with a command byte and a series of zero or
246 * more address bytes. These are distinguished by either the Address
247 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
248 * asserted. When MTD is ready to execute the command, it will
249 * deasert both latch enables.
250 *
251 * Rather than run a separate DMA operation for every single byte, we
252 * queue them up and run a single DMA operation for the entire series
253 * of command and data bytes.
254 */
255 if (ctrl & (NAND_ALE | NAND_CLE)) {
256 if (data != NAND_CMD_NONE)
257 nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
258 return;
259 }
260
261 /*
262 * If control arrives here, MTD has deasserted both the ALE and CLE,
263 * which means it's ready to run an operation. Check if we have any
264 * bytes to send.
265 */
266 if (nand_info->cmd_queue_len == 0)
267 return;
268
269 /* Compile the DMA descriptor -- a descriptor that sends command. */
270 d = mxs_nand_get_dma_desc(nand_info);
271 d->cmd.data =
272 MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
273 MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
274 MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
275 (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
276
277 d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
278
279 d->cmd.pio_words[0] =
280 GPMI_CTRL0_COMMAND_MODE_WRITE |
281 GPMI_CTRL0_WORD_LENGTH |
282 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
283 GPMI_CTRL0_ADDRESS_NAND_CLE |
284 GPMI_CTRL0_ADDRESS_INCREMENT |
285 nand_info->cmd_queue_len;
286
287 mxs_dma_desc_append(channel, d);
288
289 /* Execute the DMA chain. */
290 ret = mxs_dma_go(channel);
291 if (ret)
292 printf("MXS NAND: Error sending command\n");
293
294 mxs_nand_return_dma_descs(nand_info);
295
296 /* Reset the command queue. */
297 nand_info->cmd_queue_len = 0;
298}
299
300/*
301 * Test if the NAND flash is ready.
302 */
303static int mxs_nand_device_ready(struct mtd_info *mtd)
304{
305 struct nand_chip *chip = mtd->priv;
306 struct mxs_nand_info *nand_info = chip->priv;
307 struct mx28_gpmi_regs *gpmi_regs =
308 (struct mx28_gpmi_regs *)MXS_GPMI_BASE;
309 uint32_t tmp;
310
311 tmp = readl(&gpmi_regs->hw_gpmi_stat);
312 tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
313
314 return tmp & 1;
315}
316
317/*
318 * Select the NAND chip.
319 */
320static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
321{
322 struct nand_chip *nand = mtd->priv;
323 struct mxs_nand_info *nand_info = nand->priv;
324
325 nand_info->cur_chip = chip;
326}
327
328/*
329 * Handle block mark swapping.
330 *
331 * Note that, when this function is called, it doesn't know whether it's
332 * swapping the block mark, or swapping it *back* -- but it doesn't matter
333 * because the the operation is the same.
334 */
335static void mxs_nand_swap_block_mark(struct mtd_info *mtd,
336 uint8_t *data_buf, uint8_t *oob_buf)
337{
338 uint32_t bit_offset;
339 uint32_t buf_offset;
340
341 uint32_t src;
342 uint32_t dst;
343
344 bit_offset = mxs_nand_mark_bit_offset(mtd);
345 buf_offset = mxs_nand_mark_byte_offset(mtd);
346
347 /*
348 * Get the byte from the data area that overlays the block mark. Since
349 * the ECC engine applies its own view to the bits in the page, the
350 * physical block mark won't (in general) appear on a byte boundary in
351 * the data.
352 */
353 src = data_buf[buf_offset] >> bit_offset;
354 src |= data_buf[buf_offset + 1] << (8 - bit_offset);
355
356 dst = oob_buf[0];
357
358 oob_buf[0] = src;
359
360 data_buf[buf_offset] &= ~(0xff << bit_offset);
361 data_buf[buf_offset + 1] &= 0xff << bit_offset;
362
363 data_buf[buf_offset] |= dst << bit_offset;
364 data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
365}
366
367/*
368 * Read data from NAND.
