blob: b7eca5835956fb8af01fcc74b6a45cc353343781 [file] [log] [blame]
Boris Brezillon32473fe2018-08-16 17:30:11 +02001// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2018 Exceet Electronics GmbH
4 * Copyright (C) 2018 Bootlin
5 *
6 * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7 */
8
9#ifndef __UBOOT__
Simon Glass0f2af882020-05-10 11:40:05 -060010#include <log.h>
Simon Glassd66c5f72020-02-03 07:36:15 -070011#include <dm/devres.h>
Boris Brezillon32473fe2018-08-16 17:30:11 +020012#include <linux/dmaengine.h>
13#include <linux/pm_runtime.h>
14#include "internals.h"
15#else
Tom Riniabb9a042024-05-18 20:20:43 -060016#include <common.h>
Simon Glassdfb7c082020-07-19 10:15:34 -060017#include <dm.h>
18#include <errno.h>
19#include <malloc.h>
20#include <spi.h>
Boris Brezillon32473fe2018-08-16 17:30:11 +020021#include <spi.h>
22#include <spi-mem.h>
Simon Glassdfb7c082020-07-19 10:15:34 -060023#include <dm/device_compat.h>
Chin-Ting Kuoa891be82022-08-19 17:01:08 +080024#include <dm/devres.h>
25#include <linux/bug.h>
Boris Brezillon32473fe2018-08-16 17:30:11 +020026#endif
27
28#ifndef __UBOOT__
29/**
30 * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
31 * memory operation
32 * @ctlr: the SPI controller requesting this dma_map()
33 * @op: the memory operation containing the buffer to map
34 * @sgt: a pointer to a non-initialized sg_table that will be filled by this
35 * function
36 *
37 * Some controllers might want to do DMA on the data buffer embedded in @op.
38 * This helper prepares everything for you and provides a ready-to-use
39 * sg_table. This function is not intended to be called from spi drivers.
40 * Only SPI controller drivers should use it.
41 * Note that the caller must ensure the memory region pointed by
42 * op->data.buf.{in,out} is DMA-able before calling this function.
43 *
44 * Return: 0 in case of success, a negative error code otherwise.
45 */
46int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
47 const struct spi_mem_op *op,
48 struct sg_table *sgt)
49{
50 struct device *dmadev;
51
52 if (!op->data.nbytes)
53 return -EINVAL;
54
55 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
56 dmadev = ctlr->dma_tx->device->dev;
57 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
58 dmadev = ctlr->dma_rx->device->dev;
59 else
60 dmadev = ctlr->dev.parent;
61
62 if (!dmadev)
63 return -EINVAL;
64
65 return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
66 op->data.dir == SPI_MEM_DATA_IN ?
67 DMA_FROM_DEVICE : DMA_TO_DEVICE);
68}
69EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
70
71/**
72 * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
73 * memory operation
74 * @ctlr: the SPI controller requesting this dma_unmap()
75 * @op: the memory operation containing the buffer to unmap
76 * @sgt: a pointer to an sg_table previously initialized by
77 * spi_controller_dma_map_mem_op_data()
78 *
79 * Some controllers might want to do DMA on the data buffer embedded in @op.
80 * This helper prepares things so that the CPU can access the
81 * op->data.buf.{in,out} buffer again.
82 *
83 * This function is not intended to be called from SPI drivers. Only SPI
84 * controller drivers should use it.
85 *
86 * This function should be called after the DMA operation has finished and is
87 * only valid if the previous spi_controller_dma_map_mem_op_data() call
88 * returned 0.
89 *
90 * Return: 0 in case of success, a negative error code otherwise.
91 */
92void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
93 const struct spi_mem_op *op,
94 struct sg_table *sgt)
95{
96 struct device *dmadev;
97
98 if (!op->data.nbytes)
99 return;
100
101 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
102 dmadev = ctlr->dma_tx->device->dev;
103 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
104 dmadev = ctlr->dma_rx->device->dev;
105 else
106 dmadev = ctlr->dev.parent;
107
108 spi_unmap_buf(ctlr, dmadev, sgt,
109 op->data.dir == SPI_MEM_DATA_IN ?
