blob: 790d5385e0bdc18ec5172f21735f8232265b46e5 [file] [log] [blame]
/*
* (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
* Rohit Choraria <rohitkc@ti.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/io.h>
#include <asm/errno.h>
#include <asm/arch/mem.h>
#include <asm/arch/cpu.h>
#include <asm/omap_gpmc.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/bch.h>
#include <linux/compiler.h>
#include <nand.h>
#include <asm/omap_elm.h>
#define BADBLOCK_MARKER_LENGTH 2
#define SECTOR_BYTES 512
static uint8_t cs;
static __maybe_unused struct nand_ecclayout omap_ecclayout;
/*
* omap_nand_hwcontrol - Set the address pointers corretly for the
* following address/data/command operation
*/
static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
uint32_t ctrl)
{
register struct nand_chip *this = mtd->priv;
/*
* Point the IO_ADDR to DATA and ADDRESS registers instead
* of chip address
*/
switch (ctrl) {
case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
break;
case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
break;
case NAND_CTRL_CHANGE | NAND_NCE:
this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
break;
}
if (cmd != NAND_CMD_NONE)
writeb(cmd, this->IO_ADDR_W);
}
#ifdef CONFIG_SPL_BUILD
/* Check wait pin as dev ready indicator */
int omap_spl_dev_ready(struct mtd_info *mtd)
{
return gpmc_cfg->status & (1 << 8);
}
#endif
/*
* omap_hwecc_init - Initialize the Hardware ECC for NAND flash in
* GPMC controller
* @mtd: MTD device structure
*
*/
static void __maybe_unused omap_hwecc_init(struct nand_chip *chip)
{
/*
* Init ECC Control Register
* Clear all ECC | Enable Reg1
*/
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL, &gpmc_cfg->ecc_size_config);
}
/*
* gen_true_ecc - This function will generate true ECC value, which
* can be used when correcting data read from NAND flash memory core
*
* @ecc_buf: buffer to store ecc code
*
* @return: re-formatted ECC value
*/
static uint32_t gen_true_ecc(uint8_t *ecc_buf)
{
return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
((ecc_buf[2] & 0x0F) << 8);
}
/*
* omap_correct_data - Compares the ecc read from nand spare area with ECC
* registers values and corrects one bit error if it has occured
* Further details can be had from OMAP TRM and the following selected links:
* http://en.wikipedia.org/wiki/Hamming_code
* http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
*
* @mtd: MTD device structure
* @dat: page data
* @read_ecc: ecc read from nand flash
* @calc_ecc: ecc read from ECC registers
*
* @return 0 if data is OK or corrected, else returns -1
*/
static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
uint8_t *read_ecc, uint8_t *calc_ecc)
{
uint32_t orig_ecc, new_ecc, res, hm;
uint16_t parity_bits, byte;
uint8_t bit;
/* Regenerate the orginal ECC */
orig_ecc = gen_true_ecc(read_ecc);
new_ecc = gen_true_ecc(calc_ecc);
/* Get the XOR of real ecc */
res = orig_ecc ^ new_ecc;
if (res) {
/* Get the hamming width */
hm = hweight32(res);
/* Single bit errors can be corrected! */
if (hm == 12) {
/* Correctable data! */
parity_bits = res >> 16;
bit = (parity_bits & 0x7);
byte = (parity_bits >> 3) & 0x1FF;
/* Flip the bit to correct */
dat[byte] ^= (0x1 << bit);
} else if (hm == 1) {
printf("Error: Ecc is wrong\n");
/* ECC itself is corrupted */
return 2;
} else {
/*
* hm distance != parity pairs OR one, could mean 2 bit
* error OR potentially be on a blank page..
* orig_ecc: contains spare area data from nand flash.
* new_ecc: generated ecc while reading data area.
* Note: if the ecc = 0, all data bits from which it was
* generated are 0xFF.
* The 3 byte(24 bits) ecc is generated per 512byte
* chunk of a page. If orig_ecc(from spare area)
* is 0xFF && new_ecc(computed now from data area)=0x0,
* this means that data area is 0xFF and spare area is
* 0xFF. A sure sign of a erased page!