369 */
370static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
371{
372 struct nand_chip *nand = mtd->priv;
373 struct mxs_nand_info *nand_info = nand->priv;
374 struct mxs_dma_desc *d;
375 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
376 int ret;
377
378 if (length > NAND_MAX_PAGESIZE) {
379 printf("MXS NAND: DMA buffer too big\n");
380 return;
381 }
382
383 if (!buf) {
384 printf("MXS NAND: DMA buffer is NULL\n");
385 return;
386 }
387
388 /* Compile the DMA descriptor - a descriptor that reads data. */
389 d = mxs_nand_get_dma_desc(nand_info);
390 d->cmd.data =
391 MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
392 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
393 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
394 (length << MXS_DMA_DESC_BYTES_OFFSET);
395
396 d->cmd.address = (dma_addr_t)nand_info->data_buf;
397
398 d->cmd.pio_words[0] =
399 GPMI_CTRL0_COMMAND_MODE_READ |
400 GPMI_CTRL0_WORD_LENGTH |
401 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
402 GPMI_CTRL0_ADDRESS_NAND_DATA |
403 length;
404
405 mxs_dma_desc_append(channel, d);
406
407 /*
408 * A DMA descriptor that waits for the command to end and the chip to
409 * become ready.
410 *
411 * I think we actually should *not* be waiting for the chip to become
412 * ready because, after all, we don't care. I think the original code
413 * did that and no one has re-thought it yet.
414 */
415 d = mxs_nand_get_dma_desc(nand_info);
416 d->cmd.data =
417 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
418 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
419 MXS_DMA_DESC_WAIT4END | (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
420
421 d->cmd.address = 0;
422
423 d->cmd.pio_words[0] =
424 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
425 GPMI_CTRL0_WORD_LENGTH |
426 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
427 GPMI_CTRL0_ADDRESS_NAND_DATA;
428
429 mxs_dma_desc_append(channel, d);
430
431 /* Execute the DMA chain. */
432 ret = mxs_dma_go(channel);
433 if (ret) {
434 printf("MXS NAND: DMA read error\n");
435 goto rtn;
436 }
437
438 memcpy(buf, nand_info->data_buf, length);
439
440rtn:
441 mxs_nand_return_dma_descs(nand_info);
442}
443
444/*
445 * Write data to NAND.
446 */
447static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
448 int length)
449{
450 struct nand_chip *nand = mtd->priv;
451 struct mxs_nand_info *nand_info = nand->priv;
452 struct mxs_dma_desc *d;
453 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
454 int ret;
455
456 if (length > NAND_MAX_PAGESIZE) {
457 printf("MXS NAND: DMA buffer too big\n");
458 return;
459 }
460
461 if (!buf) {
462 printf("MXS NAND: DMA buffer is NULL\n");
463 return;
464 }
465
466 memcpy(nand_info->data_buf, buf, length);
467
468 /* Compile the DMA descriptor - a descriptor that writes data. */
469 d = mxs_nand_get_dma_desc(nand_info);
470 d->cmd.data =
471 MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
472 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
473 (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
474 (length << MXS_DMA_DESC_BYTES_OFFSET);
475
476 d->cmd.address = (dma_addr_t)nand_info->data_buf;
477
478 d->cmd.pio_words[0] =
479 GPMI_CTRL0_COMMAND_MODE_WRITE |
480 GPMI_CTRL0_WORD_LENGTH |
481 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
482 GPMI_CTRL0_ADDRESS_NAND_DATA |
483 length;
484
485 mxs_dma_desc_append(channel, d);
486
487 /* Execute the DMA chain. */
488 ret = mxs_dma_go(channel);
489 if (ret)
490 printf("MXS NAND: DMA write error\n");
491
492 mxs_nand_return_dma_descs(nand_info);
493}
494
495/*
496 * Read a single byte from NAND.
