Tom Rini | 0344c60 | 2024-10-08 13:56:50 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * Helper functions for the RSA module |
| 3 | * |
| 4 | * Copyright The Mbed TLS Contributors |
| 5 | * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later |
| 6 | * |
| 7 | */ |
| 8 | |
| 9 | #include "common.h" |
| 10 | |
| 11 | #if defined(MBEDTLS_RSA_C) |
| 12 | |
| 13 | #include "mbedtls/rsa.h" |
| 14 | #include "mbedtls/bignum.h" |
| 15 | #include "rsa_alt_helpers.h" |
| 16 | |
| 17 | /* |
| 18 | * Compute RSA prime factors from public and private exponents |
| 19 | * |
| 20 | * Summary of algorithm: |
| 21 | * Setting F := lcm(P-1,Q-1), the idea is as follows: |
| 22 | * |
| 23 | * (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2) |
| 24 | * is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the |
| 25 | * square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four |
| 26 | * possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1) |
| 27 | * or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime |
| 28 | * factors of N. |
| 29 | * |
| 30 | * (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same |
| 31 | * construction still applies since (-)^K is the identity on the set of |
| 32 | * roots of 1 in Z/NZ. |
| 33 | * |
| 34 | * The public and private key primitives (-)^E and (-)^D are mutually inverse |
| 35 | * bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e. |
| 36 | * if and only if DE - 1 is a multiple of F, say DE - 1 = F * L. |
| 37 | * Splitting L = 2^t * K with K odd, we have |
| 38 | * |
| 39 | * DE - 1 = FL = (F/2) * (2^(t+1)) * K, |
| 40 | * |
| 41 | * so (F / 2) * K is among the numbers |
| 42 | * |
| 43 | * (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord |
| 44 | * |
| 45 | * where ord is the order of 2 in (DE - 1). |
| 46 | * We can therefore iterate through these numbers apply the construction |
| 47 | * of (a) and (b) above to attempt to factor N. |
| 48 | * |
| 49 | */ |
| 50 | int mbedtls_rsa_deduce_primes(mbedtls_mpi const *N, |
| 51 | mbedtls_mpi const *E, mbedtls_mpi const *D, |
| 52 | mbedtls_mpi *P, mbedtls_mpi *Q) |
| 53 | { |
| 54 | int ret = 0; |
| 55 | |
| 56 | uint16_t attempt; /* Number of current attempt */ |
| 57 | uint16_t iter; /* Number of squares computed in the current attempt */ |
| 58 | |
| 59 | uint16_t order; /* Order of 2 in DE - 1 */ |
| 60 | |
| 61 | mbedtls_mpi T; /* Holds largest odd divisor of DE - 1 */ |
| 62 | mbedtls_mpi K; /* Temporary holding the current candidate */ |
| 63 | |
| 64 | const unsigned char primes[] = { 2, |
| 65 | 3, 5, 7, 11, 13, 17, 19, 23, |
| 66 | 29, 31, 37, 41, 43, 47, 53, 59, |
| 67 | 61, 67, 71, 73, 79, 83, 89, 97, |
| 68 | 101, 103, 107, 109, 113, 127, 131, 137, |
| 69 | 139, 149, 151, 157, 163, 167, 173, 179, |
| 70 | 181, 191, 193, 197, 199, 211, 223, 227, |
| 71 | 229, 233, 239, 241, 251 }; |
| 72 | |
| 73 | const size_t num_primes = sizeof(primes) / sizeof(*primes); |
| 74 | |
| 75 | if (P == NULL || Q == NULL || P->p != NULL || Q->p != NULL) { |
| 76 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
| 77 | } |
| 78 | |
| 79 | if (mbedtls_mpi_cmp_int(N, 0) <= 0 || |
| 80 | mbedtls_mpi_cmp_int(D, 1) <= 0 || |
| 81 | mbedtls_mpi_cmp_mpi(D, N) >= 0 || |
| 82 | mbedtls_mpi_cmp_int(E, 1) <= 0 || |
| 83 | mbedtls_mpi_cmp_mpi(E, N) >= 0) { |
| 84 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
| 85 | } |
| 86 | |
| 87 | /* |
| 88 | * Initializations and temporary changes |
| 89 | */ |
| 90 | |
| 91 | mbedtls_mpi_init(&K); |
| 92 | mbedtls_mpi_init(&T); |
| 93 | |
| 94 | /* T := DE - 1 */ |
| 95 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, D, E)); |
| 96 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&T, &T, 1)); |
| 97 | |
| 98 | if ((order = (uint16_t) mbedtls_mpi_lsb(&T)) == 0) { |
| 99 | ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
| 100 | goto cleanup; |
| 101 | } |
| 102 | |
| 103 | /* After this operation, T holds the largest odd divisor of DE - 1. */ |
