Tom Rini | 0344c60 | 2024-10-08 13:56:50 -0600 | [diff] [blame^] | 1 | /* BEGIN_HEADER */ |
| 2 | /* Dedicated test suite for mbedtls_mpi_core_random() and the upper-layer |
| 3 | * functions. Due to the complexity of how these functions are tested, |
| 4 | * we test all the layers in a single test suite, unlike the way other |
| 5 | * functions are tested with each layer in its own test suite. |
| 6 | * |
| 7 | * Test strategy |
| 8 | * ============= |
| 9 | * |
| 10 | * There are three main goals for testing random() functions: |
| 11 | * - Parameter validation. |
| 12 | * - Correctness of outputs (well-formed, in range). |
| 13 | * - Distribution of outputs. |
| 14 | * |
| 15 | * We test parameter validation in a standard way, with unit tests with |
| 16 | * positive and negative cases: |
| 17 | * - mbedtls_mpi_core_random(): negative cases for mpi_core_random_basic. |
| 18 | * - mbedtls_mpi_mod_raw_random(), mbedtls_mpi_mod_random(): negative |
| 19 | * cases for mpi_mod_random_validation. |
| 20 | * - mbedtls_mpi_random(): mpi_random_fail. |
| 21 | * |
| 22 | * We test the correctness of outputs in positive tests: |
| 23 | * - mbedtls_mpi_core_random(): positive cases for mpi_core_random_basic, |
| 24 | * and mpi_random_many. |
| 25 | * - mbedtls_mpi_mod_raw_random(), mbedtls_mpi_mod_random(): tested indirectly |
| 26 | * via mpi_mod_random_values. |
| 27 | * - mbedtls_mpi_random(): mpi_random_sizes, plus indirectly via |
| 28 | * mpi_random_values. |
| 29 | * |
| 30 | * We test the distribution of outputs only for mbedtls_mpi_core_random(), |
| 31 | * in mpi_random_many, which runs the function multiple times. This also |
| 32 | * helps in validating the output range, through test cases with a small |
| 33 | * range where any output out of range would be very likely to lead to a |
| 34 | * test failure. For the other functions, we validate the distribution |
| 35 | * indirectly by testing that these functions consume the random generator |
| 36 | * in the same way as mbedtls_mpi_core_random(). This is done in |
| 37 | * mpi_mod_random_values and mpi_legacy_random_values. |
| 38 | */ |
| 39 | |
| 40 | #include "mbedtls/bignum.h" |
| 41 | #include "mbedtls/entropy.h" |
| 42 | #include "bignum_core.h" |
| 43 | #include "bignum_mod_raw.h" |
| 44 | #include "constant_time_internal.h" |
| 45 | |
| 46 | /* This test suite only manipulates non-negative bignums. */ |
| 47 | static int sign_is_valid(const mbedtls_mpi *X) |
| 48 | { |
| 49 | return X->s == 1; |
| 50 | } |
| 51 | |
| 52 | /* A common initializer for test functions that should generate the same |
| 53 | * sequences for reproducibility and good coverage. */ |
| 54 | const mbedtls_test_rnd_pseudo_info rnd_pseudo_seed = { |
| 55 | /* 16-word key */ |
| 56 | { 'T', 'h', 'i', 's', ' ', 'i', 's', ' ', |
| 57 | 'a', ' ', 's', 'e', 'e', 'd', '!', 0 }, |
| 58 | /* 2-word initial state, should be zero */ |
| 59 | 0, 0 |
| 60 | }; |
| 61 | |
| 62 | /* Test whether bytes represents (in big-endian base 256) a number b that |
| 63 | * is significantly above a power of 2. That is, b must not have a long run |
| 64 | * of unset bits after the most significant bit. |
| 65 | * |
| 66 | * Let n be the bit-size of b, i.e. the integer such that 2^n <= b < 2^{n+1}. |