497 */
498static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
499{
500 uint8_t buf;
501 mxs_nand_read_buf(mtd, &buf, 1);
502 return buf;
503}
504
505/*
506 * Read a page from NAND.
507 */
508static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
509 uint8_t *buf, int page)
510{
511 struct mxs_nand_info *nand_info = nand->priv;
512 struct mxs_dma_desc *d;
513 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
514 uint32_t corrected = 0, failed = 0;
515 uint8_t *status;
516 int i, ret;
517
518 /* Compile the DMA descriptor - wait for ready. */
519 d = mxs_nand_get_dma_desc(nand_info);
520 d->cmd.data =
521 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
522 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
523 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
524
525 d->cmd.address = 0;
526
527 d->cmd.pio_words[0] =
528 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
529 GPMI_CTRL0_WORD_LENGTH |
530 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
531 GPMI_CTRL0_ADDRESS_NAND_DATA;
532
533 mxs_dma_desc_append(channel, d);
534
535 /* Compile the DMA descriptor - enable the BCH block and read. */
536 d = mxs_nand_get_dma_desc(nand_info);
537 d->cmd.data =
538 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
539 MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
540
541 d->cmd.address = 0;
542
543 d->cmd.pio_words[0] =
544 GPMI_CTRL0_COMMAND_MODE_READ |
545 GPMI_CTRL0_WORD_LENGTH |
546 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
547 GPMI_CTRL0_ADDRESS_NAND_DATA |
548 (mtd->writesize + mtd->oobsize);
549 d->cmd.pio_words[1] = 0;
550 d->cmd.pio_words[2] =
551 GPMI_ECCCTRL_ENABLE_ECC |
552 GPMI_ECCCTRL_ECC_CMD_DECODE |
553 GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
554 d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
555 d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
556 d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
557
558 mxs_dma_desc_append(channel, d);
559
560 /* Compile the DMA descriptor - disable the BCH block. */
561 d = mxs_nand_get_dma_desc(nand_info);
562 d->cmd.data =
563 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
564 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
565 (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
566
567 d->cmd.address = 0;
568
569 d->cmd.pio_words[0] =
570 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
571 GPMI_CTRL0_WORD_LENGTH |
572 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
573 GPMI_CTRL0_ADDRESS_NAND_DATA |
574 (mtd->writesize + mtd->oobsize);
575 d->cmd.pio_words[1] = 0;
576 d->cmd.pio_words[2] = 0;
577
578 mxs_dma_desc_append(channel, d);
579
580 /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
581 d = mxs_nand_get_dma_desc(nand_info);
582 d->cmd.data =
583 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
584 MXS_DMA_DESC_DEC_SEM;
585
586 d->cmd.address = 0;
587
588 mxs_dma_desc_append(channel, d);
589
590 /* Execute the DMA chain. */
591 ret = mxs_dma_go(channel);
592 if (ret) {
593 printf("MXS NAND: DMA read error\n");
594 goto rtn;
595 }
596
597 ret = mxs_nand_wait_for_bch_complete();
598 if (ret) {
599 printf("MXS NAND: BCH read timeout\n");
600 goto rtn;
601 }
602
603 /* Read DMA completed, now do the mark swapping. */
604 mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
605
606 /* Loop over status bytes, accumulating ECC status. */
607 status = nand_info->oob_buf + mxs_nand_aux_status_offset();
608 for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) {
609 if (status[i] == 0x00)
610 continue;
611
612 if (status[i] == 0xff)
613 continue;
614
615 if (status[i] == 0xfe) {
616 failed++;
617 continue;
618 }
619
620 corrected += status[i];
621 }
622
623 /* Propagate ECC status to the owning MTD. */
624 mtd->ecc_stats.failed += failed;
625 mtd->ecc_stats.corrected += corrected;
626
627 /*
628 * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
629 * details about our policy for delivering the OOB.