*/
if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
return 0;
printf("Error: Bad compare! failed\n");
/* detected 2 bit error */
return -1;
}
}
return 0;
}
/*
* omap_calculate_ecc - Generate non-inverted ECC bytes.
*
* Using noninverted ECC can be considered ugly since writing a blank
* page ie. padding will clear the ECC bytes. This is no problem as
* long nobody is trying to write data on the seemingly unused page.
* Reading an erased page will produce an ECC mismatch between
* generated and read ECC bytes that has to be dealt with separately.
* E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
* is used, the result of read will be 0x0 while the ECC offsets of the
* spare area will be 0xFF which will result in an ECC mismatch.
* @mtd: MTD structure
* @dat: unused
* @ecc_code: ecc_code buffer
*/
static int __maybe_unused omap_calculate_ecc(struct mtd_info *mtd,
const uint8_t *dat, uint8_t *ecc_code)
{
u_int32_t val;
/* Start Reading from HW ECC1_Result = 0x200 */
val = readl(&gpmc_cfg->ecc1_result);
ecc_code[0] = val & 0xFF;
ecc_code[1] = (val >> 16) & 0xFF;
ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
/*
* Stop reading anymore ECC vals and clear old results
* enable will be called if more reads are required
*/
writel(0x000, &gpmc_cfg->ecc_config);
return 0;
}
/*
* omap_enable_ecc - This function enables the hardware ecc functionality
* @mtd: MTD device structure
* @mode: Read/Write mode
*/
static void __maybe_unused omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
{
struct nand_chip *chip = mtd->priv;
uint32_t val, dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
switch (mode) {
case NAND_ECC_READ:
case NAND_ECC_WRITE:
/* Clear the ecc result registers, select ecc reg as 1 */
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
/*
* Size 0 = 0xFF, Size1 is 0xFF - both are 512 bytes
* tell all regs to generate size0 sized regs
* we just have a single ECC engine for all CS
*/
writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL,
&gpmc_cfg->ecc_size_config);
val = (dev_width << 7) | (cs << 1) | (0x1);
writel(val, &gpmc_cfg->ecc_config);
break;
default:
printf("Error: Unrecognized Mode[%d]!\n", mode);
break;
}
}
/*
* Generic BCH interface
*/
struct nand_bch_priv {
uint8_t mode;
uint8_t type;
uint8_t nibbles;
struct bch_control *control;
enum omap_ecc ecc_scheme;
};
/* bch types */
#define ECC_BCH4 0
#define ECC_BCH8 1
#define ECC_BCH16 2
/* GPMC ecc engine settings */
#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
/* BCH nibbles for diff bch levels */
#define NAND_ECC_HW_BCH ((uint8_t)(NAND_ECC_HW_OOB_FIRST) + 1)
#define ECC_BCH4_NIBBLES 13
#define ECC_BCH8_NIBBLES 26
#define ECC_BCH16_NIBBLES 52
/*
* This can be a single instance cause all current users have only one NAND
* with nearly the same setup (BCH8, some with ELM and others with sw BCH
* library).
* When some users with other BCH strength will exists this have to change!
*/
static __maybe_unused struct nand_bch_priv bch_priv = {
.mode = NAND_ECC_HW_BCH,
.type = ECC_BCH8,
.nibbles = ECC_BCH8_NIBBLES,
.control = NULL
};
/*
* omap_hwecc_init_bch - Initialize the BCH Hardware ECC for NAND flash in
* GPMC controller
* @mtd: MTD device structure
* @mode: Read/Write mode
*/
__maybe_unused
static void omap_hwecc_init_bch(struct nand_chip *chip, int32_t mode)
{
uint32_t val;
uint32_t dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
uint32_t unused_length = 0;
uint32_t wr_mode = BCH_WRAPMODE_6;
struct nand_bch_priv *bch = chip->priv;
/* Clear the ecc result registers, select ecc reg as 1 */
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
if (bch->ecc_scheme == OMAP_ECC_BCH8_CODE_HW) {
wr_mode = BCH_WRAPMODE_1;
switch (bch->nibbles) {
case ECC_BCH4_NIBBLES:
unused_length = 3;
break;
case ECC_BCH8_NIBBLES:
unused_length = 2;
break;
case ECC_BCH16_NIBBLES:
unused_length = 0;
break;
}
/*
* This is ecc_size_config for ELM mode. Here we are using
* different settings for read and write access and also
* depending on BCH strength.