| 67 | * This function returns 1 if, when drawing a number between 0 and b, |
| 68 | * the probability that this number is at least 2^n is not negligible. |
| 69 | * This probability is (b - 2^n) / b and this function checks that this |
| 70 | * number is above some threshold A. The threshold value is heuristic and |
| 71 | * based on the needs of mpi_random_many(). |
| 72 | */ |
| 73 | static int is_significantly_above_a_power_of_2(data_t *bytes) |
| 74 | { |
| 75 | const uint8_t *p = bytes->x; |
| 76 | size_t len = bytes->len; |
| 77 | unsigned x; |
| 78 | |
| 79 | /* Skip leading null bytes */ |
| 80 | while (len > 0 && p[0] == 0) { |
| 81 | ++p; |
| 82 | --len; |
| 83 | } |
| 84 | /* 0 is not significantly above a power of 2 */ |
| 85 | if (len == 0) { |
| 86 | return 0; |
| 87 | } |
| 88 | /* Extract the (up to) 2 most significant bytes */ |
| 89 | if (len == 1) { |
| 90 | x = p[0]; |
| 91 | } else { |
| 92 | x = (p[0] << 8) | p[1]; |
| 93 | } |
| 94 | |
| 95 | /* Shift the most significant bit of x to position 8 and mask it out */ |
| 96 | while ((x & 0xfe00) != 0) { |
| 97 | x >>= 1; |
| 98 | } |
| 99 | x &= 0x00ff; |
| 100 | |
| 101 | /* At this point, x = floor((b - 2^n) / 2^(n-8)). b is significantly above |
| 102 | * a power of 2 iff x is significantly above 0 compared to 2^8. |
| 103 | * Testing x >= 2^4 amounts to picking A = 1/16 in the function |
| 104 | * description above. */ |
| 105 | return x >= 0x10; |
| 106 | } |
| 107 | |
| 108 | /* END_HEADER */ |
| 109 | |
| 110 | /* BEGIN_DEPENDENCIES |
| 111 | * depends_on:MBEDTLS_BIGNUM_C |
| 112 | * END_DEPENDENCIES |
| 113 | */ |
| 114 | |
| 115 | /* BEGIN_CASE */ |
| 116 | void mpi_core_random_basic(int min, char *bound_bytes, int expected_ret) |
| 117 | { |
| 118 | /* Same RNG as in mpi_random_values */ |
| 119 | mbedtls_test_rnd_pseudo_info rnd = rnd_pseudo_seed; |
| 120 | size_t limbs; |
| 121 | mbedtls_mpi_uint *lower_bound = NULL; |
| 122 | mbedtls_mpi_uint *upper_bound = NULL; |
| 123 | mbedtls_mpi_uint *result = NULL; |
| 124 | |
| 125 | TEST_EQUAL(0, mbedtls_test_read_mpi_core(&upper_bound, &limbs, |
| 126 | bound_bytes)); |
| 127 | TEST_CALLOC(lower_bound, limbs); |
| 128 | lower_bound[0] = min; |
| 129 | TEST_CALLOC(result, limbs); |
| 130 | |
| 131 | TEST_EQUAL(expected_ret, |
| 132 | mbedtls_mpi_core_random(result, min, upper_bound, limbs, |
| 133 | mbedtls_test_rnd_pseudo_rand, &rnd)); |
| 134 | |
| 135 | if (expected_ret == 0) { |
| 136 | TEST_EQUAL(0, mbedtls_mpi_core_lt_ct(result, lower_bound, limbs)); |
| 137 | TEST_ASSERT(0 != mbedtls_mpi_core_lt_ct(result, upper_bound, limbs)); |
| 138 | } |
| 139 | |
| 140 | exit: |
| 141 | mbedtls_free(lower_bound); |
| 142 | mbedtls_free(upper_bound); |
| 143 | mbedtls_free(result); |
| 144 | } |
| 145 | /* END_CASE */ |
| 146 | |
| 147 | /* BEGIN_CASE */ |
| 148 | void mpi_legacy_random_values(int min, char *max_hex) |
| 149 | { |
| 150 | /* Same RNG as in mpi_core_random_basic */ |
| 151 | mbedtls_test_rnd_pseudo_info rnd_core = rnd_pseudo_seed; |
| 152 | mbedtls_test_rnd_pseudo_info rnd_legacy; |
| 153 | memcpy(&rnd_legacy, &rnd_core, sizeof(rnd_core)); |
| 154 | mbedtls_mpi max_legacy; |
| 155 | mbedtls_mpi_init(&max_legacy); |
| 156 | mbedtls_mpi_uint *R_core = NULL; |
