Tom Rini | 0344c60 | 2024-10-08 13:56:50 -0600 | [diff] [blame^] | 1 | /** |
| 2 | * \file ecp_internal_alt.h |
| 3 | * |
| 4 | * \brief Function declarations for alternative implementation of elliptic curve |
| 5 | * point arithmetic. |
| 6 | */ |
| 7 | /* |
| 8 | * Copyright The Mbed TLS Contributors |
| 9 | * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later |
| 10 | */ |
| 11 | |
| 12 | /* |
| 13 | * References: |
| 14 | * |
| 15 | * [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records. |
| 16 | * <http://cr.yp.to/ecdh/curve25519-20060209.pdf> |
| 17 | * |
| 18 | * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis |
| 19 | * for elliptic curve cryptosystems. In : Cryptographic Hardware and |
| 20 | * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302. |
| 21 | * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25> |
| 22 | * |
| 23 | * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to |
| 24 | * render ECC resistant against Side Channel Attacks. IACR Cryptology |
| 25 | * ePrint Archive, 2004, vol. 2004, p. 342. |
| 26 | * <http://eprint.iacr.org/2004/342.pdf> |
| 27 | * |
| 28 | * [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters. |
| 29 | * <http://www.secg.org/sec2-v2.pdf> |
| 30 | * |
| 31 | * [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic |
| 32 | * Curve Cryptography. |
| 33 | * |
| 34 | * [6] Digital Signature Standard (DSS), FIPS 186-4. |
| 35 | * <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf> |
| 36 | * |
| 37 | * [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer |
| 38 | * Security (TLS), RFC 4492. |
| 39 | * <https://tools.ietf.org/search/rfc4492> |
| 40 | * |
| 41 | * [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html> |
| 42 | * |
| 43 | * [9] COHEN, Henri. A Course in Computational Algebraic Number Theory. |
| 44 | * Springer Science & Business Media, 1 Aug 2000 |
| 45 | */ |
| 46 | |
| 47 | #ifndef MBEDTLS_ECP_INTERNAL_H |
| 48 | #define MBEDTLS_ECP_INTERNAL_H |
| 49 | |
| 50 | #include "mbedtls/build_info.h" |
| 51 | |
| 52 | #if defined(MBEDTLS_ECP_INTERNAL_ALT) |
| 53 | |
| 54 | /** |
| 55 | * \brief Indicate if the Elliptic Curve Point module extension can |
| 56 | * handle the group. |
| 57 | * |
| 58 | * \param grp The pointer to the elliptic curve group that will be the |
| 59 | * basis of the cryptographic computations. |
| 60 | * |
| 61 | * \return Non-zero if successful. |
| 62 | */ |
| 63 | unsigned char mbedtls_internal_ecp_grp_capable(const mbedtls_ecp_group *grp); |
| 64 | |
| 65 | /** |
| 66 | * \brief Initialise the Elliptic Curve Point module extension. |
| 67 | * |
| 68 | * If mbedtls_internal_ecp_grp_capable returns true for a |
| 69 | * group, this function has to be able to initialise the |
| 70 | * module for it. |
| 71 | * |
| 72 | * This module can be a driver to a crypto hardware |
| 73 | * accelerator, for which this could be an initialise function. |
| 74 | * |
| 75 | * \param grp The pointer to the group the module needs to be |
| 76 | * initialised for. |
| 77 | * |
| 78 | * \return 0 if successful. |
| 79 | */ |
| 80 | int mbedtls_internal_ecp_init(const mbedtls_ecp_group *grp); |
| 81 | |
| 82 | /** |
| 83 | * \brief Frees and deallocates the Elliptic Curve Point module |
| 84 | * extension. |
| 85 | * |
| 86 | * \param grp The pointer to the group the module was initialised for. |
| 87 | */ |
| 88 | void mbedtls_internal_ecp_free(const mbedtls_ecp_group *grp); |
| 89 | |
| 90 | #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) |
| 91 | |
| 92 | #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) |
| 93 | /** |
| 94 | * \brief Randomize jacobian coordinates: |