*/
switch (mode) {
case NAND_ECC_WRITE:
/* write access only setup eccsize1 config */
val = ((unused_length + bch->nibbles) << 22);
break;
case NAND_ECC_READ:
default:
/*
* by default eccsize0 selected for ecc1resultsize
* eccsize0 config.
*/
val = (bch->nibbles << 12);
/* eccsize1 config */
val |= (unused_length << 22);
break;
}
} else {
/*
* This ecc_size_config setting is for BCH sw library.
*
* Note: we only support BCH8 currently with BCH sw library!
* Should be really easy to adobt to BCH4, however some omap3
* have flaws with BCH4.
*
* Here we are using wrapping mode 6 both for reading and
* writing, with:
* size0 = 0 (no additional protected byte in spare area)
* size1 = 32 (skip 32 nibbles = 16 bytes per sector in
* spare area)
*/
val = (32 << 22) | (0 << 12);
}
/* ecc size configuration */
writel(val, &gpmc_cfg->ecc_size_config);
/*
* Configure the ecc engine in gpmc
* We assume 512 Byte sector pages for access to NAND.
*/
val = (1 << 16); /* enable BCH mode */
val |= (bch->type << 12); /* setup BCH type */
val |= (wr_mode << 8); /* setup wrapping mode */
val |= (dev_width << 7); /* setup device width (16 or 8 bit) */
val |= (cs << 1); /* setup chip select to work on */
debug("set ECC_CONFIG=0x%08x\n", val);
writel(val, &gpmc_cfg->ecc_config);
}
/*
* omap_enable_ecc_bch - This function enables the bch h/w ecc functionality
* @mtd: MTD device structure
* @mode: Read/Write mode
*/
__maybe_unused
static void omap_enable_ecc_bch(struct mtd_info *mtd, int32_t mode)
{
struct nand_chip *chip = mtd->priv;
omap_hwecc_init_bch(chip, mode);
/* enable ecc */
writel((readl(&gpmc_cfg->ecc_config) | 0x1), &gpmc_cfg->ecc_config);
}
/*
* omap_ecc_disable - Disable H/W ECC calculation
*
* @mtd: MTD device structure
*/
static void __maybe_unused omap_ecc_disable(struct mtd_info *mtd)
{
writel((readl(&gpmc_cfg->ecc_config) & ~0x1), &gpmc_cfg->ecc_config);
}
/*
* BCH support using ELM module
*/
#ifdef CONFIG_NAND_OMAP_ELM
/*
* omap_read_bch8_result - Read BCH result for BCH8 level
*
* @mtd: MTD device structure
* @big_endian: When set read register 3 first
* @ecc_code: Read syndrome from BCH result registers
*/
static void omap_read_bch8_result(struct mtd_info *mtd, uint8_t big_endian,
uint8_t *ecc_code)
{
uint32_t *ptr;
int8_t i = 0, j;
if (big_endian) {
ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
ecc_code[i++] = readl(ptr) & 0xFF;
ptr--;
for (j = 0; j < 3; j++) {
ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
ecc_code[i++] = (readl(ptr) >> 8) & 0xFF;
ecc_code[i++] = readl(ptr) & 0xFF;
ptr--;
}
} else {
ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[0];
for (j = 0; j < 3; j++) {
ecc_code[i++] = readl(ptr) & 0xFF;
ecc_code[i++] = (readl(ptr) >> 8) & 0xFF;
ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
ptr++;
}
ecc_code[i++] = readl(ptr) & 0xFF;
ecc_code[i++] = 0; /* 14th byte is always zero */
}
}
/*
* omap_rotate_ecc_bch - Rotate the syndrome bytes
*
* @mtd: MTD device structure
* @calc_ecc: ECC read from ECC registers
* @syndrome: Rotated syndrome will be retuned in this array