110 DMA_FROM_DEVICE : DMA_TO_DEVICE);
111}
112EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
113#endif /* __UBOOT__ */
114
115static int spi_check_buswidth_req(struct spi_slave *slave, u8 buswidth, bool tx)
116{
117 u32 mode = slave->mode;
118
119 switch (buswidth) {
120 case 1:
121 return 0;
122
123 case 2:
124 if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
125 (!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
126 return 0;
127
128 break;
129
130 case 4:
131 if ((tx && (mode & SPI_TX_QUAD)) ||
132 (!tx && (mode & SPI_RX_QUAD)))
133 return 0;
134
135 break;
Vignesh Raghavendrac063ee32019-12-05 15:46:05 +0530136 case 8:
137 if ((tx && (mode & SPI_TX_OCTAL)) ||
138 (!tx && (mode & SPI_RX_OCTAL)))
139 return 0;
140
141 break;
Boris Brezillon32473fe2018-08-16 17:30:11 +0200142
143 default:
144 break;
145 }
146
147 return -ENOTSUPP;
148}
149
Pratyush Yadav8c8452c2021-06-26 00:47:06 +0530150static bool spi_mem_check_buswidth(struct spi_slave *slave,
151 const struct spi_mem_op *op)
Boris Brezillon32473fe2018-08-16 17:30:11 +0200152{
153 if (spi_check_buswidth_req(slave, op->cmd.buswidth, true))
154 return false;
155
156 if (op->addr.nbytes &&
157 spi_check_buswidth_req(slave, op->addr.buswidth, true))
158 return false;
159
160 if (op->dummy.nbytes &&
161 spi_check_buswidth_req(slave, op->dummy.buswidth, true))
162 return false;
163
Tudor Ambarus2073d542020-03-20 09:35:31 +0000164 if (op->data.dir != SPI_MEM_NO_DATA &&
Boris Brezillon32473fe2018-08-16 17:30:11 +0200165 spi_check_buswidth_req(slave, op->data.buswidth,
166 op->data.dir == SPI_MEM_DATA_OUT))
167 return false;
168
Pratyush Yadav8c8452c2021-06-26 00:47:06 +0530169 return true;
170}
171
172bool spi_mem_dtr_supports_op(struct spi_slave *slave,
173 const struct spi_mem_op *op)
174{
175 if (op->cmd.buswidth == 8 && op->cmd.nbytes % 2)
176 return false;
177
178 if (op->addr.nbytes && op->addr.buswidth == 8 && op->addr.nbytes % 2)
179 return false;
180
181 if (op->dummy.nbytes && op->dummy.buswidth == 8 && op->dummy.nbytes % 2)
182 return false;
183
Dhruva Gole2baee382023-03-01 13:13:45 +0530184 /*
185 * Transactions of odd length do not make sense for 8D-8D-8D mode
186 * because a byte is transferred in just half a cycle.
187 */
Dhruva Goleb70e6742023-03-01 13:13:46 +0530188 if (op->data.dir != SPI_MEM_NO_DATA && op->data.dir != SPI_MEM_DATA_IN &&
Dhruva Gole2baee382023-03-01 13:13:45 +0530189 op->data.buswidth == 8 && op->data.nbytes % 2)
Pratyush Yadav8c8452c2021-06-26 00:47:06 +0530190 return false;
191
192 return spi_mem_check_buswidth(slave, op);
193}
194EXPORT_SYMBOL_GPL(spi_mem_dtr_supports_op);
195
196bool spi_mem_default_supports_op(struct spi_slave *slave,
197 const struct spi_mem_op *op)
198{
Pratyush Yadav87a6db32021-06-26 00:47:03 +0530199 if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
200 return false;
201
Pratyush Yadaved084852021-06-26 00:47:04 +0530202 if (op->cmd.nbytes != 1)
203 return false;
204
Pratyush Yadav8c8452c2021-06-26 00:47:06 +0530205 return spi_mem_check_buswidth(slave, op);
Boris Brezillon32473fe2018-08-16 17:30:11 +0200206}
207EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
208
209/**
210 * spi_mem_supports_op() - Check if a memory device and the controller it is
211 * connected to support a specific memory operation
212 * @slave: the SPI device
213 * @op: the memory operation to check
214 *
215 * Some controllers are only supporting Single or Dual IOs, others might only
216 * support specific opcodes, or it can even be that the controller and device
217 * both support Quad IOs but the hardware prevents you from using it because
218 * only 2 IO lines are connected.
219 *
220 * This function checks whether a specific operation is supported.
