Marek Vasut | 913a725 | 2011-11-08 23:18:16 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Freescale i.MX28 NAND flash driver |
| 3 | * |
| 4 | * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com> |
| 5 | * on behalf of DENX Software Engineering GmbH |
| 6 | * |
| 7 | * Based on code from LTIB: |
| 8 | * Freescale GPMI NFC NAND Flash Driver |
| 9 | * |
| 10 | * Copyright (C) 2010 Freescale Semiconductor, Inc. |
| 11 | * Copyright (C) 2008 Embedded Alley Solutions, Inc. |
| 12 | * |
| 13 | * This program is free software; you can redistribute it and/or modify |
| 14 | * it under the terms of the GNU General Public License as published by |
| 15 | * the Free Software Foundation; either version 2 of the License, or |
| 16 | * (at your option) any later version. |
| 17 | * |
| 18 | * This program is distributed in the hope that it will be useful, |
| 19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 21 | * GNU General Public License for more details. |
| 22 | * |
| 23 | * You should have received a copy of the GNU General Public License along |
| 24 | * with this program; if not, write to the Free Software Foundation, Inc., |
| 25 | * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| 26 | */ |
| 27 | |
| 28 | #include <linux/mtd/mtd.h> |
| 29 | #include <linux/mtd/nand.h> |
| 30 | #include <linux/types.h> |
| 31 | #include <common.h> |
| 32 | #include <malloc.h> |
| 33 | #include <asm/errno.h> |
| 34 | #include <asm/io.h> |
| 35 | #include <asm/arch/clock.h> |
| 36 | #include <asm/arch/imx-regs.h> |
| 37 | #include <asm/arch/sys_proto.h> |
| 38 | #include <asm/arch/dma.h> |
| 39 | |
| 40 | #define MXS_NAND_DMA_DESCRIPTOR_COUNT 4 |
| 41 | |
| 42 | #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512 |
| 43 | #define MXS_NAND_METADATA_SIZE 10 |
| 44 | |
| 45 | #define MXS_NAND_COMMAND_BUFFER_SIZE 32 |
| 46 | |
| 47 | #define MXS_NAND_BCH_TIMEOUT 10000 |
| 48 | |
| 49 | struct mxs_nand_info { |
| 50 | int cur_chip; |
| 51 | |
| 52 | uint32_t cmd_queue_len; |
| 53 | |
| 54 | uint8_t *cmd_buf; |
| 55 | uint8_t *data_buf; |
| 56 | uint8_t *oob_buf; |
| 57 | |
| 58 | uint8_t marking_block_bad; |
| 59 | uint8_t raw_oob_mode; |
| 60 | |
| 61 | /* Functions with altered behaviour */ |
| 62 | int (*hooked_read_oob)(struct mtd_info *mtd, |
| 63 | loff_t from, struct mtd_oob_ops *ops); |
| 64 | int (*hooked_write_oob)(struct mtd_info *mtd, |
| 65 | loff_t to, struct mtd_oob_ops *ops); |
| 66 | int (*hooked_block_markbad)(struct mtd_info *mtd, |
| 67 | loff_t ofs); |
| 68 | |
| 69 | /* DMA descriptors */ |
| 70 | struct mxs_dma_desc **desc; |
| 71 | uint32_t desc_index; |
| 72 | }; |
| 73 | |
| 74 | struct nand_ecclayout fake_ecc_layout; |
| 75 | |
| 76 | static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info) |
| 77 | { |
| 78 | struct mxs_dma_desc *desc; |
| 79 | |
| 80 | if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) { |
| 81 | printf("MXS NAND: Too many DMA descriptors requested\n"); |
| 82 | return NULL; |
| 83 | } |
| 84 | |
| 85 | desc = info->desc[info->desc_index]; |
| 86 | info->desc_index++; |
| 87 | |
| 88 | return desc; |
| 89 | } |
| 90 | |
| 91 | static void mxs_nand_return_dma_descs(struct mxs_nand_info *info) |
| 92 | { |
| 93 | int i; |
| 94 | struct mxs_dma_desc *desc; |
| 95 | |
| 96 | for (i = 0; i < info->desc_index; i++) { |
| 97 | desc = info->desc[i]; |
| 98 | memset(desc, 0, sizeof(struct mxs_dma_desc)); |
| 99 | desc->address = (dma_addr_t)desc; |
| 100 | } |
| 101 | |
| 102 | info->desc_index = 0; |
| 103 | } |
| 104 | |
| 105 | static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size) |
| 106 | { |
| 107 | return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE; |
| 108 | } |
| 109 | |
| 110 | static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength) |
| 111 | { |
| 112 | return ecc_strength * 13; |
| 113 | } |
| 114 | |
| 115 | static uint32_t mxs_nand_aux_status_offset(void) |
| 116 | { |
| 117 | return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3; |
| 118 | } |
| 119 | |
| 120 | static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size, |
| 121 | uint32_t page_oob_size) |
| 122 | { |
| 123 | if (page_data_size == 2048) |
| 124 | return 8; |
| 125 | |
| 126 | if (page_data_size == 4096) { |
| 127 | if (page_oob_size == 128) |
| 128 | return 8; |
| 129 | |
| 130 | if (page_oob_size == 218) |
| 131 | return 16; |
| 132 | } |
| 133 | |
| 134 | return 0; |
| 135 | } |
| 136 | |
| 137 | static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size, |
| 138 | uint32_t ecc_strength) |
| 139 | { |
| 140 | uint32_t chunk_data_size_in_bits; |
| 141 | uint32_t chunk_ecc_size_in_bits; |
| 142 | uint32_t chunk_total_size_in_bits; |
| 143 | uint32_t block_mark_chunk_number; |
| 144 | uint32_t block_mark_chunk_bit_offset; |
| 145 | uint32_t block_mark_bit_offset; |
| 146 | |
| 147 | chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8; |
| 148 | chunk_ecc_size_in_bits = mxs_nand_ecc_size_in_bits(ecc_strength); |
| 149 | |
| 150 | chunk_total_size_in_bits = |
| 151 | chunk_data_size_in_bits + chunk_ecc_size_in_bits; |
| 152 | |