*
*/
static void omap_rotate_ecc_bch(struct mtd_info *mtd, uint8_t *calc_ecc,
uint8_t *syndrome)
{
struct nand_chip *chip = mtd->priv;
struct nand_bch_priv *bch = chip->priv;
uint8_t n_bytes = 0;
int8_t i, j;
switch (bch->type) {
case ECC_BCH4:
n_bytes = 8;
break;
case ECC_BCH16:
n_bytes = 28;
break;
case ECC_BCH8:
default:
n_bytes = 13;
break;
}
for (i = 0, j = (n_bytes-1); i < n_bytes; i++, j--)
syndrome[i] = calc_ecc[j];
}
/*
* omap_calculate_ecc_bch - Read BCH ECC result
*
* @mtd: MTD structure
* @dat: unused
* @ecc_code: ecc_code buffer
*/
static int omap_calculate_ecc_bch(struct mtd_info *mtd, const uint8_t *dat,
uint8_t *ecc_code)
{
struct nand_chip *chip = mtd->priv;
struct nand_bch_priv *bch = chip->priv;
uint8_t big_endian = 1;
int8_t ret = 0;
if (bch->type == ECC_BCH8)
omap_read_bch8_result(mtd, big_endian, ecc_code);
else /* BCH4 and BCH16 currently not supported */
ret = -1;
/*
* Stop reading anymore ECC vals and clear old results
* enable will be called if more reads are required
*/
omap_ecc_disable(mtd);
return ret;
}
/*
* omap_fix_errors_bch - Correct bch error in the data
*
* @mtd: MTD device structure
* @data: Data read from flash
* @error_count:Number of errors in data
* @error_loc: Locations of errors in the data
*
*/
static void omap_fix_errors_bch(struct mtd_info *mtd, uint8_t *data,
uint32_t error_count, uint32_t *error_loc)
{
struct nand_chip *chip = mtd->priv;
struct nand_bch_priv *bch = chip->priv;
uint8_t count = 0;
uint32_t error_byte_pos;
uint32_t error_bit_mask;
uint32_t last_bit = (bch->nibbles * 4) - 1;
/* Flip all bits as specified by the error location array. */
/* FOR( each found error location flip the bit ) */
for (count = 0; count < error_count; count++) {
if (error_loc[count] > last_bit) {
/* Remove the ECC spare bits from correction. */
error_loc[count] -= (last_bit + 1);
/* Offset bit in data region */
error_byte_pos = ((512 * 8) -
(error_loc[count]) - 1) / 8;
/* Error Bit mask */
error_bit_mask = 0x1 << (error_loc[count] % 8);
/* Toggle the error bit to make the correction. */
data[error_byte_pos] ^= error_bit_mask;
}
}
}
/*
* omap_correct_data_bch - Compares the ecc read from nand spare area
* with ECC registers values and corrects one bit error if it has occured
*
* @mtd: MTD device structure
* @dat: page data
* @read_ecc: ecc read from nand flash (ignored)
* @calc_ecc: ecc read from ECC registers
*
* @return 0 if data is OK or corrected, else returns -1
*/
static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
uint8_t *read_ecc, uint8_t *calc_ecc)
{
struct nand_chip *chip = mtd->priv;
struct nand_bch_priv *bch = chip->priv;
uint8_t syndrome[28];
uint32_t error_count = 0;
uint32_t error_loc[8];
uint32_t i, ecc_flag;
ecc_flag = 0;
for (i = 0; i < chip->ecc.bytes; i++)
if (read_ecc[i] != 0xff)
ecc_flag = 1;
if (!ecc_flag)
return 0;
elm_reset();
elm_config((enum bch_level)(bch->type));
/*
* while reading ECC result we read it in big endian.
* Hence while loading to ELM we have rotate to get the right endian.