630 *
631 * We fill the caller's buffer with set bits, and then copy the block
632 * mark to the caller's buffer. Note that, if block mark swapping was
633 * necessary, it has already been done, so we can rely on the first
634 * byte of the auxiliary buffer to contain the block mark.
635 */
636 memset(nand->oob_poi, 0xff, mtd->oobsize);
637
638 nand->oob_poi[0] = nand_info->oob_buf[0];
639
640 memcpy(buf, nand_info->data_buf, mtd->writesize);
641
642rtn:
643 mxs_nand_return_dma_descs(nand_info);
644
645 return ret;
646}
647
648/*
649 * Write a page to NAND.
650 */
651static void mxs_nand_ecc_write_page(struct mtd_info *mtd,
652 struct nand_chip *nand, const uint8_t *buf)
653{
654 struct mxs_nand_info *nand_info = nand->priv;
655 struct mxs_dma_desc *d;
656 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
657 int ret;
658
659 memcpy(nand_info->data_buf, buf, mtd->writesize);
660 memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
661
662 /* Handle block mark swapping. */
663 mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
664
665 /* Compile the DMA descriptor - write data. */
666 d = mxs_nand_get_dma_desc(nand_info);
667 d->cmd.data =
668 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
669 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
670 (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
671
672 d->cmd.address = 0;
673
674 d->cmd.pio_words[0] =
675 GPMI_CTRL0_COMMAND_MODE_WRITE |
676 GPMI_CTRL0_WORD_LENGTH |
677 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
678 GPMI_CTRL0_ADDRESS_NAND_DATA;
679 d->cmd.pio_words[1] = 0;
680 d->cmd.pio_words[2] =
681 GPMI_ECCCTRL_ENABLE_ECC |
682 GPMI_ECCCTRL_ECC_CMD_ENCODE |
683 GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
684 d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
685 d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
686 d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
687
688 mxs_dma_desc_append(channel, d);
689
690 /* Execute the DMA chain. */
691 ret = mxs_dma_go(channel);
692 if (ret) {
693 printf("MXS NAND: DMA write error\n");
694 goto rtn;
695 }
696
697 ret = mxs_nand_wait_for_bch_complete();
698 if (ret) {
699 printf("MXS NAND: BCH write timeout\n");
700 goto rtn;
701 }
702
703rtn:
704 mxs_nand_return_dma_descs(nand_info);
705}
706
707/*
708 * Read OOB from NAND.
709 *
710 * This function is a veneer that replaces the function originally installed by
711 * the NAND Flash MTD code.
712 */
713static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
714 struct mtd_oob_ops *ops)
715{
716 struct nand_chip *chip = mtd->priv;
717 struct mxs_nand_info *nand_info = chip->priv;
718 int ret;
719
720 if (ops->mode == MTD_OOB_RAW)
721 nand_info->raw_oob_mode = 1;
722 else
723 nand_info->raw_oob_mode = 0;
724
725 ret = nand_info->hooked_read_oob(mtd, from, ops);
726
727 nand_info->raw_oob_mode = 0;
728
729 return ret;
730}
731
732/*
733 * Write OOB to NAND.
734 *
735 * This function is a veneer that replaces the function originally installed by
736 * the NAND Flash MTD code.
737 */
738static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
739 struct mtd_oob_ops *ops)
740{
741 struct nand_chip *chip = mtd->priv;
742 struct mxs_nand_info *nand_info = chip->priv;
743 int ret;
744
745 if (ops->mode == MTD_OOB_RAW)
746 nand_info->raw_oob_mode = 1;
747 else
748 nand_info->raw_oob_mode = 0;
749
750 ret = nand_info->hooked_write_oob(mtd, to, ops);
751
752 nand_info->raw_oob_mode = 0;
753
754 return ret;
755}
756
757/*
758 * Mark a block bad in NAND.
759 *
760 * This function is a veneer that replaces the function originally installed by
761 * the NAND Flash MTD code.
