blob: 45ec5f0f193937e3c17bd7a8342bc9cc38fa1b75 [file] [log] [blame]
Thomas Chou38f1d982010-05-15 06:00:05 +08001/* longlong.h -- definitions for mixed size 32/64 bit arithmetic.
2 Copyright (C) 1991, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2004,
3 2005 Free Software Foundation, Inc.
4
Wolfgang Denkd79de1d2013-07-08 09:37:19 +02005 * SPDX-License-Identifier: GPL-2.0+
Thomas Choua4a0f422013-09-03 09:36:04 +08006 */
Thomas Chou38f1d982010-05-15 06:00:05 +08007
8/* You have to define the following before including this file:
9
10 UWtype -- An unsigned type, default type for operations (typically a "word")
11 UHWtype -- An unsigned type, at least half the size of UWtype.
12 UDWtype -- An unsigned type, at least twice as large a UWtype
13 W_TYPE_SIZE -- size in bits of UWtype
14
15 UQItype -- Unsigned 8 bit type.
16 SItype, USItype -- Signed and unsigned 32 bit types.
17 DItype, UDItype -- Signed and unsigned 64 bit types.
18
19 On a 32 bit machine UWtype should typically be USItype;
20 on a 64 bit machine, UWtype should typically be UDItype. */
21
22#define __BITS4 (W_TYPE_SIZE / 4)
23#define __ll_B ((UWtype) 1 << (W_TYPE_SIZE / 2))
24#define __ll_lowpart(t) ((UWtype) (t) & (__ll_B - 1))
25#define __ll_highpart(t) ((UWtype) (t) >> (W_TYPE_SIZE / 2))
26
27#ifndef W_TYPE_SIZE
28#define W_TYPE_SIZE 32
29#define UWtype USItype
30#define UHWtype USItype
31#define UDWtype UDItype
32#endif
33
34extern const UQItype __clz_tab[256];
35
36/* Define auxiliary asm macros.
37
38 1) umul_ppmm(high_prod, low_prod, multiplier, multiplicand) multiplies two
39 UWtype integers MULTIPLIER and MULTIPLICAND, and generates a two UWtype
40 word product in HIGH_PROD and LOW_PROD.
41
42 2) __umulsidi3(a,b) multiplies two UWtype integers A and B, and returns a
43 UDWtype product. This is just a variant of umul_ppmm.
44
45 3) udiv_qrnnd(quotient, remainder, high_numerator, low_numerator,
46 denominator) divides a UDWtype, composed by the UWtype integers
47 HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and places the quotient
48 in QUOTIENT and the remainder in REMAINDER. HIGH_NUMERATOR must be less
49 than DENOMINATOR for correct operation. If, in addition, the most
50 significant bit of DENOMINATOR must be 1, then the pre-processor symbol
51 UDIV_NEEDS_NORMALIZATION is defined to 1.
52
53 4) sdiv_qrnnd(quotient, remainder, high_numerator, low_numerator,
54 denominator). Like udiv_qrnnd but the numbers are signed. The quotient
55 is rounded towards 0.
56
57 5) count_leading_zeros(count, x) counts the number of zero-bits from the
58 msb to the first nonzero bit in the UWtype X. This is the number of
59 steps X needs to be shifted left to set the msb. Undefined for X == 0,
60 unless the symbol COUNT_LEADING_ZEROS_0 is defined to some value.
61
62 6) count_trailing_zeros(count, x) like count_leading_zeros, but counts
63 from the least significant end.
64
65 7) add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1,
66 high_addend_2, low_addend_2) adds two UWtype integers, composed by
67 HIGH_ADDEND_1 and LOW_ADDEND_1, and HIGH_ADDEND_2 and LOW_ADDEND_2
68 respectively. The result is placed in HIGH_SUM and LOW_SUM. Overflow
69 (i.e. carry out) is not stored anywhere, and is lost.
70
71 8) sub_ddmmss(high_difference, low_difference, high_minuend, low_minuend,
72 high_subtrahend, low_subtrahend) subtracts two two-word UWtype integers,
73 composed by HIGH_MINUEND_1 and LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and
74 LOW_SUBTRAHEND_2 respectively. The result is placed in HIGH_DIFFERENCE
75 and LOW_DIFFERENCE. Overflow (i.e. carry out) is not stored anywhere,
76 and is lost.
77
78 If any of these macros are left undefined for a particular CPU,
79 C macros are used. */
80
81/* The CPUs come in alphabetical order below.
82
83 Please add support for more CPUs here, or improve the current support
84 for the CPUs below!