| 157 | mbedtls_mpi R_legacy; |
| 158 | mbedtls_mpi_init(&R_legacy); |
| 159 | |
| 160 | TEST_EQUAL(0, mbedtls_test_read_mpi(&max_legacy, max_hex)); |
| 161 | size_t limbs = max_legacy.n; |
| 162 | TEST_CALLOC(R_core, limbs); |
| 163 | |
| 164 | /* Call the legacy function and the core function with the same random |
| 165 | * stream. */ |
| 166 | int core_ret = mbedtls_mpi_core_random(R_core, min, max_legacy.p, limbs, |
| 167 | mbedtls_test_rnd_pseudo_rand, |
| 168 | &rnd_core); |
| 169 | int legacy_ret = mbedtls_mpi_random(&R_legacy, min, &max_legacy, |
| 170 | mbedtls_test_rnd_pseudo_rand, |
| 171 | &rnd_legacy); |
| 172 | |
| 173 | /* They must return the same status, and, on success, output the |
| 174 | * same number, with the same limb count. */ |
| 175 | TEST_EQUAL(core_ret, legacy_ret); |
| 176 | if (core_ret == 0) { |
| 177 | TEST_MEMORY_COMPARE(R_core, limbs * ciL, |
| 178 | R_legacy.p, R_legacy.n * ciL); |
| 179 | } |
| 180 | |
| 181 | /* Also check that they have consumed the RNG in the same way. */ |
| 182 | /* This may theoretically fail on rare platforms with padding in |
| 183 | * the structure! If this is a problem in practice, change to a |
| 184 | * field-by-field comparison. */ |
| 185 | TEST_MEMORY_COMPARE(&rnd_core, sizeof(rnd_core), |
| 186 | &rnd_legacy, sizeof(rnd_legacy)); |
| 187 | |
| 188 | exit: |
| 189 | mbedtls_mpi_free(&max_legacy); |
| 190 | mbedtls_free(R_core); |
| 191 | mbedtls_mpi_free(&R_legacy); |
| 192 | } |
| 193 | /* END_CASE */ |
| 194 | |
| 195 | /* BEGIN_CASE depends_on:MBEDTLS_ECP_WITH_MPI_UINT */ |
| 196 | void mpi_mod_random_values(int min, char *max_hex, int rep) |
| 197 | { |
| 198 | /* Same RNG as in mpi_core_random_basic */ |
| 199 | mbedtls_test_rnd_pseudo_info rnd_core = rnd_pseudo_seed; |
| 200 | mbedtls_test_rnd_pseudo_info rnd_mod_raw; |
| 201 | memcpy(&rnd_mod_raw, &rnd_core, sizeof(rnd_core)); |
| 202 | mbedtls_test_rnd_pseudo_info rnd_mod; |
| 203 | memcpy(&rnd_mod, &rnd_core, sizeof(rnd_core)); |
| 204 | mbedtls_mpi_uint *R_core = NULL; |
| 205 | mbedtls_mpi_uint *R_mod_raw = NULL; |
| 206 | mbedtls_mpi_uint *R_mod_digits = NULL; |
| 207 | mbedtls_mpi_mod_residue R_mod; |
| 208 | mbedtls_mpi_mod_modulus N; |
| 209 | mbedtls_mpi_mod_modulus_init(&N); |
| 210 | |
| 211 | TEST_EQUAL(mbedtls_test_read_mpi_modulus(&N, max_hex, rep), 0); |
| 212 | TEST_CALLOC(R_core, N.limbs); |
| 213 | TEST_CALLOC(R_mod_raw, N.limbs); |
| 214 | TEST_CALLOC(R_mod_digits, N.limbs); |
| 215 | TEST_EQUAL(mbedtls_mpi_mod_residue_setup(&R_mod, &N, |
| 216 | R_mod_digits, N.limbs), |
| 217 | 0); |
| 218 | |
| 219 | /* Call the core and mod random() functions with the same random stream. */ |
| 220 | int core_ret = mbedtls_mpi_core_random(R_core, |
| 221 | min, N.p, N.limbs, |
| 222 | mbedtls_test_rnd_pseudo_rand, |
| 223 | &rnd_core); |
| 224 | int mod_raw_ret = mbedtls_mpi_mod_raw_random(R_mod_raw, |
| 225 | min, &N, |
| 226 | mbedtls_test_rnd_pseudo_rand, |
| 227 | &rnd_mod_raw); |
| 228 | int mod_ret = mbedtls_mpi_mod_random(&R_mod, |
| 229 | min, &N, |
| 230 | mbedtls_test_rnd_pseudo_rand, |
| 231 | &rnd_mod); |
| 232 | |
| 233 | /* They must return the same status, and, on success, output the |
| 234 | * same number, with the same limb count. */ |
| 235 | TEST_EQUAL(core_ret, mod_raw_ret); |