762 */
763static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
764{
765 struct nand_chip *chip = mtd->priv;
766 struct mxs_nand_info *nand_info = chip->priv;
767 int ret;
768
769 nand_info->marking_block_bad = 1;
770
771 ret = nand_info->hooked_block_markbad(mtd, ofs);
772
773 nand_info->marking_block_bad = 0;
774
775 return ret;
776}
777
778/*
779 * There are several places in this driver where we have to handle the OOB and
780 * block marks. This is the function where things are the most complicated, so
781 * this is where we try to explain it all. All the other places refer back to
782 * here.
783 *
784 * These are the rules, in order of decreasing importance:
785 *
786 * 1) Nothing the caller does can be allowed to imperil the block mark, so all
787 * write operations take measures to protect it.
788 *
789 * 2) In read operations, the first byte of the OOB we return must reflect the
790 * true state of the block mark, no matter where that block mark appears in
791 * the physical page.
792 *
793 * 3) ECC-based read operations return an OOB full of set bits (since we never
794 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
795 * return).
796 *
797 * 4) "Raw" read operations return a direct view of the physical bytes in the
798 * page, using the conventional definition of which bytes are data and which
799 * are OOB. This gives the caller a way to see the actual, physical bytes
800 * in the page, without the distortions applied by our ECC engine.
801 *
802 * What we do for this specific read operation depends on whether we're doing
803 * "raw" read, or an ECC-based read.
804 *
805 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
806 * easy. When reading a page, for example, the NAND Flash MTD code calls our
807 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
808 * ECC-based or raw view of the page is implicit in which function it calls
809 * (there is a similar pair of ECC-based/raw functions for writing).
810 *
811 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
812 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
813 * caller wants an ECC-based or raw view of the page is not propagated down to
814 * this driver.
815 *
816 * Since our OOB *is* covered by ECC, we need this information. So, we hook the
817 * ecc.read_oob and ecc.write_oob function pointers in the owning
818 * struct mtd_info with our own functions. These hook functions set the
819 * raw_oob_mode field so that, when control finally arrives here, we'll know
820 * what to do.
821 */
822static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
823 int page, int cmd)
824{
825 struct mxs_nand_info *nand_info = nand->priv;
826
827 /*
828 * First, fill in the OOB buffer. If we're doing a raw read, we need to
829 * get the bytes from the physical page. If we're not doing a raw read,
830 * we need to fill the buffer with set bits.
831 */
832 if (nand_info->raw_oob_mode) {
833 /*
834 * If control arrives here, we're doing a "raw" read. Send the
835 * command to read the conventional OOB and read it.
836 */
837 nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
838 nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
839 } else {
840 /*
841 * If control arrives here, we're not doing a "raw" read. Fill
842 * the OOB buffer with set bits and correct the block mark.
843 */
844 memset(nand->oob_poi, 0xff, mtd->oobsize);
845
846 nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
847 mxs_nand_read_buf(mtd, nand->oob_poi, 1);
848 }
849
850 return 0;
851
852}
853
854/*
855 * Write OOB data to NAND.
856 */
857static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
858 int page)
859{
860 struct mxs_nand_info *nand_info = nand->priv;
861 uint8_t block_mark = 0;
862
863 /*
864 * There are fundamental incompatibilities between the i.MX GPMI NFC and
865 * the NAND Flash MTD model that make it essentially impossible to write
866 * the out-of-band bytes.
867 *
868 * We permit *ONE* exception. If the *intent* of writing the OOB is to
869 * mark a block bad, we can do that.
870 */
871
872 if (!nand_info->marking_block_bad) {
873 printf("NXS NAND: Writing OOB isn't supported\n");
874 return -EIO;
875 }
876
877 /* Write the block mark. */
878 nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
879 nand->write_buf(mtd, &block_mark, 1);
880 nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
881
882 /* Check if it worked. */
883 if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
884 return -EIO;
885
886 return 0;
887}
888
889/*
890 * Claims all blocks are good.