| 95 | * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l. |
| 96 | * |
| 97 | * \param grp Pointer to the group representing the curve. |
| 98 | * |
| 99 | * \param pt The point on the curve to be randomised, given with Jacobian |
| 100 | * coordinates. |
| 101 | * |
| 102 | * \param f_rng A function pointer to the random number generator. |
| 103 | * |
| 104 | * \param p_rng A pointer to the random number generator state. |
| 105 | * |
| 106 | * \return 0 if successful. |
| 107 | */ |
| 108 | int mbedtls_internal_ecp_randomize_jac(const mbedtls_ecp_group *grp, |
| 109 | mbedtls_ecp_point *pt, int (*f_rng)(void *, |
| 110 | unsigned char *, |
| 111 | size_t), |
| 112 | void *p_rng); |
| 113 | #endif |
| 114 | |
| 115 | #if defined(MBEDTLS_ECP_ADD_MIXED_ALT) |
| 116 | /** |
| 117 | * \brief Addition: R = P + Q, mixed affine-Jacobian coordinates. |
| 118 | * |
| 119 | * The coordinates of Q must be normalized (= affine), |
| 120 | * but those of P don't need to. R is not normalized. |
| 121 | * |
| 122 | * This function is used only as a subrutine of |
| 123 | * ecp_mul_comb(). |
| 124 | * |
| 125 | * Special cases: (1) P or Q is zero, (2) R is zero, |
| 126 | * (3) P == Q. |
| 127 | * None of these cases can happen as intermediate step in |
| 128 | * ecp_mul_comb(): |
| 129 | * - at each step, P, Q and R are multiples of the base |
| 130 | * point, the factor being less than its order, so none of |
| 131 | * them is zero; |
| 132 | * - Q is an odd multiple of the base point, P an even |
| 133 | * multiple, due to the choice of precomputed points in the |
| 134 | * modified comb method. |
| 135 | * So branches for these cases do not leak secret information. |
| 136 | * |
| 137 | * We accept Q->Z being unset (saving memory in tables) as |
| 138 | * meaning 1. |
| 139 | * |
| 140 | * Cost in field operations if done by [5] 3.22: |
| 141 | * 1A := 8M + 3S |
| 142 | * |
| 143 | * \param grp Pointer to the group representing the curve. |
| 144 | * |
| 145 | * \param R Pointer to a point structure to hold the result. |
| 146 | * |
| 147 | * \param P Pointer to the first summand, given with Jacobian |
| 148 | * coordinates |
| 149 | * |
| 150 | * \param Q Pointer to the second summand, given with affine |
| 151 | * coordinates. |
| 152 | * |
| 153 | * \return 0 if successful. |
| 154 | */ |
| 155 | int mbedtls_internal_ecp_add_mixed(const mbedtls_ecp_group *grp, |
| 156 | mbedtls_ecp_point *R, const mbedtls_ecp_point *P, |
| 157 | const mbedtls_ecp_point *Q); |
| 158 | #endif |
| 159 | |
| 160 | /** |
| 161 | * \brief Point doubling R = 2 P, Jacobian coordinates. |
| 162 | * |
| 163 | * Cost: 1D := 3M + 4S (A == 0) |
| 164 | * 4M + 4S (A == -3) |
| 165 | * 3M + 6S + 1a otherwise |
| 166 | * when the implementation is based on the "dbl-1998-cmo-2" |
| 167 | * doubling formulas in [8] and standard optimizations are |
| 168 | * applied when curve parameter A is one of { 0, -3 }. |
| 169 | * |
| 170 | * \param grp Pointer to the group representing the curve. |
| 171 | * |
| 172 | * \param R Pointer to a point structure to hold the result. |
| 173 | * |
| 174 | * \param P Pointer to the point that has to be doubled, given with |
| 175 | * Jacobian coordinates. |
| 176 | * |
| 177 | * \return 0 if successful. |
| 178 | */ |
| 179 | #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) |
| 180 | int mbedtls_internal_ecp_double_jac(const mbedtls_ecp_group *grp, |
| 181 | mbedtls_ecp_point *R, const mbedtls_ecp_point *P); |
| 182 | #endif |
| 183 | |
| 184 | /** |
| 185 | * \brief Normalize jacobian coordinates of an array of (pointers to) |
| 186 | * points. |
| 187 | * |
| 188 | * Using Montgomery's trick to perform only one inversion mod P |
| 189 | * the cost is: |