| 104 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&T, order)); |
| 105 | |
| 106 | /* |
| 107 | * Actual work |
| 108 | */ |
| 109 | |
| 110 | /* Skip trying 2 if N == 1 mod 8 */ |
| 111 | attempt = 0; |
| 112 | if (N->p[0] % 8 == 1) { |
| 113 | attempt = 1; |
| 114 | } |
| 115 | |
| 116 | for (; attempt < num_primes; ++attempt) { |
| 117 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&K, primes[attempt])); |
| 118 | |
| 119 | /* Check if gcd(K,N) = 1 */ |
| 120 | MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N)); |
| 121 | if (mbedtls_mpi_cmp_int(P, 1) != 0) { |
| 122 | continue; |
| 123 | } |
| 124 | |
| 125 | /* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ... |
| 126 | * and check whether they have nontrivial GCD with N. */ |
| 127 | MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&K, &K, &T, N, |
| 128 | Q /* temporarily use Q for storing Montgomery |
| 129 | * multiplication helper values */)); |
| 130 | |
| 131 | for (iter = 1; iter <= order; ++iter) { |
| 132 | /* If we reach 1 prematurely, there's no point |
| 133 | * in continuing to square K */ |
| 134 | if (mbedtls_mpi_cmp_int(&K, 1) == 0) { |
| 135 | break; |
| 136 | } |
| 137 | |
| 138 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&K, &K, 1)); |
| 139 | MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N)); |
| 140 | |
| 141 | if (mbedtls_mpi_cmp_int(P, 1) == 1 && |
| 142 | mbedtls_mpi_cmp_mpi(P, N) == -1) { |
| 143 | /* |
| 144 | * Have found a nontrivial divisor P of N. |
| 145 | * Set Q := N / P. |
| 146 | */ |
| 147 | |
| 148 | MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(Q, NULL, N, P)); |
| 149 | goto cleanup; |
| 150 | } |
| 151 | |
| 152 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1)); |
| 153 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &K)); |
| 154 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, N)); |
| 155 | } |
| 156 | |
| 157 | /* |
| 158 | * If we get here, then either we prematurely aborted the loop because |
| 159 | * we reached 1, or K holds primes[attempt]^(DE - 1) mod N, which must |
| 160 | * be 1 if D,E,N were consistent. |
| 161 | * Check if that's the case and abort if not, to avoid very long, |
| 162 | * yet eventually failing, computations if N,D,E were not sane. |
| 163 | */ |
| 164 | if (mbedtls_mpi_cmp_int(&K, 1) != 0) { |
| 165 | break; |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
| 170 | |
| 171 | cleanup: |
| 172 | |
| 173 | mbedtls_mpi_free(&K); |
| 174 | mbedtls_mpi_free(&T); |
| 175 | return ret; |
| 176 | } |
| 177 | |
| 178 | /* |
| 179 | * Given P, Q and the public exponent E, deduce D. |
| 180 | * This is essentially a modular inversion. |
| 181 | */ |
| 182 | int mbedtls_rsa_deduce_private_exponent(mbedtls_mpi const *P, |
| 183 | mbedtls_mpi const *Q, |
| 184 | mbedtls_mpi const *E, |
| 185 | mbedtls_mpi *D) |
| 186 | { |
| 187 | int ret = 0; |
| 188 | mbedtls_mpi K, L; |
| 189 | |
| 190 | if (D == NULL || mbedtls_mpi_cmp_int(D, 0) != 0) { |
| 191 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
| 192 | } |
| 193 | |
| 194 | if (mbedtls_mpi_cmp_int(P, 1) <= 0 || |
| 195 | mbedtls_mpi_cmp_int(Q, 1) <= 0 || |
| 196 | mbedtls_mpi_cmp_int(E, 0) == 0) { |
| 197 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
| 198 | } |
| 199 | |
| 200 | mbedtls_mpi_init(&K); |
| 201 | mbedtls_mpi_init(&L); |
| 202 | |
| 203 | /* Temporarily put K := P-1 and L := Q-1 */ |
| 204 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1)); |
| 205 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, Q, 1)); |
| 206 | |
| 207 | /* Temporarily put D := gcd(P-1, Q-1) */ |
| 208 | MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(D, &K, &L)); |
| 209 | |
| 210 | /* K := LCM(P-1, Q-1) */ |
| 211 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &L)); |
| 212 | MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&K, NULL, &K, D)); |
| 213 | |
| 214 | /* Compute modular inverse of E in LCM(P-1, Q-1) */ |