*/
omap_rotate_ecc_bch(mtd, calc_ecc, syndrome);
/* use elm module to check for errors */
if (elm_check_error(syndrome, bch->nibbles, &error_count,
error_loc) != 0) {
printf("ECC: uncorrectable.\n");
return -1;
}
/* correct bch error */
if (error_count > 0)
omap_fix_errors_bch(mtd, dat, error_count, error_loc);
return 0;
}
/**
* omap_read_page_bch - hardware ecc based page read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller expects OOB data read to chip->oob_poi
* @page: page number to read
*
*/
static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *ecc_calc = chip->buffers->ecccalc;
uint8_t *ecc_code = chip->buffers->ecccode;
uint32_t *eccpos = chip->ecc.layout->eccpos;
uint8_t *oob = chip->oob_poi;
uint32_t data_pos;
uint32_t oob_pos;
data_pos = 0;
/* oob area start */
oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
oob += chip->ecc.layout->eccpos[0];
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
oob += eccbytes) {
chip->ecc.hwctl(mtd, NAND_ECC_READ);
/* read data */
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, page);
chip->read_buf(mtd, p, eccsize);
/* read respective ecc from oob area */
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, page);
chip->read_buf(mtd, oob, eccbytes);
/* read syndrome */
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
data_pos += eccsize;
oob_pos += eccbytes;
}
for (i = 0; i < chip->ecc.total; i++)
ecc_code[i] = chip->oob_poi[eccpos[i]];
eccsteps = chip->ecc.steps;
p = buf;
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
if (stat < 0)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += stat;
}
return 0;
}
#endif /* CONFIG_NAND_OMAP_ELM */
/*
* OMAP3 BCH8 support (with BCH library)
*/
#ifdef CONFIG_BCH
/*
* omap_calculate_ecc_bch_sw - Read BCH ECC result
*
* @mtd: MTD device structure
* @dat: The pointer to data on which ecc is computed (unused here)
* @ecc: The ECC output buffer
*/
static int omap_calculate_ecc_bch_sw(struct mtd_info *mtd, const uint8_t *dat,
uint8_t *ecc)
{
int ret = 0;
size_t i;
unsigned long nsectors, val1, val2, val3, val4;
nsectors = ((readl(&gpmc_cfg->ecc_config) >> 4) & 0x7) + 1;
for (i = 0; i < nsectors; i++) {
/* Read hw-computed remainder */
val1 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[0]);
val2 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[1]);
val3 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[2]);
val4 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[3]);
/*
* Add constant polynomial to remainder, in order to get an ecc
* sequence of 0xFFs for a buffer filled with 0xFFs.
*/
*ecc++ = 0xef ^ (val4 & 0xFF);
*ecc++ = 0x51 ^ ((val3 >> 24) & 0xFF);
*ecc++ = 0x2e ^ ((val3 >> 16) & 0xFF);
*ecc++ = 0x09 ^ ((val3 >> 8) & 0xFF);
*ecc++ = 0xed ^ (val3 & 0xFF);
*ecc++ = 0x93 ^ ((val2 >> 24) & 0xFF);
*ecc++ = 0x9a ^ ((val2 >> 16) & 0xFF);
*ecc++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
*ecc++ = 0x97 ^ (val2 & 0xFF);
*ecc++ = 0x79 ^ ((val1 >> 24) & 0xFF);
*ecc++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
*ecc++ = 0x24 ^ ((val1 >> 8) & 0xFF);
*ecc++ = 0xb5 ^ (val1 & 0xFF);
}
/*
* Stop reading anymore ECC vals and clear old results
* enable will be called if more reads are required
*/
omap_ecc_disable(mtd);
return ret;
}
/**
* omap_correct_data_bch_sw - Decode received data and correct errors
* @mtd: MTD device structure
* @data: page data
* @read_ecc: ecc read from nand flash
* @calc_ecc: ecc read from HW ECC registers
*/
static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
u_char *read_ecc, u_char *calc_ecc)
{
int i, count;
/* cannot correct more than 8 errors */
unsigned int errloc[8];
struct nand_chip *chip = mtd->priv;
struct nand_bch_priv *chip_priv = chip->priv;
struct bch_control *bch = chip_priv->control;
count = decode_bch(bch, NULL, 512, read_ecc, calc_ecc, NULL, errloc);
if (count > 0) {
/* correct errors */
for (i = 0; i < count; i++) {
/* correct data only, not ecc bytes */
if (errloc[i] < 8*512)
data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
printf("corrected bitflip %u\n", errloc[i]);
#ifdef DEBUG
puts("read_ecc: ");
/*
* BCH8 have 13 bytes of ECC; BCH4 needs adoption
* here!