221 *
222 * Return: true if @op is supported, false otherwise.
223 */
224bool spi_mem_supports_op(struct spi_slave *slave,
225 const struct spi_mem_op *op)
226{
227 struct udevice *bus = slave->dev->parent;
228 struct dm_spi_ops *ops = spi_get_ops(bus);
229
230 if (ops->mem_ops && ops->mem_ops->supports_op)
231 return ops->mem_ops->supports_op(slave, op);
232
233 return spi_mem_default_supports_op(slave, op);
234}
235EXPORT_SYMBOL_GPL(spi_mem_supports_op);
236
237/**
238 * spi_mem_exec_op() - Execute a memory operation
239 * @slave: the SPI device
240 * @op: the memory operation to execute
241 *
242 * Executes a memory operation.
243 *
244 * This function first checks that @op is supported and then tries to execute
245 * it.
246 *
247 * Return: 0 in case of success, a negative error code otherwise.
248 */
249int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op)
250{
251 struct udevice *bus = slave->dev->parent;
252 struct dm_spi_ops *ops = spi_get_ops(bus);
253 unsigned int pos = 0;
254 const u8 *tx_buf = NULL;
255 u8 *rx_buf = NULL;
Boris Brezillon32473fe2018-08-16 17:30:11 +0200256 int op_len;
257 u32 flag;
258 int ret;
259 int i;
260
261 if (!spi_mem_supports_op(slave, op))
262 return -ENOTSUPP;
263
Vignesh Rcae870e2019-02-05 11:29:14 +0530264 ret = spi_claim_bus(slave);
265 if (ret < 0)
266 return ret;
267
Bernhard Messerklingere8c3d1b2019-03-26 10:01:24 +0100268 if (ops->mem_ops && ops->mem_ops->exec_op) {
Boris Brezillon32473fe2018-08-16 17:30:11 +0200269#ifndef __UBOOT__
270 /*
271 * Flush the message queue before executing our SPI memory
272 * operation to prevent preemption of regular SPI transfers.
273 */
274 spi_flush_queue(ctlr);
275
276 if (ctlr->auto_runtime_pm) {
277 ret = pm_runtime_get_sync(ctlr->dev.parent);
278 if (ret < 0) {
279 dev_err(&ctlr->dev,
280 "Failed to power device: %d\n",
281 ret);
282 return ret;
283 }
284 }
285
286 mutex_lock(&ctlr->bus_lock_mutex);
287 mutex_lock(&ctlr->io_mutex);
288#endif
289 ret = ops->mem_ops->exec_op(slave, op);
Vignesh Rcae870e2019-02-05 11:29:14 +0530290
Boris Brezillon32473fe2018-08-16 17:30:11 +0200291#ifndef __UBOOT__
292 mutex_unlock(&ctlr->io_mutex);
293 mutex_unlock(&ctlr->bus_lock_mutex);
294
295 if (ctlr->auto_runtime_pm)
296 pm_runtime_put(ctlr->dev.parent);
297#endif
298
299 /*
300 * Some controllers only optimize specific paths (typically the
301 * read path) and expect the core to use the regular SPI
302 * interface in other cases.
303 */
Vignesh Rcae870e2019-02-05 11:29:14 +0530304 if (!ret || ret != -ENOTSUPP) {
305 spi_release_bus(slave);
Boris Brezillon32473fe2018-08-16 17:30:11 +0200306 return ret;
Vignesh Rcae870e2019-02-05 11:29:14 +0530307 }
Boris Brezillon32473fe2018-08-16 17:30:11 +0200308 }
309
310#ifndef __UBOOT__
Pratyush Yadaved084852021-06-26 00:47:04 +0530311 tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
Boris Brezillon32473fe2018-08-16 17:30:11 +0200312
313 /*
314 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
315 * we're guaranteed that this buffer is DMA-able, as required by the
316 * SPI layer.