| 153 | /* Compute the bit offset of the block mark within the physical page. */ |
| 154 | block_mark_bit_offset = page_data_size * 8; |
| 155 | |
| 156 | /* Subtract the metadata bits. */ |
| 157 | block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8; |
| 158 | |
| 159 | /* |
| 160 | * Compute the chunk number (starting at zero) in which the block mark |
| 161 | * appears. |
| 162 | */ |
| 163 | block_mark_chunk_number = |
| 164 | block_mark_bit_offset / chunk_total_size_in_bits; |
| 165 | |
| 166 | /* |
| 167 | * Compute the bit offset of the block mark within its chunk, and |
| 168 | * validate it. |
| 169 | */ |
| 170 | block_mark_chunk_bit_offset = block_mark_bit_offset - |
| 171 | (block_mark_chunk_number * chunk_total_size_in_bits); |
| 172 | |
| 173 | if (block_mark_chunk_bit_offset > chunk_data_size_in_bits) |
| 174 | return 1; |
| 175 | |
| 176 | /* |
| 177 | * Now that we know the chunk number in which the block mark appears, |
| 178 | * we can subtract all the ECC bits that appear before it. |
| 179 | */ |
| 180 | block_mark_bit_offset -= |
| 181 | block_mark_chunk_number * chunk_ecc_size_in_bits; |
| 182 | |
| 183 | return block_mark_bit_offset; |
| 184 | } |
| 185 | |
| 186 | static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd) |
| 187 | { |
| 188 | uint32_t ecc_strength; |
| 189 | ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize); |
| 190 | return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3; |
| 191 | } |
| 192 | |
| 193 | static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd) |
| 194 | { |
| 195 | uint32_t ecc_strength; |
| 196 | ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize); |
| 197 | return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7; |
| 198 | } |
| 199 | |
| 200 | /* |
| 201 | * Wait for BCH complete IRQ and clear the IRQ |
| 202 | */ |
| 203 | static int mxs_nand_wait_for_bch_complete(void) |
| 204 | { |
| 205 | struct mx28_bch_regs *bch_regs = (struct mx28_bch_regs *)MXS_BCH_BASE; |
| 206 | int timeout = MXS_NAND_BCH_TIMEOUT; |
| 207 | int ret; |
| 208 | |
| 209 | ret = mx28_wait_mask_set(&bch_regs->hw_bch_ctrl_reg, |
| 210 | BCH_CTRL_COMPLETE_IRQ, timeout); |
| 211 | |
| 212 | writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr); |
| 213 | |
| 214 | return ret; |
| 215 | } |
| 216 | |
| 217 | /* |
| 218 | * This is the function that we install in the cmd_ctrl function pointer of the |
| 219 | * owning struct nand_chip. The only functions in the reference implementation |
| 220 | * that use these functions pointers are cmdfunc and select_chip. |
| 221 | * |
| 222 | * In this driver, we implement our own select_chip, so this function will only |
| 223 | * be called by the reference implementation's cmdfunc. For this reason, we can |
| 224 | * ignore the chip enable bit and concentrate only on sending bytes to the NAND |
| 225 | * Flash. |
| 226 | */ |
| 227 | static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl) |
| 228 | { |
| 229 | struct nand_chip *nand = mtd->priv; |
| 230 | struct mxs_nand_info *nand_info = nand->priv; |
| 231 | struct mxs_dma_desc *d; |
| 232 | uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; |
| 233 | int ret; |
| 234 | |
| 235 | /* |
| 236 | * If this condition is true, something is _VERY_ wrong in MTD |
| 237 | * subsystem! |
| 238 | */ |
| 239 | if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) { |
| 240 | printf("MXS NAND: Command queue too long\n"); |
| 241 | return; |
| 242 | } |
| 243 | |
| 244 | /* |
| 245 | * Every operation begins with a command byte and a series of zero or |
| 246 | * more address bytes. These are distinguished by either the Address |
| 247 | * Latch Enable (ALE) or Command Latch Enable (CLE) signals being |
| 248 | * asserted. When MTD is ready to execute the command, it will |
| 249 | * deasert both latch enables. |
| 250 | * |
| 251 | * Rather than run a separate DMA operation for every single byte, we |
| 252 | * queue them up and run a single DMA operation for the entire series |
| 253 | * of command and data bytes. |
| 254 | */ |
| 255 | if (ctrl & (NAND_ALE | NAND_CLE)) { |
| 256 | if (data != NAND_CMD_NONE) |
| 257 | nand_info->cmd_buf[nand_info->cmd_queue_len++] = data; |
| 258 | return; |
| 259 | } |
| 260 | |
| 261 | /* |
| 262 | * If control arrives here, MTD has deasserted both the ALE and CLE, |
| 263 | * which means it's ready to run an operation. Check if we have any |
| 264 | * bytes to send. |
| 265 | */ |
| 266 | if (nand_info->cmd_queue_len == 0) |
| 267 | return; |
| 268 | |
| 269 | /* Compile the DMA descriptor -- a descriptor that sends command. */ |
| 270 | d = mxs_nand_get_dma_desc(nand_info); |
| 271 | d->cmd.data = |
| 272 | MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ | |
| 273 | MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM | |
| 274 | MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | |
| 275 | (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET); |
| 276 | |
| 277 | d->cmd.address = (dma_addr_t)nand_info->cmd_buf; |
| 278 | |
| 279 | d->cmd.pio_words[0] = |
| 280 | GPMI_CTRL0_COMMAND_MODE_WRITE | |