891 *
892 * In principle, this function is *only* called when the NAND Flash MTD system
893 * isn't allowed to keep an in-memory bad block table, so it is forced to ask
894 * the driver for bad block information.
895 *
896 * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
897 * this function is *only* called when we take it away.
898 *
899 * Thus, this function is only called when we want *all* blocks to look good,
900 * so it *always* return success.
901 */
902static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
903{
904 return 0;
905}
906
907/*
908 * Nominally, the purpose of this function is to look for or create the bad
909 * block table. In fact, since the we call this function at the very end of
910 * the initialization process started by nand_scan(), and we doesn't have a
911 * more formal mechanism, we "hook" this function to continue init process.
912 *
913 * At this point, the physical NAND Flash chips have been identified and
914 * counted, so we know the physical geometry. This enables us to make some
915 * important configuration decisions.
916 *
917 * The return value of this function propogates directly back to this driver's
918 * call to nand_scan(). Anything other than zero will cause this driver to
919 * tear everything down and declare failure.
920 */
921static int mxs_nand_scan_bbt(struct mtd_info *mtd)
922{
923 struct nand_chip *nand = mtd->priv;
924 struct mxs_nand_info *nand_info = nand->priv;
925 struct mx28_bch_regs *bch_regs = (struct mx28_bch_regs *)MXS_BCH_BASE;
926 uint32_t tmp;
927
928 /* Configure BCH and set NFC geometry */
929 mx28_reset_block(&bch_regs->hw_bch_ctrl_reg);
930
931 /* Configure layout 0 */
932 tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1)
933 << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
934 tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
935 tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
936 << BCH_FLASHLAYOUT0_ECC0_OFFSET;
937 tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
938 writel(tmp, &bch_regs->hw_bch_flash0layout0);
939
940 tmp = (mtd->writesize + mtd->oobsize)
941 << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
942 tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
943 << BCH_FLASHLAYOUT1_ECCN_OFFSET;
944 tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
945 writel(tmp, &bch_regs->hw_bch_flash0layout1);
946
947 /* Set *all* chip selects to use layout 0 */
948 writel(0, &bch_regs->hw_bch_layoutselect);
949
950 /* Enable BCH complete interrupt */
951 writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
952
953 /* Hook some operations at the MTD level. */
954 if (mtd->read_oob != mxs_nand_hook_read_oob) {
955 nand_info->hooked_read_oob = mtd->read_oob;
956 mtd->read_oob = mxs_nand_hook_read_oob;
957 }
958
959 if (mtd->write_oob != mxs_nand_hook_write_oob) {
960 nand_info->hooked_write_oob = mtd->write_oob;
961 mtd->write_oob = mxs_nand_hook_write_oob;
962 }
963
964 if (mtd->block_markbad != mxs_nand_hook_block_markbad) {
965 nand_info->hooked_block_markbad = mtd->block_markbad;
966 mtd->block_markbad = mxs_nand_hook_block_markbad;
967 }
968
969 /* We use the reference implementation for bad block management. */
970 return nand_default_bbt(mtd);
971}
972
973/*
974 * Allocate DMA buffers
975 */
976int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
977{
978 uint8_t *buf;
979 const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
980
981 /* DMA buffers */
982 buf = memalign(MXS_DMA_ALIGNMENT, size);
983 if (!buf) {
984 printf("MXS NAND: Error allocating DMA buffers\n");
985 return -ENOMEM;
986 }
987
988 memset(buf, 0, size);
989
990 nand_info->data_buf = buf;
991 nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
992
993 /* Command buffers */
994 nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
995 MXS_NAND_COMMAND_BUFFER_SIZE);
996 if (!nand_info->cmd_buf) {
997 free(buf);
998 printf("MXS NAND: Error allocating command buffers\n");
999 return -ENOMEM;
1000 }
1001 memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
1002 nand_info->cmd_queue_len = 0;
1003
1004 return 0;
1005}
1006
1007/*
1008 * Initializes the NFC hardware.