317 */
318 tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
319 if (!tmpbuf)
320 return -ENOMEM;
321
322 spi_message_init(&msg);
323
324 tmpbuf[0] = op->cmd.opcode;
325 xfers[xferpos].tx_buf = tmpbuf;
Pratyush Yadaved084852021-06-26 00:47:04 +0530326 xfers[xferpos].len = op->cmd.nbytes;
Boris Brezillon32473fe2018-08-16 17:30:11 +0200327 xfers[xferpos].tx_nbits = op->cmd.buswidth;
328 spi_message_add_tail(&xfers[xferpos], &msg);
329 xferpos++;
330 totalxferlen++;
331
332 if (op->addr.nbytes) {
333 int i;
334
335 for (i = 0; i < op->addr.nbytes; i++)
336 tmpbuf[i + 1] = op->addr.val >>
337 (8 * (op->addr.nbytes - i - 1));
338
339 xfers[xferpos].tx_buf = tmpbuf + 1;
340 xfers[xferpos].len = op->addr.nbytes;
341 xfers[xferpos].tx_nbits = op->addr.buswidth;
342 spi_message_add_tail(&xfers[xferpos], &msg);
343 xferpos++;
344 totalxferlen += op->addr.nbytes;
345 }
346
347 if (op->dummy.nbytes) {
348 memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
349 xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
350 xfers[xferpos].len = op->dummy.nbytes;
351 xfers[xferpos].tx_nbits = op->dummy.buswidth;
352 spi_message_add_tail(&xfers[xferpos], &msg);
353 xferpos++;
354 totalxferlen += op->dummy.nbytes;
355 }
356
357 if (op->data.nbytes) {
358 if (op->data.dir == SPI_MEM_DATA_IN) {
359 xfers[xferpos].rx_buf = op->data.buf.in;
360 xfers[xferpos].rx_nbits = op->data.buswidth;
361 } else {
362 xfers[xferpos].tx_buf = op->data.buf.out;
363 xfers[xferpos].tx_nbits = op->data.buswidth;
364 }
365
366 xfers[xferpos].len = op->data.nbytes;
367 spi_message_add_tail(&xfers[xferpos], &msg);
368 xferpos++;
369 totalxferlen += op->data.nbytes;
370 }
371
372 ret = spi_sync(slave, &msg);
373
374 kfree(tmpbuf);
375
376 if (ret)
377 return ret;
378
379 if (msg.actual_length != totalxferlen)
380 return -EIO;
381#else
382
Boris Brezillon32473fe2018-08-16 17:30:11 +0200383 if (op->data.nbytes) {
384 if (op->data.dir == SPI_MEM_DATA_IN)
385 rx_buf = op->data.buf.in;
386 else
387 tx_buf = op->data.buf.out;
388 }
389
Pratyush Yadaved084852021-06-26 00:47:04 +0530390 op_len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
Simon Glass6d0d9912019-05-18 11:59:54 -0600391
392 /*
393 * Avoid using malloc() here so that we can use this code in SPL where
394 * simple malloc may be used. That implementation does not allow free()
395 * so repeated calls to this code can exhaust the space.
396 *
397 * The value of op_len is small, since it does not include the actual
398 * data being sent, only the op-code and address. In fact, it should be
399 * possible to just use a small fixed value here instead of op_len.
400 */
401 u8 op_buf[op_len];
Boris Brezillon32473fe2018-08-16 17:30:11 +0200402
Boris Brezillon32473fe2018-08-16 17:30:11 +0200403 op_buf[pos++] = op->cmd.opcode;
404
405 if (op->addr.nbytes) {
406 for (i = 0; i < op->addr.nbytes; i++)
407 op_buf[pos + i] = op->addr.val >>
408 (8 * (op->addr.nbytes - i - 1));
409
410 pos += op->addr.nbytes;
411 }
412
413 if (op->dummy.nbytes)
414 memset(op_buf + pos, 0xff, op->dummy.nbytes);
415
416 /* 1st transfer: opcode + address + dummy cycles */
417 flag = SPI_XFER_BEGIN;
418 /* Make sure to set END bit if no tx or rx data messages follow */
419 if (!tx_buf && !rx_buf)
420 flag |= SPI_XFER_END;
421
422 ret = spi_xfer(slave, op_len * 8, op_buf, NULL, flag);
423 if (ret)
424 return ret;
425
426 /* 2nd transfer: rx or tx data path */
427 if (tx_buf || rx_buf) {
428 ret = spi_xfer(slave, op->data.nbytes * 8, tx_buf,
429 rx_buf, SPI_XFER_END);
430 if (ret)
431 return ret;
432 }
433
434 spi_release_bus(slave);
435
436 for (i = 0; i < pos; i++)
437 debug("%02x ", op_buf[i]);
438 debug("| [%dB %s] ",
439 tx_buf || rx_buf ? op->data.nbytes : 0,
440 tx_buf || rx_buf ? (tx_buf ? "out" : "in") : "-");
441 for (i = 0; i < op->data.nbytes; i++)
442 debug("%02x ", tx_buf ? tx_buf[i] : rx_buf[i]);
443 debug("[ret %d]\n", ret);
444
Boris Brezillon32473fe2018-08-16 17:30:11 +0200445 if (ret < 0)
446 return ret;
447#endif /* __UBOOT__ */
448
449 return 0;
450}
451EXPORT_SYMBOL_GPL(spi_mem_exec_op);
452
453/**
454 * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
455 * match controller limitations
456 * @slave: the SPI device
457 * @op: the operation to adjust
458 *
459 * Some controllers have FIFO limitations and must split a data transfer
460 * operation into multiple ones, others require a specific alignment for
461 * optimized accesses. This function allows SPI mem drivers to split a single
462 * operation into multiple sub-operations when required.