| 236 | TEST_EQUAL(core_ret, mod_ret); |
| 237 | if (core_ret == 0) { |
| 238 | TEST_EQUAL(mbedtls_mpi_mod_raw_modulus_to_canonical_rep(R_mod_raw, &N), |
| 239 | 0); |
| 240 | TEST_MEMORY_COMPARE(R_core, N.limbs * ciL, |
| 241 | R_mod_raw, N.limbs * ciL); |
| 242 | TEST_EQUAL(mbedtls_mpi_mod_raw_modulus_to_canonical_rep(R_mod_digits, &N), |
| 243 | 0); |
| 244 | TEST_MEMORY_COMPARE(R_core, N.limbs * ciL, |
| 245 | R_mod_digits, N.limbs * ciL); |
| 246 | } |
| 247 | |
| 248 | /* Also check that they have consumed the RNG in the same way. */ |
| 249 | /* This may theoretically fail on rare platforms with padding in |
| 250 | * the structure! If this is a problem in practice, change to a |
| 251 | * field-by-field comparison. */ |
| 252 | TEST_MEMORY_COMPARE(&rnd_core, sizeof(rnd_core), |
| 253 | &rnd_mod_raw, sizeof(rnd_mod_raw)); |
| 254 | TEST_MEMORY_COMPARE(&rnd_core, sizeof(rnd_core), |
| 255 | &rnd_mod, sizeof(rnd_mod)); |
| 256 | |
| 257 | exit: |
| 258 | mbedtls_test_mpi_mod_modulus_free_with_limbs(&N); |
| 259 | mbedtls_free(R_core); |
| 260 | mbedtls_free(R_mod_raw); |
| 261 | mbedtls_free(R_mod_digits); |
| 262 | } |
| 263 | /* END_CASE */ |
| 264 | |
| 265 | /* BEGIN_CASE */ |
| 266 | void mpi_random_many(int min, char *bound_hex, int iterations) |
| 267 | { |
| 268 | /* Generate numbers in the range 1..bound-1. Do it iterations times. |
| 269 | * This function assumes that the value of bound is at least 2 and |
| 270 | * that iterations is large enough that a one-in-2^iterations chance |
| 271 | * effectively never occurs. |
| 272 | */ |
| 273 | |
| 274 | data_t bound_bytes = { NULL, 0 }; |
| 275 | mbedtls_mpi_uint *upper_bound = NULL; |
| 276 | size_t limbs; |
| 277 | size_t n_bits; |
| 278 | mbedtls_mpi_uint *result = NULL; |
| 279 | size_t b; |
| 280 | /* If upper_bound is small, stats[b] is the number of times the value b |
| 281 | * has been generated. Otherwise stats[b] is the number of times a |
| 282 | * value with bit b set has been generated. */ |
| 283 | size_t *stats = NULL; |
| 284 | size_t stats_len; |
| 285 | int full_stats; |
| 286 | size_t i; |
| 287 | |
| 288 | TEST_EQUAL(0, mbedtls_test_read_mpi_core(&upper_bound, &limbs, |
| 289 | bound_hex)); |
| 290 | TEST_CALLOC(result, limbs); |
| 291 | |
| 292 | n_bits = mbedtls_mpi_core_bitlen(upper_bound, limbs); |
| 293 | /* Consider a bound "small" if it's less than 2^5. This value is chosen |
| 294 | * to be small enough that the probability of missing one value is |
| 295 | * negligible given the number of iterations. It must be less than |
| 296 | * 256 because some of the code below assumes that "small" values |
| 297 | * fit in a byte. */ |
| 298 | if (n_bits <= 5) { |
| 299 | full_stats = 1; |
| 300 | stats_len = (uint8_t) upper_bound[0]; |
| 301 | } else { |
| 302 | full_stats = 0; |
| 303 | stats_len = n_bits; |
| 304 | } |
| 305 | TEST_CALLOC(stats, stats_len); |
| 306 | |
| 307 | for (i = 0; i < (size_t) iterations; i++) { |
| 308 | mbedtls_test_set_step(i); |
| 309 | TEST_EQUAL(0, mbedtls_mpi_core_random(result, |
| 310 | min, upper_bound, limbs, |
| 311 | mbedtls_test_rnd_std_rand, NULL)); |
| 312 | |
| 313 | /* Temporarily use a legacy MPI for analysis, because the |
| 314 | * necessary auxiliary functions don't exist yet in core. */ |