| 281 | GPMI_CTRL0_WORD_LENGTH | |
| 282 | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| 283 | GPMI_CTRL0_ADDRESS_NAND_CLE | |
| 284 | GPMI_CTRL0_ADDRESS_INCREMENT | |
| 285 | nand_info->cmd_queue_len; |
| 286 | |
| 287 | mxs_dma_desc_append(channel, d); |
| 288 | |
| 289 | /* Execute the DMA chain. */ |
| 290 | ret = mxs_dma_go(channel); |
| 291 | if (ret) |
| 292 | printf("MXS NAND: Error sending command\n"); |
| 293 | |
| 294 | mxs_nand_return_dma_descs(nand_info); |
| 295 | |
| 296 | /* Reset the command queue. */ |
| 297 | nand_info->cmd_queue_len = 0; |
| 298 | } |
| 299 | |
| 300 | /* |
| 301 | * Test if the NAND flash is ready. |
| 302 | */ |
| 303 | static int mxs_nand_device_ready(struct mtd_info *mtd) |
| 304 | { |
| 305 | struct nand_chip *chip = mtd->priv; |
| 306 | struct mxs_nand_info *nand_info = chip->priv; |
| 307 | struct mx28_gpmi_regs *gpmi_regs = |
| 308 | (struct mx28_gpmi_regs *)MXS_GPMI_BASE; |
| 309 | uint32_t tmp; |
| 310 | |
| 311 | tmp = readl(&gpmi_regs->hw_gpmi_stat); |
| 312 | tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip); |
| 313 | |
| 314 | return tmp & 1; |
| 315 | } |
| 316 | |
| 317 | /* |
| 318 | * Select the NAND chip. |
| 319 | */ |
| 320 | static void mxs_nand_select_chip(struct mtd_info *mtd, int chip) |
| 321 | { |
| 322 | struct nand_chip *nand = mtd->priv; |
| 323 | struct mxs_nand_info *nand_info = nand->priv; |
| 324 | |
| 325 | nand_info->cur_chip = chip; |
| 326 | } |
| 327 | |
| 328 | /* |
| 329 | * Handle block mark swapping. |
| 330 | * |
| 331 | * Note that, when this function is called, it doesn't know whether it's |
| 332 | * swapping the block mark, or swapping it *back* -- but it doesn't matter |
| 333 | * because the the operation is the same. |
| 334 | */ |
| 335 | static void mxs_nand_swap_block_mark(struct mtd_info *mtd, |
| 336 | uint8_t *data_buf, uint8_t *oob_buf) |
| 337 | { |
| 338 | uint32_t bit_offset; |
| 339 | uint32_t buf_offset; |
| 340 | |
| 341 | uint32_t src; |
| 342 | uint32_t dst; |
| 343 | |
| 344 | bit_offset = mxs_nand_mark_bit_offset(mtd); |
| 345 | buf_offset = mxs_nand_mark_byte_offset(mtd); |
| 346 | |
| 347 | /* |
| 348 | * Get the byte from the data area that overlays the block mark. Since |
| 349 | * the ECC engine applies its own view to the bits in the page, the |
| 350 | * physical block mark won't (in general) appear on a byte boundary in |
| 351 | * the data. |
| 352 | */ |
| 353 | src = data_buf[buf_offset] >> bit_offset; |
| 354 | src |= data_buf[buf_offset + 1] << (8 - bit_offset); |
| 355 | |
| 356 | dst = oob_buf[0]; |
| 357 | |
| 358 | oob_buf[0] = src; |
| 359 | |
| 360 | data_buf[buf_offset] &= ~(0xff << bit_offset); |
| 361 | data_buf[buf_offset + 1] &= 0xff << bit_offset; |
| 362 | |
| 363 | data_buf[buf_offset] |= dst << bit_offset; |
| 364 | data_buf[buf_offset + 1] |= dst >> (8 - bit_offset); |
| 365 | } |
| 366 | |
| 367 | /* |
| 368 | * Read data from NAND. |
| 369 | */ |
| 370 | static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length) |
| 371 | { |
| 372 | struct nand_chip *nand = mtd->priv; |
| 373 | struct mxs_nand_info *nand_info = nand->priv; |
| 374 | struct mxs_dma_desc *d; |
| 375 | uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; |
| 376 | int ret; |
| 377 | |
| 378 | if (length > NAND_MAX_PAGESIZE) { |
| 379 | printf("MXS NAND: DMA buffer too big\n"); |
| 380 | return; |
| 381 | } |
| 382 | |
| 383 | if (!buf) { |
| 384 | printf("MXS NAND: DMA buffer is NULL\n"); |
| 385 | return; |
| 386 | } |
| 387 | |
| 388 | /* Compile the DMA descriptor - a descriptor that reads data. */ |
| 389 | d = mxs_nand_get_dma_desc(nand_info); |
| 390 | d->cmd.data = |
| 391 | MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ | |
| 392 | MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | |
| 393 | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | |
| 394 | (length << MXS_DMA_DESC_BYTES_OFFSET); |
| 395 | |
| 396 | d->cmd.address = (dma_addr_t)nand_info->data_buf; |
| 397 | |
| 398 | d->cmd.pio_words[0] = |
| 399 | GPMI_CTRL0_COMMAND_MODE_READ | |
| 400 | GPMI_CTRL0_WORD_LENGTH | |
| 401 | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| 402 | GPMI_CTRL0_ADDRESS_NAND_DATA | |
| 403 | length; |
| 404 | |
| 405 | mxs_dma_desc_append(channel, d); |
| 406 | |
| 407 | /* |
| 408 | * A DMA descriptor that waits for the command to end and the chip to |
| 409 | * become ready. |
| 410 | * |
| 411 | * I think we actually should *not* be waiting for the chip to become |
| 412 | * ready because, after all, we don't care. I think the original code |
| 413 | * did that and no one has re-thought it yet. |
| 414 | */ |
| 415 | d = mxs_nand_get_dma_desc(nand_info); |
| 416 | d->cmd.data = |
| 417 | MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | |
| 418 | MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM | |
| 419 | MXS_DMA_DESC_WAIT4END | (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET); |
| 420 | |
| 421 | d->cmd.address = 0; |
| 422 | |
| 423 | d->cmd.pio_words[0] = |
| 424 | GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | |
| 425 | GPMI_CTRL0_WORD_LENGTH | |
| 426 | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| 427 | GPMI_CTRL0_ADDRESS_NAND_DATA; |
| 428 | |
| 429 | mxs_dma_desc_append(channel, d); |
| 430 | |
| 431 | /* Execute the DMA chain. */ |
| 432 | ret = mxs_dma_go(channel); |
| 433 | if (ret) { |
| 434 | printf("MXS NAND: DMA read error\n"); |
| 435 | goto rtn; |
| 436 | } |
| 437 | |
| 438 | memcpy(buf, nand_info->data_buf, length); |
| 439 | |
| 440 | rtn: |
| 441 | mxs_nand_return_dma_descs(nand_info); |
| 442 | } |
| 443 | |
| 444 | /* |
| 445 | * Write data to NAND. |
| 446 | */ |
| 447 | static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, |
| 448 | int length) |
| 449 | { |
| 450 | struct nand_chip *nand = mtd->priv; |
| 451 | struct mxs_nand_info *nand_info = nand->priv; |
| 452 | struct mxs_dma_desc *d; |
| 453 | uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; |
| 454 | int ret; |
| 455 | |
| 456 | if (length > NAND_MAX_PAGESIZE) { |
| 457 | printf("MXS NAND: DMA buffer too big\n"); |
| 458 | return; |
| 459 | } |
| 460 | |
| 461 | if (!buf) { |
| 462 | printf("MXS NAND: DMA buffer is NULL\n"); |
| 463 | return; |
| 464 | } |
| 465 | |
| 466 | memcpy(nand_info->data_buf, buf, length); |
| 467 | |
| 468 | /* Compile the DMA descriptor - a descriptor that writes data. */ |
| 469 | d = mxs_nand_get_dma_desc(nand_info); |
| 470 | d->cmd.data = |
| 471 | MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ | |
| 472 | MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | |
| 473 | (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | |
| 474 | (length << MXS_DMA_DESC_BYTES_OFFSET); |
| 475 | |
| 476 | d->cmd.address = (dma_addr_t)nand_info->data_buf; |
| 477 | |
| 478 | d->cmd.pio_words[0] = |
| 479 | GPMI_CTRL0_COMMAND_MODE_WRITE | |
| 480 | GPMI_CTRL0_WORD_LENGTH | |
| 481 | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| 482 | GPMI_CTRL0_ADDRESS_NAND_DATA | |
| 483 | length; |
| 484 | |
| 485 | mxs_dma_desc_append(channel, d); |
| 486 | |
| 487 | /* Execute the DMA chain. */ |
| 488 | ret = mxs_dma_go(channel); |
| 489 | if (ret) |
| 490 | printf("MXS NAND: DMA write error\n"); |
| 491 | |
| 492 | mxs_nand_return_dma_descs(nand_info); |
| 493 | } |
| 494 | |
| 495 | /* |
| 496 | * Read a single byte from NAND. |
| 497 | */ |
| 498 | static uint8_t mxs_nand_read_byte(struct mtd_info *mtd) |
| 499 | { |
| 500 | uint8_t buf; |
| 501 | mxs_nand_read_buf(mtd, &buf, 1); |
| 502 | return buf; |
| 503 | } |
| 504 | |
| 505 | /* |
| 506 | * Read a page from NAND. |
| 507 | */ |
| 508 | static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand, |
| 509 | uint8_t *buf, int page) |
| 510 | { |
| 511 | struct mxs_nand_info *nand_info = nand->priv; |
| 512 | struct mxs_dma_desc *d; |
| 513 | uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; |
| 514 | uint32_t corrected = 0, failed = 0; |
| 515 | uint8_t *status; |
| 516 | int i, ret; |
| 517 | |
| 518 | /* Compile the DMA descriptor - wait for ready. */ |
| 519 | d = mxs_nand_get_dma_desc(nand_info); |
| 520 | d->cmd.data = |
| 521 | MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | |
| 522 | MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END | |
| 523 | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET); |
| 524 | |
| 525 | d->cmd.address = 0; |
| 526 | |
| 527 | d->cmd.pio_words[0] = |
| 528 | GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | |
| 529 | GPMI_CTRL0_WORD_LENGTH | |
| 530 | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| 531 | GPMI_CTRL0_ADDRESS_NAND_DATA; |
| 532 | |
| 533 | mxs_dma_desc_append(channel, d); |
| 534 | |
| 535 | /* Compile the DMA descriptor - enable the BCH block and read. */ |
| 536 | d = mxs_nand_get_dma_desc(nand_info); |
| 537 | d->cmd.data = |
| 538 | MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | |
| 539 | MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET); |
| 540 | |
| 541 | d->cmd.address = 0; |
| 542 | |
| 543 | d->cmd.pio_words[0] = |
| 544 | GPMI_CTRL0_COMMAND_MODE_READ | |
| 545 | GPMI_CTRL0_WORD_LENGTH | |
| 546 | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| 547 | GPMI_CTRL0_ADDRESS_NAND_DATA | |
| 548 | (mtd->writesize + mtd->oobsize); |
| 549 | d->cmd.pio_words[1] = 0; |
| 550 | d->cmd.pio_words[2] = |
| 551 | GPMI_ECCCTRL_ENABLE_ECC | |
| 552 | GPMI_ECCCTRL_ECC_CMD_DECODE | |
| 553 | GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE; |
| 554 | d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize; |
| 555 | d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf; |
| 556 | d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf; |
| 557 | |
| 558 | mxs_dma_desc_append(channel, d); |
| 559 | |
| 560 | /* Compile the DMA descriptor - disable the BCH block. */ |
| 561 | d = mxs_nand_get_dma_desc(nand_info); |
| 562 | d->cmd.data = |
| 563 | MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | |
| 564 | MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END | |
| 565 | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET); |
| 566 | |
| 567 | d->cmd.address = 0; |
| 568 | |
| 569 | d->cmd.pio_words[0] = |