463 *
464 * Return: a negative error code if the controller can't properly adjust @op,
465 * 0 otherwise. Note that @op->data.nbytes will be updated if @op
466 * can't be handled in a single step.
467 */
468int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op)
469{
470 struct udevice *bus = slave->dev->parent;
471 struct dm_spi_ops *ops = spi_get_ops(bus);
472
473 if (ops->mem_ops && ops->mem_ops->adjust_op_size)
474 return ops->mem_ops->adjust_op_size(slave, op);
475
Vignesh Rba3691f2019-02-05 11:29:13 +0530476 if (!ops->mem_ops || !ops->mem_ops->exec_op) {
477 unsigned int len;
478
Pratyush Yadaved084852021-06-26 00:47:04 +0530479 len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
Vignesh Rba3691f2019-02-05 11:29:13 +0530480 if (slave->max_write_size && len > slave->max_write_size)
481 return -EINVAL;
482
Ye Li3858d522019-07-10 09:23:51 +0000483 if (op->data.dir == SPI_MEM_DATA_IN) {
484 if (slave->max_read_size)
485 op->data.nbytes = min(op->data.nbytes,
Vignesh Rba3691f2019-02-05 11:29:13 +0530486 slave->max_read_size);
Ye Li3858d522019-07-10 09:23:51 +0000487 } else if (slave->max_write_size) {
Vignesh Rba3691f2019-02-05 11:29:13 +0530488 op->data.nbytes = min(op->data.nbytes,
489 slave->max_write_size - len);
Ye Li3858d522019-07-10 09:23:51 +0000490 }
Vignesh Rba3691f2019-02-05 11:29:13 +0530491
492 if (!op->data.nbytes)
493 return -EINVAL;
494 }
495
Boris Brezillon32473fe2018-08-16 17:30:11 +0200496 return 0;
497}
498EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
499
Chin-Ting Kuoa891be82022-08-19 17:01:08 +0800500static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
501 u64 offs, size_t len, void *buf)
502{
503 struct spi_mem_op op = desc->info.op_tmpl;
504 int ret;
505
506 op.addr.val = desc->info.offset + offs;
507 op.data.buf.in = buf;
508 op.data.nbytes = len;
509 ret = spi_mem_adjust_op_size(desc->slave, &op);
510 if (ret)
511 return ret;
512
513 ret = spi_mem_exec_op(desc->slave, &op);
514 if (ret)
515 return ret;
516
517 return op.data.nbytes;
518}
519
520static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
521 u64 offs, size_t len, const void *buf)
522{
523 struct spi_mem_op op = desc->info.op_tmpl;
524 int ret;
525
526 op.addr.val = desc->info.offset + offs;
527 op.data.buf.out = buf;
528 op.data.nbytes = len;
529 ret = spi_mem_adjust_op_size(desc->slave, &op);
530 if (ret)
531 return ret;
532
533 ret = spi_mem_exec_op(desc->slave, &op);
534 if (ret)
535 return ret;
536
537 return op.data.nbytes;
538}
539
540/**
541 * spi_mem_dirmap_create() - Create a direct mapping descriptor
542 * @mem: SPI mem device this direct mapping should be created for
543 * @info: direct mapping information
544 *
545 * This function is creating a direct mapping descriptor which can then be used
546 * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
547 * If the SPI controller driver does not support direct mapping, this function
548 * falls back to an implementation using spi_mem_exec_op(), so that the caller
549 * doesn't have to bother implementing a fallback on his own.