| 315 | mbedtls_mpi B = { .s = 1, .n = limbs, .p = upper_bound }; |
| 316 | mbedtls_mpi R = { .s = 1, .n = limbs, .p = result }; |
| 317 | |
| 318 | TEST_ASSERT(mbedtls_mpi_cmp_mpi(&R, &B) < 0); |
| 319 | TEST_ASSERT(mbedtls_mpi_cmp_int(&R, min) >= 0); |
| 320 | if (full_stats) { |
| 321 | uint8_t value; |
| 322 | TEST_EQUAL(0, mbedtls_mpi_write_binary(&R, &value, 1)); |
| 323 | TEST_ASSERT(value < stats_len); |
| 324 | ++stats[value]; |
| 325 | } else { |
| 326 | for (b = 0; b < n_bits; b++) { |
| 327 | stats[b] += mbedtls_mpi_get_bit(&R, b); |
| 328 | } |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | if (full_stats) { |
| 333 | for (b = min; b < stats_len; b++) { |
| 334 | mbedtls_test_set_step(1000000 + b); |
| 335 | /* Assert that each value has been reached at least once. |
| 336 | * This is almost guaranteed if the iteration count is large |
| 337 | * enough. This is a very crude way of checking the distribution. |
| 338 | */ |
| 339 | TEST_ASSERT(stats[b] > 0); |
| 340 | } |
| 341 | } else { |
| 342 | bound_bytes.len = limbs * sizeof(mbedtls_mpi_uint); |
| 343 | TEST_CALLOC(bound_bytes.x, bound_bytes.len); |
| 344 | mbedtls_mpi_core_write_be(upper_bound, limbs, |
| 345 | bound_bytes.x, bound_bytes.len); |
| 346 | int statistically_safe_all_the_way = |
| 347 | is_significantly_above_a_power_of_2(&bound_bytes); |
| 348 | for (b = 0; b < n_bits; b++) { |
| 349 | mbedtls_test_set_step(1000000 + b); |
| 350 | /* Assert that each bit has been set in at least one result and |
| 351 | * clear in at least one result. Provided that iterations is not |
| 352 | * too small, it would be extremely unlikely for this not to be |
| 353 | * the case if the results are uniformly distributed. |
| 354 | * |
| 355 | * As an exception, the top bit may legitimately never be set |
| 356 | * if bound is a power of 2 or only slightly above. |
| 357 | */ |
| 358 | if (statistically_safe_all_the_way || b != n_bits - 1) { |
| 359 | TEST_ASSERT(stats[b] > 0); |
| 360 | } |
| 361 | TEST_ASSERT(stats[b] < (size_t) iterations); |
| 362 | } |
| 363 | } |
| 364 | |
| 365 | exit: |
| 366 | mbedtls_free(bound_bytes.x); |
| 367 | mbedtls_free(upper_bound); |
| 368 | mbedtls_free(result); |
| 369 | mbedtls_free(stats); |
| 370 | } |
| 371 | /* END_CASE */ |
| 372 | |
| 373 | /* BEGIN_CASE */ |
| 374 | void mpi_random_sizes(int min, data_t *bound_bytes, int nlimbs, int before) |
| 375 | { |
| 376 | mbedtls_mpi upper_bound; |
| 377 | mbedtls_mpi result; |
| 378 | |
| 379 | mbedtls_mpi_init(&upper_bound); |
| 380 | mbedtls_mpi_init(&result); |
| 381 | |
| 382 | if (before != 0) { |
| 383 | /* Set result to sign(before) * 2^(|before|-1) */ |
| 384 | TEST_ASSERT(mbedtls_mpi_lset(&result, before > 0 ? 1 : -1) == 0); |
| 385 | if (before < 0) { |
| 386 | before = -before; |
| 387 | } |
| 388 | TEST_ASSERT(mbedtls_mpi_shift_l(&result, before - 1) == 0); |
| 389 | } |
| 390 | |
| 391 | TEST_EQUAL(0, mbedtls_mpi_grow(&result, nlimbs)); |
| 392 | TEST_EQUAL(0, mbedtls_mpi_read_binary(&upper_bound, |
| 393 | bound_bytes->x, bound_bytes->len)); |
| 394 | TEST_EQUAL(0, mbedtls_mpi_random(&result, min, &upper_bound, |
| 395 | mbedtls_test_rnd_std_rand, NULL)); |
| 396 | TEST_ASSERT(sign_is_valid(&result)); |