| 570 | GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | |
| 571 | GPMI_CTRL0_WORD_LENGTH | |
| 572 | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| 573 | GPMI_CTRL0_ADDRESS_NAND_DATA | |
| 574 | (mtd->writesize + mtd->oobsize); |
| 575 | d->cmd.pio_words[1] = 0; |
| 576 | d->cmd.pio_words[2] = 0; |
| 577 | |
| 578 | mxs_dma_desc_append(channel, d); |
| 579 | |
| 580 | /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */ |
| 581 | d = mxs_nand_get_dma_desc(nand_info); |
| 582 | d->cmd.data = |
| 583 | MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | |
| 584 | MXS_DMA_DESC_DEC_SEM; |
| 585 | |
| 586 | d->cmd.address = 0; |
| 587 | |
| 588 | mxs_dma_desc_append(channel, d); |
| 589 | |
| 590 | /* Execute the DMA chain. */ |
| 591 | ret = mxs_dma_go(channel); |
| 592 | if (ret) { |
| 593 | printf("MXS NAND: DMA read error\n"); |
| 594 | goto rtn; |
| 595 | } |
| 596 | |
| 597 | ret = mxs_nand_wait_for_bch_complete(); |
| 598 | if (ret) { |
| 599 | printf("MXS NAND: BCH read timeout\n"); |
| 600 | goto rtn; |
| 601 | } |
| 602 | |
| 603 | /* Read DMA completed, now do the mark swapping. */ |
| 604 | mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf); |
| 605 | |
| 606 | /* Loop over status bytes, accumulating ECC status. */ |
| 607 | status = nand_info->oob_buf + mxs_nand_aux_status_offset(); |
| 608 | for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) { |
| 609 | if (status[i] == 0x00) |
| 610 | continue; |
| 611 | |
| 612 | if (status[i] == 0xff) |
| 613 | continue; |
| 614 | |
| 615 | if (status[i] == 0xfe) { |
| 616 | failed++; |
| 617 | continue; |
| 618 | } |
| 619 | |
| 620 | corrected += status[i]; |
| 621 | } |
| 622 | |
| 623 | /* Propagate ECC status to the owning MTD. */ |
| 624 | mtd->ecc_stats.failed += failed; |
| 625 | mtd->ecc_stats.corrected += corrected; |
| 626 | |
| 627 | /* |
| 628 | * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for |
| 629 | * details about our policy for delivering the OOB. |
| 630 | * |
| 631 | * We fill the caller's buffer with set bits, and then copy the block |
| 632 | * mark to the caller's buffer. Note that, if block mark swapping was |
| 633 | * necessary, it has already been done, so we can rely on the first |
| 634 | * byte of the auxiliary buffer to contain the block mark. |
| 635 | */ |
| 636 | memset(nand->oob_poi, 0xff, mtd->oobsize); |
| 637 | |
| 638 | nand->oob_poi[0] = nand_info->oob_buf[0]; |
| 639 | |
| 640 | memcpy(buf, nand_info->data_buf, mtd->writesize); |
| 641 | |
| 642 | rtn: |
| 643 | mxs_nand_return_dma_descs(nand_info); |
| 644 | |
| 645 | return ret; |
| 646 | } |
| 647 | |
| 648 | /* |
| 649 | * Write a page to NAND. |
| 650 | */ |
| 651 | static void mxs_nand_ecc_write_page(struct mtd_info *mtd, |
| 652 | struct nand_chip *nand, const uint8_t *buf) |
| 653 | { |
| 654 | struct mxs_nand_info *nand_info = nand->priv; |
| 655 | struct mxs_dma_desc *d; |
| 656 | uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; |
| 657 | int ret; |
| 658 | |
| 659 | memcpy(nand_info->data_buf, buf, mtd->writesize); |
| 660 | memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize); |
| 661 | |
| 662 | /* Handle block mark swapping. */ |
| 663 | mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf); |
| 664 | |
| 665 | /* Compile the DMA descriptor - write data. */ |
| 666 | d = mxs_nand_get_dma_desc(nand_info); |
| 667 | d->cmd.data = |
| 668 | MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | |
| 669 | MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | |
| 670 | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET); |
| 671 | |
| 672 | d->cmd.address = 0; |
| 673 | |
| 674 | d->cmd.pio_words[0] = |
| 675 | GPMI_CTRL0_COMMAND_MODE_WRITE | |
| 676 | GPMI_CTRL0_WORD_LENGTH | |
| 677 | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| 678 | GPMI_CTRL0_ADDRESS_NAND_DATA; |
| 679 | d->cmd.pio_words[1] = 0; |
| 680 | d->cmd.pio_words[2] = |
| 681 | GPMI_ECCCTRL_ENABLE_ECC | |
| 682 | GPMI_ECCCTRL_ECC_CMD_ENCODE | |
| 683 | GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE; |
| 684 | d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize); |
| 685 | d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf; |
| 686 | d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf; |
| 687 | |
| 688 | mxs_dma_desc_append(channel, d); |
| 689 | |
| 690 | /* Execute the DMA chain. */ |
| 691 | ret = mxs_dma_go(channel); |
| 692 | if (ret) { |
| 693 | printf("MXS NAND: DMA write error\n"); |
| 694 | goto rtn; |
| 695 | } |
| 696 | |
| 697 | ret = mxs_nand_wait_for_bch_complete(); |
| 698 | if (ret) { |
| 699 | printf("MXS NAND: BCH write timeout\n"); |
| 700 | goto rtn; |
| 701 | } |
| 702 | |
| 703 | rtn: |
| 704 | mxs_nand_return_dma_descs(nand_info); |
| 705 | } |
| 706 | |
| 707 | /* |
| 708 | * Read OOB from NAND. |
| 709 | * |
| 710 | * This function is a veneer that replaces the function originally installed by |
| 711 | * the NAND Flash MTD code. |
| 712 | */ |
| 713 | static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from, |
| 714 | struct mtd_oob_ops *ops) |
| 715 | { |
| 716 | struct nand_chip *chip = mtd->priv; |