85 (E.g. WE32100, IBM360.) */
86
87/* Snipped per CPU support */
88
89/* If this machine has no inline assembler, use C macros. */
90
91#if !defined (add_ssaaaa)
92#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
93 do { \
94 UWtype __x; \
95 __x = (al) + (bl); \
96 (sh) = (ah) + (bh) + (__x < (al)); \
97 (sl) = __x; \
98 } while (0)
99#endif
100
101#if !defined (sub_ddmmss)
102#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
103 do { \
104 UWtype __x; \
105 __x = (al) - (bl); \
106 (sh) = (ah) - (bh) - (__x > (al)); \
107 (sl) = __x; \
108 } while (0)
109#endif
110
111/* If we lack umul_ppmm but have smul_ppmm, define umul_ppmm in terms of
112 smul_ppmm. */
113#if !defined (umul_ppmm) && defined (smul_ppmm)
114#define umul_ppmm(w1, w0, u, v) \
115 do { \
116 UWtype __w1; \
117 UWtype __xm0 = (u), __xm1 = (v); \
118 smul_ppmm (__w1, w0, __xm0, __xm1); \
119 (w1) = __w1 + (-(__xm0 >> (W_TYPE_SIZE - 1)) & __xm1) \
120 + (-(__xm1 >> (W_TYPE_SIZE - 1)) & __xm0); \
121 } while (0)
122#endif
123
124/* If we still don't have umul_ppmm, define it using plain C. */
125#if !defined (umul_ppmm)
126#define umul_ppmm(w1, w0, u, v) \
127 do { \
128 UWtype __x0, __x1, __x2, __x3; \
129 UHWtype __ul, __vl, __uh, __vh; \
130 \
131 __ul = __ll_lowpart (u); \
132 __uh = __ll_highpart (u); \
133 __vl = __ll_lowpart (v); \
134 __vh = __ll_highpart (v); \
135 \
136 __x0 = (UWtype) __ul * __vl; \
137 __x1 = (UWtype) __ul * __vh; \
138 __x2 = (UWtype) __uh * __vl; \
139 __x3 = (UWtype) __uh * __vh; \
140 \
141 __x1 += __ll_highpart (__x0);/* this can't give carry */ \
142 __x1 += __x2; /* but this indeed can */ \
143 if (__x1 < __x2) /* did we get it? */ \
144 __x3 += __ll_B; /* yes, add it in the proper pos. */ \
145 \
146 (w1) = __x3 + __ll_highpart (__x1); \
147 (w0) = __ll_lowpart (__x1) * __ll_B + __ll_lowpart (__x0); \
148 } while (0)
149#endif
150
151#if !defined (__umulsidi3)
152#define __umulsidi3(u, v) \
153 ({DWunion __w; \
154 umul_ppmm (__w.s.high, __w.s.low, u, v); \
155 __w.ll; })
156#endif
157
158/* Define this unconditionally, so it can be used for debugging. */
159#define __udiv_qrnnd_c(q, r, n1, n0, d) \
160 do { \
161 UWtype __d1, __d0, __q1, __q0; \
162 UWtype __r1, __r0, __m; \
163 __d1 = __ll_highpart (d); \
164 __d0 = __ll_lowpart (d); \
165 \
166 __r1 = (n1) % __d1; \
167 __q1 = (n1) / __d1; \
168 __m = (UWtype) __q1 * __d0; \
169 __r1 = __r1 * __ll_B | __ll_highpart (n0); \
170 if (__r1 < __m) \
171 { \
172 __q1--, __r1 += (d); \
173 if (__r1 >= (d)) /* i.e. we didn't get carry when adding to __r1 */\
174 if (__r1 < __m) \
175 __q1--, __r1 += (d); \
176 } \
177 __r1 -= __m; \
178 \
179 __r0 = __r1 % __d1; \
180 __q0 = __r1 / __d1; \
181 __m = (UWtype) __q0 * __d0; \
182 __r0 = __r0 * __ll_B | __ll_lowpart (n0); \
183 if (__r0 < __m) \
184 { \
185 __q0--, __r0 += (d); \
186 if (__r0 >= (d)) \
187 if (__r0 < __m) \
188 __q0--, __r0 += (d); \
189 } \
190 __r0 -= __m; \
191 \
192 (q) = (UWtype) __q1 * __ll_B | __q0; \
193 (r) = __r0; \
194 } while (0)
195
196/* If the processor has no udiv_qrnnd but sdiv_qrnnd, go through
197 __udiv_w_sdiv (defined in libgcc or elsewhere). */
198#if !defined (udiv_qrnnd) && defined (sdiv_qrnnd)
199#define udiv_qrnnd(q, r, nh, nl, d) \
200 do { \
201 USItype __r; \
202 (q) = __udiv_w_sdiv (&__r, nh, nl, d); \
203 (r) = __r; \
204 } while (0)
205#endif
206
207/* If udiv_qrnnd was not defined for this processor, use __udiv_qrnnd_c. */
208#if !defined (udiv_qrnnd)
209#define UDIV_NEEDS_NORMALIZATION 1
210#define udiv_qrnnd __udiv_qrnnd_c
211#endif
212
213#if !defined (count_leading_zeros)
214#define count_leading_zeros(count, x) \
215 do { \
216 UWtype __xr = (x); \
217 UWtype __a; \
218 \
219 if (W_TYPE_SIZE <= 32) \
220 { \
221 __a = __xr < ((UWtype)1<<2*__BITS4) \
222 ? (__xr < ((UWtype)1<<__BITS4) ? 0 : __BITS4) \
223 : (__xr < ((UWtype)1<<3*__BITS4) ? 2*__BITS4 : 3*__BITS4); \
224 } \
225 else \
226 { \
227 for (__a = W_TYPE_SIZE - 8; __a > 0; __a -= 8) \
228 if (((__xr >> __a) & 0xff) != 0) \
229 break; \
230 } \
231 \
232 (count) = W_TYPE_SIZE - (__clz_tab[__xr >> __a] + __a); \
233 } while (0)
234#define COUNT_LEADING_ZEROS_0 W_TYPE_SIZE
235#endif
236
237#if !defined (count_trailing_zeros)
238/* Define count_trailing_zeros using count_leading_zeros. The latter might be
239 defined in asm, but if it is not, the C version above is good enough. */
240#define count_trailing_zeros(count, x) \
241 do { \
242 UWtype __ctz_x = (x); \
243 UWtype __ctz_c; \
244 count_leading_zeros (__ctz_c, __ctz_x & -__ctz_x); \
245 (count) = W_TYPE_SIZE - 1 - __ctz_c; \
246 } while (0)
247#endif
248
249#ifndef UDIV_NEEDS_NORMALIZATION
250#define UDIV_NEEDS_NORMALIZATION 0
251#endif