550 *
551 * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
552 */
553struct spi_mem_dirmap_desc *
554spi_mem_dirmap_create(struct spi_slave *slave,
555 const struct spi_mem_dirmap_info *info)
556{
557 struct udevice *bus = slave->dev->parent;
558 struct dm_spi_ops *ops = spi_get_ops(bus);
559 struct spi_mem_dirmap_desc *desc;
560 int ret = -EOPNOTSUPP;
561
562 /* Make sure the number of address cycles is between 1 and 8 bytes. */
563 if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
564 return ERR_PTR(-EINVAL);
565
566 /* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
567 if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
568 return ERR_PTR(-EINVAL);
569
570 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
571 if (!desc)
572 return ERR_PTR(-ENOMEM);
573
574 desc->slave = slave;
575 desc->info = *info;
576 if (ops->mem_ops && ops->mem_ops->dirmap_create)
577 ret = ops->mem_ops->dirmap_create(desc);
578
579 if (ret) {
580 desc->nodirmap = true;
581 if (!spi_mem_supports_op(desc->slave, &desc->info.op_tmpl))
582 ret = -EOPNOTSUPP;
583 else
584 ret = 0;
585 }
586
587 if (ret) {
588 kfree(desc);
589 return ERR_PTR(ret);
590 }
591
592 return desc;
593}
594EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
595
596/**
597 * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
598 * @desc: the direct mapping descriptor to destroy
599 *
600 * This function destroys a direct mapping descriptor previously created by
601 * spi_mem_dirmap_create().
602 */
603void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
604{
605 struct udevice *bus = desc->slave->dev->parent;
606 struct dm_spi_ops *ops = spi_get_ops(bus);
607
608 if (!desc->nodirmap && ops->mem_ops && ops->mem_ops->dirmap_destroy)
609 ops->mem_ops->dirmap_destroy(desc);
610
611 kfree(desc);
612}
613EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
614
615#ifndef __UBOOT__
616static void devm_spi_mem_dirmap_release(struct udevice *dev, void *res)
617{
618 struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
619
620 spi_mem_dirmap_destroy(desc);
621}
622
623/**
624 * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
625 * it to a device
626 * @dev: device the dirmap desc will be attached to
627 * @mem: SPI mem device this direct mapping should be created for
628 * @info: direct mapping information
629 *
630 * devm_ variant of the spi_mem_dirmap_create() function. See
631 * spi_mem_dirmap_create() for more details.
632 *
633 * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
634 */
635struct spi_mem_dirmap_desc *
636devm_spi_mem_dirmap_create(struct udevice *dev, struct spi_slave *slave,
637 const struct spi_mem_dirmap_info *info)
638{
639 struct spi_mem_dirmap_desc **ptr, *desc;
640
641 ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
642 GFP_KERNEL);
643 if (!ptr)
644 return ERR_PTR(-ENOMEM);
645
646 desc = spi_mem_dirmap_create(slave, info);
647 if (IS_ERR(desc)) {
648 devres_free(ptr);
649 } else {
650 *ptr = desc;
651 devres_add(dev, ptr);
652 }
653
654 return desc;
655}
656EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
657
658static int devm_spi_mem_dirmap_match(struct udevice *dev, void *res, void *data)
659{
660 struct spi_mem_dirmap_desc **ptr = res;
661
662 if (WARN_ON(!ptr || !*ptr))
663 return 0;
664
665 return *ptr == data;
666}
667
668/**
669 * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
670 * to a device
671 * @dev: device the dirmap desc is attached to
672 * @desc: the direct mapping descriptor to destroy
673 *
674 * devm_ variant of the spi_mem_dirmap_destroy() function. See
675 * spi_mem_dirmap_destroy() for more details.
676 */
677void devm_spi_mem_dirmap_destroy(struct udevice *dev,
678 struct spi_mem_dirmap_desc *desc)
679{
680 devres_release(dev, devm_spi_mem_dirmap_release,
681 devm_spi_mem_dirmap_match, desc);
682}
683EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
684#endif /* __UBOOT__ */
685
686/**
687 * spi_mem_dirmap_read() - Read data through a direct mapping
688 * @desc: direct mapping descriptor
689 * @offs: offset to start reading from. Note that this is not an absolute
690 * offset, but the offset within the direct mapping which already has
691 * its own offset
692 * @len: length in bytes
693 * @buf: destination buffer. This buffer must be DMA-able
694 *
695 * This function reads data from a memory device using a direct mapping
696 * previously instantiated with spi_mem_dirmap_create().