*/
for (i = 0; i < 13; i++)
printf("%02x ", read_ecc[i]);
puts("\n");
puts("calc_ecc: ");
for (i = 0; i < 13; i++)
printf("%02x ", calc_ecc[i]);
puts("\n");
#endif
}
} else if (count < 0) {
puts("ecc unrecoverable error\n");
}
return count;
}
/**
* omap_free_bch - Release BCH ecc resources
* @mtd: MTD device structure
*/
static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
struct nand_bch_priv *chip_priv = chip->priv;
struct bch_control *bch = NULL;
if (chip_priv)
bch = chip_priv->control;
if (bch) {
free_bch(bch);
chip_priv->control = NULL;
}
}
#endif /* CONFIG_BCH */
/**
* omap_select_ecc_scheme - configures driver for particular ecc-scheme
* @nand: NAND chip device structure
* @ecc_scheme: ecc scheme to configure
* @pagesize: number of main-area bytes per page of NAND device
* @oobsize: number of OOB/spare bytes per page of NAND device
*/
static int omap_select_ecc_scheme(struct nand_chip *nand,
enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
struct nand_bch_priv *bch = nand->priv;
struct nand_ecclayout *ecclayout = &omap_ecclayout;
int eccsteps = pagesize / SECTOR_BYTES;
int i;
switch (ecc_scheme) {
case OMAP_ECC_HAM1_CODE_SW:
debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
/* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
* initialized in nand_scan_tail(), so just set ecc.mode */
bch_priv.control = NULL;
bch_priv.type = 0;
nand->ecc.mode = NAND_ECC_SOFT;
nand->ecc.layout = NULL;
nand->ecc.size = 0;
bch->ecc_scheme = OMAP_ECC_HAM1_CODE_SW;
break;
case OMAP_ECC_HAM1_CODE_HW:
debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
/* check ecc-scheme requirements before updating ecc info */
if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
printf("nand: error: insufficient OOB: require=%d\n", (
(3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
return -EINVAL;
}
bch_priv.control = NULL;
bch_priv.type = 0;
/* populate ecc specific fields */
memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.strength = 1;
nand->ecc.size = SECTOR_BYTES;
nand->ecc.bytes = 3;
nand->ecc.hwctl = omap_enable_hwecc;
nand->ecc.correct = omap_correct_data;
nand->ecc.calculate = omap_calculate_ecc;
/* define ecc-layout */
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
for (i = 0; i < ecclayout->eccbytes; i++) {
if (nand->options & NAND_BUSWIDTH_16)
ecclayout->eccpos[i] = i + 2;
else
ecclayout->eccpos[i] = i + 1;
}
ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
BADBLOCK_MARKER_LENGTH;
bch->ecc_scheme = OMAP_ECC_HAM1_CODE_HW;
break;
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
#ifdef CONFIG_BCH
debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
/* check ecc-scheme requirements before updating ecc info */
if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
printf("nand: error: insufficient OOB: require=%d\n", (
(13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
return -EINVAL;
}
/* check if BCH S/W library can be used for error detection */
bch_priv.control = init_bch(13, 8, 0x201b);
if (!bch_priv.control) {
printf("nand: error: could not init_bch()\n");
return -ENODEV;
}
bch_priv.type = ECC_BCH8;
/* populate ecc specific fields */
memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.strength = 8;
nand->ecc.size = SECTOR_BYTES;
nand->ecc.bytes = 13;
nand->ecc.hwctl = omap_enable_ecc_bch;
nand->ecc.correct = omap_correct_data_bch_sw;
nand->ecc.calculate = omap_calculate_ecc_bch_sw;
/* define ecc-layout */
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
for (i = 1; i < ecclayout->eccbytes; i++) {
if (i % nand->ecc.bytes)
ecclayout->eccpos[i] =
ecclayout->eccpos[i - 1] + 1;
else
ecclayout->eccpos[i] =
ecclayout->eccpos[i - 1] + 2;
}
ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
BADBLOCK_MARKER_LENGTH;
omap_hwecc_init_bch(nand, NAND_ECC_READ);
bch->ecc_scheme = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
break;
#else
printf("nand: error: CONFIG_BCH required for ECC\n");
return -EINVAL;
#endif
case OMAP_ECC_BCH8_CODE_HW:
#ifdef CONFIG_NAND_OMAP_ELM
debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