| 215 | MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(D, E, &K)); |
| 216 | |
| 217 | cleanup: |
| 218 | |
| 219 | mbedtls_mpi_free(&K); |
| 220 | mbedtls_mpi_free(&L); |
| 221 | |
| 222 | return ret; |
| 223 | } |
| 224 | |
| 225 | int mbedtls_rsa_deduce_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q, |
| 226 | const mbedtls_mpi *D, mbedtls_mpi *DP, |
| 227 | mbedtls_mpi *DQ, mbedtls_mpi *QP) |
| 228 | { |
| 229 | int ret = 0; |
| 230 | mbedtls_mpi K; |
| 231 | mbedtls_mpi_init(&K); |
| 232 | |
| 233 | /* DP = D mod P-1 */ |
| 234 | if (DP != NULL) { |
| 235 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1)); |
| 236 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(DP, D, &K)); |
| 237 | } |
| 238 | |
| 239 | /* DQ = D mod Q-1 */ |
| 240 | if (DQ != NULL) { |
| 241 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, Q, 1)); |
| 242 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(DQ, D, &K)); |
| 243 | } |
| 244 | |
| 245 | /* QP = Q^{-1} mod P */ |
| 246 | if (QP != NULL) { |
| 247 | MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(QP, Q, P)); |
| 248 | } |
| 249 | |
| 250 | cleanup: |
| 251 | mbedtls_mpi_free(&K); |
| 252 | |
| 253 | return ret; |
| 254 | } |
| 255 | |
| 256 | /* |
| 257 | * Check that core RSA parameters are sane. |
| 258 | */ |
| 259 | int mbedtls_rsa_validate_params(const mbedtls_mpi *N, const mbedtls_mpi *P, |
| 260 | const mbedtls_mpi *Q, const mbedtls_mpi *D, |
| 261 | const mbedtls_mpi *E, |
| 262 | int (*f_rng)(void *, unsigned char *, size_t), |
| 263 | void *p_rng) |
| 264 | { |
| 265 | int ret = 0; |
| 266 | mbedtls_mpi K, L; |
| 267 | |
| 268 | mbedtls_mpi_init(&K); |
| 269 | mbedtls_mpi_init(&L); |
| 270 | |
| 271 | /* |
| 272 | * Step 1: If PRNG provided, check that P and Q are prime |
| 273 | */ |
| 274 | |
| 275 | #if defined(MBEDTLS_GENPRIME) |
| 276 | /* |
| 277 | * When generating keys, the strongest security we support aims for an error |
| 278 | * rate of at most 2^-100 and we are aiming for the same certainty here as |
| 279 | * well. |
| 280 | */ |
| 281 | if (f_rng != NULL && P != NULL && |
| 282 | (ret = mbedtls_mpi_is_prime_ext(P, 50, f_rng, p_rng)) != 0) { |
| 283 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| 284 | goto cleanup; |
| 285 | } |
| 286 | |
| 287 | if (f_rng != NULL && Q != NULL && |
| 288 | (ret = mbedtls_mpi_is_prime_ext(Q, 50, f_rng, p_rng)) != 0) { |
| 289 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| 290 | goto cleanup; |
| 291 | } |
| 292 | #else |
| 293 | ((void) f_rng); |
| 294 | ((void) p_rng); |
| 295 | #endif /* MBEDTLS_GENPRIME */ |
| 296 | |
| 297 | /* |
| 298 | * Step 2: Check that 1 < N = P * Q |
| 299 | */ |
| 300 | |
| 301 | if (P != NULL && Q != NULL && N != NULL) { |
| 302 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, P, Q)); |
| 303 | if (mbedtls_mpi_cmp_int(N, 1) <= 0 || |
| 304 | mbedtls_mpi_cmp_mpi(&K, N) != 0) { |
| 305 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| 306 | goto cleanup; |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | /* |
| 311 | * Step 3: Check and 1 < D, E < N if present. |
| 312 | */ |
| 313 | |
| 314 | if (N != NULL && D != NULL && E != NULL) { |
| 315 | if (mbedtls_mpi_cmp_int(D, 1) <= 0 || |
| 316 | mbedtls_mpi_cmp_int(E, 1) <= 0 || |
| 317 | mbedtls_mpi_cmp_mpi(D, N) >= 0 || |
| 318 | mbedtls_mpi_cmp_mpi(E, N) >= 0) { |
| 319 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| 320 | goto cleanup; |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | /* |
| 325 | * Step 4: Check that D, E are inverse modulo P-1 and Q-1 |
| 326 | */ |
| 327 | |
| 328 | if (P != NULL && Q != NULL && D != NULL && E != NULL) { |
| 329 | if (mbedtls_mpi_cmp_int(P, 1) <= 0 || |
| 330 | mbedtls_mpi_cmp_int(Q, 1) <= 0) { |
| 331 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| 332 | goto cleanup; |
| 333 | } |
| 334 | |
| 335 | /* Compute DE-1 mod P-1 */ |
| 336 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, D, E)); |