| 717 | struct mxs_nand_info *nand_info = chip->priv; |
| 718 | int ret; |
| 719 | |
| 720 | if (ops->mode == MTD_OOB_RAW) |
| 721 | nand_info->raw_oob_mode = 1; |
| 722 | else |
| 723 | nand_info->raw_oob_mode = 0; |
| 724 | |
| 725 | ret = nand_info->hooked_read_oob(mtd, from, ops); |
| 726 | |
| 727 | nand_info->raw_oob_mode = 0; |
| 728 | |
| 729 | return ret; |
| 730 | } |
| 731 | |
| 732 | /* |
| 733 | * Write OOB to NAND. |
| 734 | * |
| 735 | * This function is a veneer that replaces the function originally installed by |
| 736 | * the NAND Flash MTD code. |
| 737 | */ |
| 738 | static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to, |
| 739 | struct mtd_oob_ops *ops) |
| 740 | { |
| 741 | struct nand_chip *chip = mtd->priv; |
| 742 | struct mxs_nand_info *nand_info = chip->priv; |
| 743 | int ret; |
| 744 | |
| 745 | if (ops->mode == MTD_OOB_RAW) |
| 746 | nand_info->raw_oob_mode = 1; |
| 747 | else |
| 748 | nand_info->raw_oob_mode = 0; |
| 749 | |
| 750 | ret = nand_info->hooked_write_oob(mtd, to, ops); |
| 751 | |
| 752 | nand_info->raw_oob_mode = 0; |
| 753 | |
| 754 | return ret; |
| 755 | } |
| 756 | |
| 757 | /* |
| 758 | * Mark a block bad in NAND. |
| 759 | * |
| 760 | * This function is a veneer that replaces the function originally installed by |
| 761 | * the NAND Flash MTD code. |
| 762 | */ |
| 763 | static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs) |
| 764 | { |
| 765 | struct nand_chip *chip = mtd->priv; |
| 766 | struct mxs_nand_info *nand_info = chip->priv; |
| 767 | int ret; |
| 768 | |
| 769 | nand_info->marking_block_bad = 1; |
| 770 | |
| 771 | ret = nand_info->hooked_block_markbad(mtd, ofs); |
| 772 | |
| 773 | nand_info->marking_block_bad = 0; |
| 774 | |
| 775 | return ret; |
| 776 | } |
| 777 | |
| 778 | /* |
| 779 | * There are several places in this driver where we have to handle the OOB and |
| 780 | * block marks. This is the function where things are the most complicated, so |
| 781 | * this is where we try to explain it all. All the other places refer back to |
| 782 | * here. |
| 783 | * |
| 784 | * These are the rules, in order of decreasing importance: |
| 785 | * |
| 786 | * 1) Nothing the caller does can be allowed to imperil the block mark, so all |
| 787 | * write operations take measures to protect it. |
| 788 | * |
| 789 | * 2) In read operations, the first byte of the OOB we return must reflect the |
| 790 | * true state of the block mark, no matter where that block mark appears in |
| 791 | * the physical page. |
| 792 | * |
| 793 | * 3) ECC-based read operations return an OOB full of set bits (since we never |
| 794 | * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads |
| 795 | * return). |
| 796 | * |
| 797 | * 4) "Raw" read operations return a direct view of the physical bytes in the |
| 798 | * page, using the conventional definition of which bytes are data and which |
| 799 | * are OOB. This gives the caller a way to see the actual, physical bytes |
| 800 | * in the page, without the distortions applied by our ECC engine. |
| 801 | * |
| 802 | * What we do for this specific read operation depends on whether we're doing |
| 803 | * "raw" read, or an ECC-based read. |
| 804 | * |
| 805 | * It turns out that knowing whether we want an "ECC-based" or "raw" read is not |
| 806 | * easy. When reading a page, for example, the NAND Flash MTD code calls our |
| 807 | * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an |
| 808 | * ECC-based or raw view of the page is implicit in which function it calls |
| 809 | * (there is a similar pair of ECC-based/raw functions for writing). |
| 810 | * |
| 811 | * Since MTD assumes the OOB is not covered by ECC, there is no pair of |
| 812 | * ECC-based/raw functions for reading or or writing the OOB. The fact that the |
| 813 | * caller wants an ECC-based or raw view of the page is not propagated down to |
| 814 | * this driver. |
| 815 | * |
| 816 | * Since our OOB *is* covered by ECC, we need this information. So, we hook the |
| 817 | * ecc.read_oob and ecc.write_oob function pointers in the owning |
| 818 | * struct mtd_info with our own functions. These hook functions set the |
| 819 | * raw_oob_mode field so that, when control finally arrives here, we'll know |
| 820 | * what to do. |
| 821 | */ |
| 822 | static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand, |
| 823 | int page, int cmd) |
| 824 | { |
| 825 | struct mxs_nand_info *nand_info = nand->priv; |
| 826 | |
| 827 | /* |
| 828 | * First, fill in the OOB buffer. If we're doing a raw read, we need to |
| 829 | * get the bytes from the physical page. If we're not doing a raw read, |
| 830 | * we need to fill the buffer with set bits. |
| 831 | */ |
| 832 | if (nand_info->raw_oob_mode) { |
| 833 | /* |
| 834 | * If control arrives here, we're doing a "raw" read. Send the |
| 835 | * command to read the conventional OOB and read it. |
| 836 | */ |
| 837 | nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); |
| 838 | nand->read_buf(mtd, nand->oob_poi, mtd->oobsize); |
| 839 | } else { |
| 840 | /* |
