blob: 668edc74c9763c9e71cba3d6f769ef1b8af66203 [file] [log] [blame]
Tom Rini0344c602024-10-08 13:56:50 -06001/**
2 * \file ecp_internal_alt.h
3 *
4 * \brief Function declarations for alternative implementation of elliptic curve
5 * point arithmetic.
6 */
7/*
8 * Copyright The Mbed TLS Contributors
9 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
10 */
11
12/*
13 * References:
14 *
15 * [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records.
16 * <http://cr.yp.to/ecdh/curve25519-20060209.pdf>
17 *
18 * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
19 * for elliptic curve cryptosystems. In : Cryptographic Hardware and
20 * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
21 * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
22 *
23 * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
24 * render ECC resistant against Side Channel Attacks. IACR Cryptology
25 * ePrint Archive, 2004, vol. 2004, p. 342.
26 * <http://eprint.iacr.org/2004/342.pdf>
27 *
28 * [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters.
29 * <http://www.secg.org/sec2-v2.pdf>
30 *
31 * [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic
32 * Curve Cryptography.
33 *
34 * [6] Digital Signature Standard (DSS), FIPS 186-4.
35 * <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>
36 *
37 * [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
38 * Security (TLS), RFC 4492.
39 * <https://tools.ietf.org/search/rfc4492>
40 *
41 * [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html>
42 *
43 * [9] COHEN, Henri. A Course in Computational Algebraic Number Theory.
44 * Springer Science & Business Media, 1 Aug 2000
45 */
46
47#ifndef MBEDTLS_ECP_INTERNAL_H
48#define MBEDTLS_ECP_INTERNAL_H
49
50#include "mbedtls/build_info.h"
51
52#if defined(MBEDTLS_ECP_INTERNAL_ALT)
53
54/**
55 * \brief Indicate if the Elliptic Curve Point module extension can
56 * handle the group.
57 *
58 * \param grp The pointer to the elliptic curve group that will be the
59 * basis of the cryptographic computations.
60 *
61 * \return Non-zero if successful.
62 */
63unsigned char mbedtls_internal_ecp_grp_capable(const mbedtls_ecp_group *grp);
64
65/**
66 * \brief Initialise the Elliptic Curve Point module extension.
67 *
68 * If mbedtls_internal_ecp_grp_capable returns true for a
69 * group, this function has to be able to initialise the
70 * module for it.
71 *
72 * This module can be a driver to a crypto hardware
73 * accelerator, for which this could be an initialise function.
74 *
75 * \param grp The pointer to the group the module needs to be
76 * initialised for.
77 *
78 * \return 0 if successful.
79 */
80int mbedtls_internal_ecp_init(const mbedtls_ecp_group *grp);
81
82/**
83 * \brief Frees and deallocates the Elliptic Curve Point module
84 * extension.
85 *
86 * \param grp The pointer to the group the module was initialised for.
87 */
88void mbedtls_internal_ecp_free(const mbedtls_ecp_group *grp);
89
90#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
91
92#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
93/**
94 * \brief Randomize jacobian coordinates:
95 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l.
96 *
97 * \param grp Pointer to the group representing the curve.
98 *
99 * \param pt The point on the curve to be randomised, given with Jacobian
100 * coordinates.
101 *
102 * \param f_rng A function pointer to the random number generator.
103 *
104 * \param p_rng A pointer to the random number generator state.
105 *
106 * \return 0 if successful.
107 */
108int mbedtls_internal_ecp_randomize_jac(const mbedtls_ecp_group *grp,
109 mbedtls_ecp_point *pt, int (*f_rng)(void *,
110 unsigned char *,
111 size_t),
112 void *p_rng);
113#endif
114
115#if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
116/**
117 * \brief Addition: R = P + Q, mixed affine-Jacobian coordinates.
118 *
119 * The coordinates of Q must be normalized (= affine),
120 * but those of P don't need to. R is not normalized.
121 *
122 * This function is used only as a subrutine of
123 * ecp_mul_comb().
124 *
125 * Special cases: (1) P or Q is zero, (2) R is zero,
126 * (3) P == Q.
127 * None of these cases can happen as intermediate step in
128 * ecp_mul_comb():
129 * - at each step, P, Q and R are multiples of the base
130 * point, the factor being less than its order, so none of
131 * them is zero;
132 * - Q is an odd multiple of the base point, P an even
133 * multiple, due to the choice of precomputed points in the
134 * modified comb method.
135 * So branches for these cases do not leak secret information.
136 *
137 * We accept Q->Z being unset (saving memory in tables) as
138 * meaning 1.
139 *
140 * Cost in field operations if done by [5] 3.22:
141 * 1A := 8M + 3S
142 *
143 * \param grp Pointer to the group representing the curve.