1009 */
1010int mxs_nand_init(struct mxs_nand_info *info)
1011{
1012 struct mx28_gpmi_regs *gpmi_regs =
1013 (struct mx28_gpmi_regs *)MXS_GPMI_BASE;
1014 int i = 0;
1015
1016 info->desc = malloc(sizeof(struct mxs_dma_desc *) *
1017 MXS_NAND_DMA_DESCRIPTOR_COUNT);
1018 if (!info->desc)
1019 goto err1;
1020
1021 /* Allocate the DMA descriptors. */
1022 for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
1023 info->desc[i] = mxs_dma_desc_alloc();
1024 if (!info->desc[i])
1025 goto err2;
1026 }
1027
1028 /* Init the DMA controller. */
1029 mxs_dma_init();
1030
1031 /* Reset the GPMI block. */
1032 mx28_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg);
1033
1034 /*
1035 * Choose NAND mode, set IRQ polarity, disable write protection and
1036 * select BCH ECC.
1037 */
1038 clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1,
1039 GPMI_CTRL1_GPMI_MODE,
1040 GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
1041 GPMI_CTRL1_BCH_MODE);
1042
1043 return 0;
1044
1045err2:
1046 free(info->desc);
1047err1:
1048 for (--i; i >= 0; i--)
1049 mxs_dma_desc_free(info->desc[i]);
1050 printf("MXS NAND: Unable to allocate DMA descriptors\n");
1051 return -ENOMEM;
1052}
1053
1054/*!
1055 * This function is called during the driver binding process.
1056 *
1057 * @param pdev the device structure used to store device specific
1058 * information that is used by the suspend, resume and
1059 * remove functions
1060 *
1061 * @return The function always returns 0.
1062 */
1063int board_nand_init(struct nand_chip *nand)
1064{
1065 struct mxs_nand_info *nand_info;
1066 int err;
1067
1068 nand_info = malloc(sizeof(struct mxs_nand_info));
1069 if (!nand_info) {
1070 printf("MXS NAND: Failed to allocate private data\n");
1071 return -ENOMEM;
1072 }
1073 memset(nand_info, 0, sizeof(struct mxs_nand_info));
1074
1075 err = mxs_nand_alloc_buffers(nand_info);
1076 if (err)
1077 goto err1;
1078
1079 err = mxs_nand_init(nand_info);
1080 if (err)
1081 goto err2;
1082
1083 memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
1084
1085 nand->priv = nand_info;
1086 nand->options |= NAND_NO_SUBPAGE_WRITE;
1087
1088 nand->cmd_ctrl = mxs_nand_cmd_ctrl;
1089
1090 nand->dev_ready = mxs_nand_device_ready;
1091 nand->select_chip = mxs_nand_select_chip;
1092 nand->block_bad = mxs_nand_block_bad;
1093 nand->scan_bbt = mxs_nand_scan_bbt;
1094
1095 nand->read_byte = mxs_nand_read_byte;
1096
1097 nand->read_buf = mxs_nand_read_buf;
1098 nand->write_buf = mxs_nand_write_buf;
1099
1100 nand->ecc.read_page = mxs_nand_ecc_read_page;
1101 nand->ecc.write_page = mxs_nand_ecc_write_page;
1102 nand->ecc.read_oob = mxs_nand_ecc_read_oob;
1103 nand->ecc.write_oob = mxs_nand_ecc_write_oob;
1104
1105 nand->ecc.layout = &fake_ecc_layout;
1106 nand->ecc.mode = NAND_ECC_HW;
1107 nand->ecc.bytes = 9;
1108 nand->ecc.size = 512;
1109
1110 return 0;
1111
1112err2:
1113 free(nand_info->data_buf);
1114 free(nand_info->cmd_buf);
1115err1:
1116 free(nand_info);
1117 return err;
1118}