697 *
698 * Return: the amount of data read from the memory device or a negative error
699 * code. Note that the returned size might be smaller than @len, and the caller
700 * is responsible for calling spi_mem_dirmap_read() again when that happens.
701 */
702ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
703 u64 offs, size_t len, void *buf)
704{
705 struct udevice *bus = desc->slave->dev->parent;
706 struct dm_spi_ops *ops = spi_get_ops(bus);
707 ssize_t ret;
708
709 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
710 return -EINVAL;
711
712 if (!len)
713 return 0;
714
715 if (desc->nodirmap)
716 ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
717 else if (ops->mem_ops && ops->mem_ops->dirmap_read)
718 ret = ops->mem_ops->dirmap_read(desc, offs, len, buf);
719 else
720 ret = -EOPNOTSUPP;
721
722 return ret;
723}
724EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
725
726/**
727 * spi_mem_dirmap_write() - Write data through a direct mapping
728 * @desc: direct mapping descriptor
729 * @offs: offset to start writing from. Note that this is not an absolute
730 * offset, but the offset within the direct mapping which already has
731 * its own offset
732 * @len: length in bytes
733 * @buf: source buffer. This buffer must be DMA-able
734 *
735 * This function writes data to a memory device using a direct mapping
736 * previously instantiated with spi_mem_dirmap_create().
737 *
738 * Return: the amount of data written to the memory device or a negative error
739 * code. Note that the returned size might be smaller than @len, and the caller
740 * is responsible for calling spi_mem_dirmap_write() again when that happens.
741 */
742ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
743 u64 offs, size_t len, const void *buf)
744{
745 struct udevice *bus = desc->slave->dev->parent;
746 struct dm_spi_ops *ops = spi_get_ops(bus);
747 ssize_t ret;
748
749 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
750 return -EINVAL;
751
752 if (!len)
753 return 0;
754
755 if (desc->nodirmap)
756 ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
757 else if (ops->mem_ops && ops->mem_ops->dirmap_write)
758 ret = ops->mem_ops->dirmap_write(desc, offs, len, buf);
759 else
760 ret = -EOPNOTSUPP;
761
762 return ret;
763}
764EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
765
Boris Brezillon32473fe2018-08-16 17:30:11 +0200766#ifndef __UBOOT__
767static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
768{
769 return container_of(drv, struct spi_mem_driver, spidrv.driver);
770}
771
772static int spi_mem_probe(struct spi_device *spi)
773{
774 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
775 struct spi_mem *mem;
776
777 mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
778 if (!mem)
779 return -ENOMEM;
780
781 mem->spi = spi;
782 spi_set_drvdata(spi, mem);
783
784 return memdrv->probe(mem);
785}
786
787static int spi_mem_remove(struct spi_device *spi)
788{
789 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
790 struct spi_mem *mem = spi_get_drvdata(spi);
791
792 if (memdrv->remove)
793 return memdrv->remove(mem);
794
795 return 0;
796}
797
798static void spi_mem_shutdown(struct spi_device *spi)
799{
800 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
801 struct spi_mem *mem = spi_get_drvdata(spi);
802
803 if (memdrv->shutdown)
804 memdrv->shutdown(mem);
805}
806
807/**
808 * spi_mem_driver_register_with_owner() - Register a SPI memory driver
809 * @memdrv: the SPI memory driver to register
810 * @owner: the owner of this driver
811 *
812 * Registers a SPI memory driver.
813 *
814 * Return: 0 in case of success, a negative error core otherwise.
815 */
816
817int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
818 struct module *owner)
819{
820 memdrv->spidrv.probe = spi_mem_probe;
821 memdrv->spidrv.remove = spi_mem_remove;
822 memdrv->spidrv.shutdown = spi_mem_shutdown;
823
824 return __spi_register_driver(owner, &memdrv->spidrv);
825}
826EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
827
828/**
829 * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
830 * @memdrv: the SPI memory driver to unregister
831 *
832 * Unregisters a SPI memory driver.
833 */
834void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
835{
836 spi_unregister_driver(&memdrv->spidrv);
837}
838EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
839#endif /* __UBOOT__ */