| 841 | * If control arrives here, we're not doing a "raw" read. Fill |
| 842 | * the OOB buffer with set bits and correct the block mark. |
| 843 | */ |
| 844 | memset(nand->oob_poi, 0xff, mtd->oobsize); |
| 845 | |
| 846 | nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); |
| 847 | mxs_nand_read_buf(mtd, nand->oob_poi, 1); |
| 848 | } |
| 849 | |
| 850 | return 0; |
| 851 | |
| 852 | } |
| 853 | |
| 854 | /* |
| 855 | * Write OOB data to NAND. |
| 856 | */ |
| 857 | static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand, |
| 858 | int page) |
| 859 | { |
| 860 | struct mxs_nand_info *nand_info = nand->priv; |
| 861 | uint8_t block_mark = 0; |
| 862 | |
| 863 | /* |
| 864 | * There are fundamental incompatibilities between the i.MX GPMI NFC and |
| 865 | * the NAND Flash MTD model that make it essentially impossible to write |
| 866 | * the out-of-band bytes. |
| 867 | * |
| 868 | * We permit *ONE* exception. If the *intent* of writing the OOB is to |
| 869 | * mark a block bad, we can do that. |
| 870 | */ |
| 871 | |
| 872 | if (!nand_info->marking_block_bad) { |
| 873 | printf("NXS NAND: Writing OOB isn't supported\n"); |
| 874 | return -EIO; |
| 875 | } |
| 876 | |
| 877 | /* Write the block mark. */ |
| 878 | nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); |
| 879 | nand->write_buf(mtd, &block_mark, 1); |
| 880 | nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| 881 | |
| 882 | /* Check if it worked. */ |
| 883 | if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL) |
| 884 | return -EIO; |
| 885 | |
| 886 | return 0; |
| 887 | } |
| 888 | |
| 889 | /* |
| 890 | * Claims all blocks are good. |
| 891 | * |
| 892 | * In principle, this function is *only* called when the NAND Flash MTD system |
| 893 | * isn't allowed to keep an in-memory bad block table, so it is forced to ask |
| 894 | * the driver for bad block information. |
| 895 | * |
| 896 | * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so |
| 897 | * this function is *only* called when we take it away. |
| 898 | * |
| 899 | * Thus, this function is only called when we want *all* blocks to look good, |
| 900 | * so it *always* return success. |
| 901 | */ |
| 902 | static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) |
| 903 | { |
| 904 | return 0; |
| 905 | } |
| 906 | |
| 907 | /* |
| 908 | * Nominally, the purpose of this function is to look for or create the bad |
| 909 | * block table. In fact, since the we call this function at the very end of |
| 910 | * the initialization process started by nand_scan(), and we doesn't have a |
| 911 | * more formal mechanism, we "hook" this function to continue init process. |
| 912 | * |
| 913 | * At this point, the physical NAND Flash chips have been identified and |
| 914 | * counted, so we know the physical geometry. This enables us to make some |
| 915 | * important configuration decisions. |
| 916 | * |
| 917 | * The return value of this function propogates directly back to this driver's |
| 918 | * call to nand_scan(). Anything other than zero will cause this driver to |
| 919 | * tear everything down and declare failure. |
| 920 | */ |
| 921 | static int mxs_nand_scan_bbt(struct mtd_info *mtd) |
| 922 | { |
| 923 | struct nand_chip *nand = mtd->priv; |
| 924 | struct mxs_nand_info *nand_info = nand->priv; |
| 925 | struct mx28_bch_regs *bch_regs = (struct mx28_bch_regs *)MXS_BCH_BASE; |
| 926 | uint32_t tmp; |
| 927 | |
| 928 | /* Configure BCH and set NFC geometry */ |
| 929 | mx28_reset_block(&bch_regs->hw_bch_ctrl_reg); |
| 930 | |
| 931 | /* Configure layout 0 */ |
| 932 | tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1) |
| 933 | << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET; |
| 934 | tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET; |
| 935 | tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1) |
| 936 | << BCH_FLASHLAYOUT0_ECC0_OFFSET; |
| 937 | tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE; |
| 938 | writel(tmp, &bch_regs->hw_bch_flash0layout0); |
| 939 | |
| 940 | tmp = (mtd->writesize + mtd->oobsize) |
| 941 | << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET; |
| 942 | tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1) |
| 943 | << BCH_FLASHLAYOUT1_ECCN_OFFSET; |
| 944 | tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE; |
| 945 | writel(tmp, &bch_regs->hw_bch_flash0layout1); |
| 946 | |
| 947 | /* Set *all* chip selects to use layout 0 */ |
| 948 | writel(0, &bch_regs->hw_bch_layoutselect); |
| 949 | |
| 950 | /* Enable BCH complete interrupt */ |
| 951 | writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set); |
| 952 | |
| 953 | /* Hook some operations at the MTD level. */ |
| 954 | if (mtd->read_oob != mxs_nand_hook_read_oob) { |
| 955 | nand_info->hooked_read_oob = mtd->read_oob; |
| 956 | mtd->read_oob = mxs_nand_hook_read_oob; |
| 957 | } |
| 958 | |
| 959 | if (mtd->write_oob != mxs_nand_hook_write_oob) { |
| 960 | nand_info->hooked_write_oob = mtd->write_oob; |
| 961 | mtd->write_oob = mxs_nand_hook_write_oob; |
| 962 | } |
| 963 | |
| 964 | if (mtd->block_markbad != mxs_nand_hook_block_markbad) { |