144 *
145 * \param R Pointer to a point structure to hold the result.
146 *
147 * \param P Pointer to the first summand, given with Jacobian
148 * coordinates
149 *
150 * \param Q Pointer to the second summand, given with affine
151 * coordinates.
152 *
153 * \return 0 if successful.
154 */
155int mbedtls_internal_ecp_add_mixed(const mbedtls_ecp_group *grp,
156 mbedtls_ecp_point *R, const mbedtls_ecp_point *P,
157 const mbedtls_ecp_point *Q);
158#endif
159
160/**
161 * \brief Point doubling R = 2 P, Jacobian coordinates.
162 *
163 * Cost: 1D := 3M + 4S (A == 0)
164 * 4M + 4S (A == -3)
165 * 3M + 6S + 1a otherwise
166 * when the implementation is based on the "dbl-1998-cmo-2"
167 * doubling formulas in [8] and standard optimizations are
168 * applied when curve parameter A is one of { 0, -3 }.
169 *
170 * \param grp Pointer to the group representing the curve.
171 *
172 * \param R Pointer to a point structure to hold the result.
173 *
174 * \param P Pointer to the point that has to be doubled, given with
175 * Jacobian coordinates.
176 *
177 * \return 0 if successful.
178 */
179#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
180int mbedtls_internal_ecp_double_jac(const mbedtls_ecp_group *grp,
181 mbedtls_ecp_point *R, const mbedtls_ecp_point *P);
182#endif
183
184/**
185 * \brief Normalize jacobian coordinates of an array of (pointers to)
186 * points.
187 *
188 * Using Montgomery's trick to perform only one inversion mod P
189 * the cost is:
190 * 1N(t) := 1I + (6t - 3)M + 1S
191 * (See for example Algorithm 10.3.4. in [9])
192 *
193 * This function is used only as a subrutine of
194 * ecp_mul_comb().
195 *
196 * Warning: fails (returning an error) if one of the points is
197 * zero!
198 * This should never happen, see choice of w in ecp_mul_comb().
199 *
200 * \param grp Pointer to the group representing the curve.
201 *
202 * \param T Array of pointers to the points to normalise.
203 *
204 * \param t_len Number of elements in the array.
205 *
206 * \return 0 if successful,
207 * an error if one of the points is zero.
208 */
209#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
210int mbedtls_internal_ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
211 mbedtls_ecp_point *T[], size_t t_len);
212#endif
213
214/**
215 * \brief Normalize jacobian coordinates so that Z == 0 || Z == 1.
216 *
217 * Cost in field operations if done by [5] 3.2.1:
218 * 1N := 1I + 3M + 1S
219 *
220 * \param grp Pointer to the group representing the curve.
221 *
222 * \param pt pointer to the point to be normalised. This is an
223 * input/output parameter.
224 *
225 * \return 0 if successful.
226 */
227#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
228int mbedtls_internal_ecp_normalize_jac(const mbedtls_ecp_group *grp,
229 mbedtls_ecp_point *pt);
230#endif
231
232#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
233
234#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
235
236#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
237int mbedtls_internal_ecp_double_add_mxz(const mbedtls_ecp_group *grp,
238 mbedtls_ecp_point *R,
239 mbedtls_ecp_point *S,
240 const mbedtls_ecp_point *P,
241 const mbedtls_ecp_point *Q,
242 const mbedtls_mpi *d);
243#endif
244
245/**
246 * \brief Randomize projective x/z coordinates:
247 * (X, Z) -> (l X, l Z) for random l
248 *
249 * \param grp pointer to the group representing the curve
250 *
251 * \param P the point on the curve to be randomised given with
252 * projective coordinates. This is an input/output parameter.
253 *
254 * \param f_rng a function pointer to the random number generator
255 *
256 * \param p_rng a pointer to the random number generator state
257 *
258 * \return 0 if successful
259 */
260#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
261int mbedtls_internal_ecp_randomize_mxz(const mbedtls_ecp_group *grp,
262 mbedtls_ecp_point *P, int (*f_rng)(void *,
263 unsigned char *,
264 size_t),
265 void *p_rng);
266#endif
267
268/**
269 * \brief Normalize Montgomery x/z coordinates: X = X/Z, Z = 1.
270 *
271 * \param grp pointer to the group representing the curve
272 *
273 * \param P pointer to the point to be normalised. This is an
274 * input/output parameter.
275 *
276 * \return 0 if successful
277 */
278#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
279int mbedtls_internal_ecp_normalize_mxz(const mbedtls_ecp_group *grp,
280 mbedtls_ecp_point *P);
281#endif
282
283#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
284
285#endif /* MBEDTLS_ECP_INTERNAL_ALT */
286
287#endif /* ecp_internal_alt.h */