| 337 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1)); |
| 338 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, P, 1)); |
| 339 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, &L)); |
| 340 | if (mbedtls_mpi_cmp_int(&K, 0) != 0) { |
| 341 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| 342 | goto cleanup; |
| 343 | } |
| 344 | |
| 345 | /* Compute DE-1 mod Q-1 */ |
| 346 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, D, E)); |
| 347 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1)); |
| 348 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, Q, 1)); |
| 349 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, &L)); |
| 350 | if (mbedtls_mpi_cmp_int(&K, 0) != 0) { |
| 351 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| 352 | goto cleanup; |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | cleanup: |
| 357 | |
| 358 | mbedtls_mpi_free(&K); |
| 359 | mbedtls_mpi_free(&L); |
| 360 | |
| 361 | /* Wrap MPI error codes by RSA check failure error code */ |
| 362 | if (ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED) { |
| 363 | ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| 364 | } |
| 365 | |
| 366 | return ret; |
| 367 | } |
| 368 | |
| 369 | /* |
| 370 | * Check that RSA CRT parameters are in accordance with core parameters. |
| 371 | */ |
| 372 | int mbedtls_rsa_validate_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q, |
| 373 | const mbedtls_mpi *D, const mbedtls_mpi *DP, |
| 374 | const mbedtls_mpi *DQ, const mbedtls_mpi *QP) |
| 375 | { |
| 376 | int ret = 0; |
| 377 | |
| 378 | mbedtls_mpi K, L; |
| 379 | mbedtls_mpi_init(&K); |
| 380 | mbedtls_mpi_init(&L); |
| 381 | |
| 382 | /* Check that DP - D == 0 mod P - 1 */ |
| 383 | if (DP != NULL) { |
| 384 | if (P == NULL) { |
| 385 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| 386 | goto cleanup; |
| 387 | } |
| 388 | |
| 389 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1)); |
| 390 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&L, DP, D)); |
| 391 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&L, &L, &K)); |
| 392 | |
| 393 | if (mbedtls_mpi_cmp_int(&L, 0) != 0) { |
| 394 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| 395 | goto cleanup; |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | /* Check that DQ - D == 0 mod Q - 1 */ |
| 400 | if (DQ != NULL) { |
| 401 | if (Q == NULL) { |
| 402 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| 403 | goto cleanup; |
| 404 | } |
| 405 | |
| 406 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, Q, 1)); |
| 407 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&L, DQ, D)); |
| 408 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&L, &L, &K)); |
| 409 | |
| 410 | if (mbedtls_mpi_cmp_int(&L, 0) != 0) { |
| 411 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| 412 | goto cleanup; |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | /* Check that QP * Q - 1 == 0 mod P */ |
| 417 | if (QP != NULL) { |
| 418 | if (P == NULL || Q == NULL) { |
| 419 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| 420 | goto cleanup; |
| 421 | } |
| 422 | |
| 423 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, QP, Q)); |
| 424 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1)); |
| 425 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, P)); |
| 426 | if (mbedtls_mpi_cmp_int(&K, 0) != 0) { |
| 427 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| 428 | goto cleanup; |
| 429 | } |
| 430 | } |
| 431 | |
| 432 | cleanup: |
| 433 | |
| 434 | /* Wrap MPI error codes by RSA check failure error code */ |
| 435 | if (ret != 0 && |
| 436 | ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED && |
| 437 | ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA) { |
| 438 | ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| 439 | } |
| 440 | |
| 441 | mbedtls_mpi_free(&K); |
| 442 | mbedtls_mpi_free(&L); |
| 443 | |
| 444 | return ret; |
| 445 | } |
| 446 | |
| 447 | #endif /* MBEDTLS_RSA_C */ |