| 965 | nand_info->hooked_block_markbad = mtd->block_markbad; |
| 966 | mtd->block_markbad = mxs_nand_hook_block_markbad; |
| 967 | } |
| 968 | |
| 969 | /* We use the reference implementation for bad block management. */ |
| 970 | return nand_default_bbt(mtd); |
| 971 | } |
| 972 | |
| 973 | /* |
| 974 | * Allocate DMA buffers |
| 975 | */ |
| 976 | int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info) |
| 977 | { |
| 978 | uint8_t *buf; |
| 979 | const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE; |
| 980 | |
| 981 | /* DMA buffers */ |
| 982 | buf = memalign(MXS_DMA_ALIGNMENT, size); |
| 983 | if (!buf) { |
| 984 | printf("MXS NAND: Error allocating DMA buffers\n"); |
| 985 | return -ENOMEM; |
| 986 | } |
| 987 | |
| 988 | memset(buf, 0, size); |
| 989 | |
| 990 | nand_info->data_buf = buf; |
| 991 | nand_info->oob_buf = buf + NAND_MAX_PAGESIZE; |
| 992 | |
| 993 | /* Command buffers */ |
| 994 | nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT, |
| 995 | MXS_NAND_COMMAND_BUFFER_SIZE); |
| 996 | if (!nand_info->cmd_buf) { |
| 997 | free(buf); |
| 998 | printf("MXS NAND: Error allocating command buffers\n"); |
| 999 | return -ENOMEM; |
| 1000 | } |
| 1001 | memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE); |
| 1002 | nand_info->cmd_queue_len = 0; |
| 1003 | |
| 1004 | return 0; |
| 1005 | } |
| 1006 | |
| 1007 | /* |
| 1008 | * Initializes the NFC hardware. |
| 1009 | */ |
| 1010 | int mxs_nand_init(struct mxs_nand_info *info) |
| 1011 | { |
| 1012 | struct mx28_gpmi_regs *gpmi_regs = |
| 1013 | (struct mx28_gpmi_regs *)MXS_GPMI_BASE; |
| 1014 | int i = 0; |
| 1015 | |
| 1016 | info->desc = malloc(sizeof(struct mxs_dma_desc *) * |
| 1017 | MXS_NAND_DMA_DESCRIPTOR_COUNT); |
| 1018 | if (!info->desc) |
| 1019 | goto err1; |
| 1020 | |
| 1021 | /* Allocate the DMA descriptors. */ |
| 1022 | for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) { |
| 1023 | info->desc[i] = mxs_dma_desc_alloc(); |
| 1024 | if (!info->desc[i]) |
| 1025 | goto err2; |
| 1026 | } |
| 1027 | |
| 1028 | /* Init the DMA controller. */ |
| 1029 | mxs_dma_init(); |
| 1030 | |
| 1031 | /* Reset the GPMI block. */ |
| 1032 | mx28_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg); |
| 1033 | |
| 1034 | /* |
| 1035 | * Choose NAND mode, set IRQ polarity, disable write protection and |
| 1036 | * select BCH ECC. |
| 1037 | */ |
| 1038 | clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1, |
| 1039 | GPMI_CTRL1_GPMI_MODE, |
| 1040 | GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET | |
| 1041 | GPMI_CTRL1_BCH_MODE); |
| 1042 | |
| 1043 | return 0; |
| 1044 | |
| 1045 | err2: |
| 1046 | free(info->desc); |
| 1047 | err1: |
| 1048 | for (--i; i >= 0; i--) |
| 1049 | mxs_dma_desc_free(info->desc[i]); |
| 1050 | printf("MXS NAND: Unable to allocate DMA descriptors\n"); |
| 1051 | return -ENOMEM; |
| 1052 | } |
| 1053 | |
| 1054 | /*! |
| 1055 | * This function is called during the driver binding process. |
| 1056 | * |
| 1057 | * @param pdev the device structure used to store device specific |
| 1058 | * information that is used by the suspend, resume and |
| 1059 | * remove functions |
| 1060 | * |
| 1061 | * @return The function always returns 0. |
| 1062 | */ |
| 1063 | int board_nand_init(struct nand_chip *nand) |
| 1064 | { |
| 1065 | struct mxs_nand_info *nand_info; |
| 1066 | int err; |
| 1067 | |
| 1068 | nand_info = malloc(sizeof(struct mxs_nand_info)); |
| 1069 | if (!nand_info) { |
| 1070 | printf("MXS NAND: Failed to allocate private data\n"); |
| 1071 | return -ENOMEM; |
| 1072 | } |
| 1073 | memset(nand_info, 0, sizeof(struct mxs_nand_info)); |
| 1074 | |
| 1075 | err = mxs_nand_alloc_buffers(nand_info); |
| 1076 | if (err) |
| 1077 | goto err1; |
| 1078 | |
| 1079 | err = mxs_nand_init(nand_info); |
| 1080 | if (err) |
| 1081 | goto err2; |
| 1082 | |
| 1083 | memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout)); |
| 1084 | |
| 1085 | nand->priv = nand_info; |
| 1086 | nand->options |= NAND_NO_SUBPAGE_WRITE; |
| 1087 | |
| 1088 | nand->cmd_ctrl = mxs_nand_cmd_ctrl; |
| 1089 | |
| 1090 | nand->dev_ready = mxs_nand_device_ready; |
| 1091 | nand->select_chip = mxs_nand_select_chip; |
| 1092 | nand->block_bad = mxs_nand_block_bad; |
| 1093 | nand->scan_bbt = mxs_nand_scan_bbt; |
| 1094 | |
| 1095 | nand->read_byte = mxs_nand_read_byte; |
| 1096 | |
| 1097 | nand->read_buf = mxs_nand_read_buf; |
| 1098 | nand->write_buf = mxs_nand_write_buf; |
| 1099 | |
| 1100 | nand->ecc.read_page = mxs_nand_ecc_read_page; |
| 1101 | nand->ecc.write_page = mxs_nand_ecc_write_page; |
| 1102 | nand->ecc.read_oob = mxs_nand_ecc_read_oob; |
| 1103 | nand->ecc.write_oob = mxs_nand_ecc_write_oob; |
| 1104 | |
| 1105 | nand->ecc.layout = &fake_ecc_layout; |
| 1106 | nand->ecc.mode = NAND_ECC_HW; |
| 1107 | nand->ecc.bytes = 9; |
| 1108 | nand->ecc.size = 512; |
| 1109 | |
| 1110 | return 0; |
| 1111 | |
| 1112 | err2: |
| 1113 | free(nand_info->data_buf); |
| 1114 | free(nand_info->cmd_buf); |
| 1115 | err1: |
| 1116 | free(nand_info); |
| 1117 | return err; |
| 1118 | } |