| 190 | * 1N(t) := 1I + (6t - 3)M + 1S |
| 191 | * (See for example Algorithm 10.3.4. in [9]) |
| 192 | * |
| 193 | * This function is used only as a subrutine of |
| 194 | * ecp_mul_comb(). |
| 195 | * |
| 196 | * Warning: fails (returning an error) if one of the points is |
| 197 | * zero! |
| 198 | * This should never happen, see choice of w in ecp_mul_comb(). |
| 199 | * |
| 200 | * \param grp Pointer to the group representing the curve. |
| 201 | * |
| 202 | * \param T Array of pointers to the points to normalise. |
| 203 | * |
| 204 | * \param t_len Number of elements in the array. |
| 205 | * |
| 206 | * \return 0 if successful, |
| 207 | * an error if one of the points is zero. |
| 208 | */ |
| 209 | #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) |
| 210 | int mbedtls_internal_ecp_normalize_jac_many(const mbedtls_ecp_group *grp, |
| 211 | mbedtls_ecp_point *T[], size_t t_len); |
| 212 | #endif |
| 213 | |
| 214 | /** |
| 215 | * \brief Normalize jacobian coordinates so that Z == 0 || Z == 1. |
| 216 | * |
| 217 | * Cost in field operations if done by [5] 3.2.1: |
| 218 | * 1N := 1I + 3M + 1S |
| 219 | * |
| 220 | * \param grp Pointer to the group representing the curve. |
| 221 | * |
| 222 | * \param pt pointer to the point to be normalised. This is an |
| 223 | * input/output parameter. |
| 224 | * |
| 225 | * \return 0 if successful. |
| 226 | */ |
| 227 | #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) |
| 228 | int mbedtls_internal_ecp_normalize_jac(const mbedtls_ecp_group *grp, |
| 229 | mbedtls_ecp_point *pt); |
| 230 | #endif |
| 231 | |
| 232 | #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ |
| 233 | |
| 234 | #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) |
| 235 | |
| 236 | #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) |
| 237 | int mbedtls_internal_ecp_double_add_mxz(const mbedtls_ecp_group *grp, |
| 238 | mbedtls_ecp_point *R, |
| 239 | mbedtls_ecp_point *S, |
| 240 | const mbedtls_ecp_point *P, |
| 241 | const mbedtls_ecp_point *Q, |
| 242 | const mbedtls_mpi *d); |
| 243 | #endif |
| 244 | |
| 245 | /** |
| 246 | * \brief Randomize projective x/z coordinates: |
| 247 | * (X, Z) -> (l X, l Z) for random l |
| 248 | * |
| 249 | * \param grp pointer to the group representing the curve |
| 250 | * |
| 251 | * \param P the point on the curve to be randomised given with |
| 252 | * projective coordinates. This is an input/output parameter. |
| 253 | * |
| 254 | * \param f_rng a function pointer to the random number generator |
| 255 | * |
| 256 | * \param p_rng a pointer to the random number generator state |
| 257 | * |
| 258 | * \return 0 if successful |
| 259 | */ |
| 260 | #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) |
| 261 | int mbedtls_internal_ecp_randomize_mxz(const mbedtls_ecp_group *grp, |
| 262 | mbedtls_ecp_point *P, int (*f_rng)(void *, |
| 263 | unsigned char *, |
| 264 | size_t), |
| 265 | void *p_rng); |
| 266 | #endif |
| 267 | |
| 268 | /** |
| 269 | * \brief Normalize Montgomery x/z coordinates: X = X/Z, Z = 1. |
| 270 | * |
| 271 | * \param grp pointer to the group representing the curve |
| 272 | * |
| 273 | * \param P pointer to the point to be normalised. This is an |
| 274 | * input/output parameter. |
| 275 | * |
| 276 | * \return 0 if successful |
| 277 | */ |
| 278 | #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) |
| 279 | int mbedtls_internal_ecp_normalize_mxz(const mbedtls_ecp_group *grp, |
| 280 | mbedtls_ecp_point *P); |
| 281 | #endif |
| 282 | |
| 283 | #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ |
| 284 | |
| 285 | #endif /* MBEDTLS_ECP_INTERNAL_ALT */ |
| 286 | |
| 287 | #endif /* ecp_internal_alt.h */ |