| 397 | TEST_ASSERT(mbedtls_mpi_cmp_mpi(&result, &upper_bound) < 0); |
| 398 | TEST_ASSERT(mbedtls_mpi_cmp_int(&result, min) >= 0); |
| 399 | |
| 400 | exit: |
| 401 | mbedtls_mpi_free(&upper_bound); |
| 402 | mbedtls_mpi_free(&result); |
| 403 | } |
| 404 | /* END_CASE */ |
| 405 | |
| 406 | /* BEGIN_CASE depends_on:MBEDTLS_ECP_WITH_MPI_UINT */ |
| 407 | void mpi_mod_random_validation(int min, char *bound_hex, |
| 408 | int result_limbs_delta, |
| 409 | int expected_ret) |
| 410 | { |
| 411 | mbedtls_mpi_uint *result_digits = NULL; |
| 412 | mbedtls_mpi_mod_modulus N; |
| 413 | mbedtls_mpi_mod_modulus_init(&N); |
| 414 | |
| 415 | TEST_EQUAL(mbedtls_test_read_mpi_modulus(&N, bound_hex, |
| 416 | MBEDTLS_MPI_MOD_REP_OPT_RED), |
| 417 | 0); |
| 418 | size_t result_limbs = N.limbs + result_limbs_delta; |
| 419 | TEST_CALLOC(result_digits, result_limbs); |
| 420 | /* Build a reside that might not match the modulus, to test that |
| 421 | * the library function rejects that as expected. */ |
| 422 | mbedtls_mpi_mod_residue result = { result_digits, result_limbs }; |
| 423 | |
| 424 | TEST_EQUAL(mbedtls_mpi_mod_random(&result, min, &N, |
| 425 | mbedtls_test_rnd_std_rand, NULL), |
| 426 | expected_ret); |
| 427 | if (expected_ret == 0) { |
| 428 | /* Success should only be expected when the result has the same |
| 429 | * size as the modulus, otherwise it's a mistake in the test data. */ |
| 430 | TEST_EQUAL(result_limbs, N.limbs); |
| 431 | /* Sanity check: check that the result is in range */ |
| 432 | TEST_ASSERT(0 != mbedtls_mpi_core_lt_ct(result_digits, N.p, N.limbs)); |
| 433 | /* Check result >= min (changes result) */ |
| 434 | TEST_EQUAL(mbedtls_mpi_core_sub_int(result_digits, result_digits, min, |
| 435 | result_limbs), |
| 436 | 0); |
| 437 | } |
| 438 | |
| 439 | /* When the result has the right number of limbs, also test mod_raw |
| 440 | * (for which this is an unchecked precondition). */ |
| 441 | if (result_limbs_delta == 0) { |
| 442 | TEST_EQUAL(mbedtls_mpi_mod_raw_random(result_digits, min, &N, |
| 443 | mbedtls_test_rnd_std_rand, NULL), |
| 444 | expected_ret); |
| 445 | if (expected_ret == 0) { |
| 446 | TEST_ASSERT(0 != mbedtls_mpi_core_lt_ct(result_digits, N.p, N.limbs)); |
| 447 | TEST_EQUAL(mbedtls_mpi_core_sub_int(result_digits, result.p, min, |
| 448 | result_limbs), |
| 449 | 0); |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | exit: |
| 454 | mbedtls_test_mpi_mod_modulus_free_with_limbs(&N); |
| 455 | mbedtls_free(result_digits); |
| 456 | } |
| 457 | /* END_CASE */ |
| 458 | |
| 459 | /* BEGIN_CASE */ |
| 460 | void mpi_random_fail(int min, data_t *bound_bytes, int expected_ret) |
| 461 | { |
| 462 | mbedtls_mpi upper_bound; |
| 463 | mbedtls_mpi result; |
| 464 | int actual_ret; |
| 465 | |
| 466 | mbedtls_mpi_init(&upper_bound); |
| 467 | mbedtls_mpi_init(&result); |
| 468 | |
| 469 | TEST_EQUAL(0, mbedtls_mpi_read_binary(&upper_bound, |
| 470 | bound_bytes->x, bound_bytes->len)); |
| 471 | actual_ret = mbedtls_mpi_random(&result, min, &upper_bound, |
| 472 | mbedtls_test_rnd_std_rand, NULL); |
| 473 | TEST_EQUAL(expected_ret, actual_ret); |
| 474 | |
| 475 | exit: |
| 476 | mbedtls_mpi_free(&upper_bound); |
| 477 | mbedtls_mpi_free(&result); |
| 478 | } |
| 479 | /* END_CASE */ |