/* check ecc-scheme requirements before updating ecc info */
if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
printf("nand: error: insufficient OOB: require=%d\n", (
(14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
return -EINVAL;
}
/* intialize ELM for ECC error detection */
elm_init();
bch_priv.type = ECC_BCH8;
/* populate ecc specific fields */
memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.strength = 8;
nand->ecc.size = SECTOR_BYTES;
nand->ecc.bytes = 14;
nand->ecc.hwctl = omap_enable_ecc_bch;
nand->ecc.correct = omap_correct_data_bch;
nand->ecc.calculate = omap_calculate_ecc_bch;
nand->ecc.read_page = omap_read_page_bch;
/* define ecc-layout */
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
for (i = 0; i < ecclayout->eccbytes; i++)
ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
BADBLOCK_MARKER_LENGTH;
bch->ecc_scheme = OMAP_ECC_BCH8_CODE_HW;
break;
#else
printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
return -EINVAL;
#endif
default:
debug("nand: error: ecc scheme not enabled or supported\n");
return -EINVAL;
}
/* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
nand->ecc.layout = ecclayout;
return 0;
}
#ifndef CONFIG_SPL_BUILD
/*
* omap_nand_switch_ecc - switch the ECC operation between different engines
* (h/w and s/w) and different algorithms (hamming and BCHx)
*
* @hardware - true if one of the HW engines should be used
* @eccstrength - the number of bits that could be corrected
* (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
*/
int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
{
struct nand_chip *nand;
struct mtd_info *mtd;
int err = 0;
if (nand_curr_device < 0 ||
nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
!nand_info[nand_curr_device].name) {
printf("nand: error: no NAND devices found\n");
return -ENODEV;
}
mtd = &nand_info[nand_curr_device];
nand = mtd->priv;
nand->options |= NAND_OWN_BUFFERS;
/* Setup the ecc configurations again */
if (hardware) {
if (eccstrength == 1) {
err = omap_select_ecc_scheme(nand,
OMAP_ECC_HAM1_CODE_HW,
mtd->writesize, mtd->oobsize);
} else if (eccstrength == 8) {
err = omap_select_ecc_scheme(nand,
OMAP_ECC_BCH8_CODE_HW,
mtd->writesize, mtd->oobsize);
} else {
printf("nand: error: unsupported ECC scheme\n");
return -EINVAL;
}
} else {
err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
mtd->writesize, mtd->oobsize);
}
/* Update NAND handling after ECC mode switch */
if (!err)
err = nand_scan_tail(mtd);
return err;
}
#endif /* CONFIG_SPL_BUILD */
/*
* Board-specific NAND initialization. The following members of the
* argument are board-specific:
* - IO_ADDR_R: address to read the 8 I/O lines of the flash device
* - IO_ADDR_W: address to write the 8 I/O lines of the flash device
* - cmd_ctrl: hardwarespecific function for accesing control-lines
* - waitfunc: hardwarespecific function for accesing device ready/busy line
* - ecc.hwctl: function to enable (reset) hardware ecc generator
* - ecc.mode: mode of ecc, see defines
* - chip_delay: chip dependent delay for transfering data from array to
* read regs (tR)
* - options: various chip options. They can partly be set to inform
* nand_scan about special functionality. See the defines for further
* explanation
*/
int board_nand_init(struct nand_chip *nand)
{
int32_t gpmc_config = 0;
cs = 0;
int err = 0;
/*
* xloader/Uboot's gpmc configuration would have configured GPMC for
* nand type of memory. The following logic scans and latches on to the
* first CS with NAND type memory.
* TBD: need to make this logic generic to handle multiple CS NAND
* devices.
*/
while (cs < GPMC_MAX_CS) {
/* Check if NAND type is set */
if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
/* Found it!! */
break;
}
cs++;
}
if (cs >= GPMC_MAX_CS) {
printf("nand: error: Unable to find NAND settings in "
"GPMC Configuration - quitting\n");
return -ENODEV;
}
gpmc_config = readl(&gpmc_cfg->config);
/* Disable Write protect */
gpmc_config |= 0x10;
writel(gpmc_config, &gpmc_cfg->config);
nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
nand->priv = &bch_priv;
nand->cmd_ctrl = omap_nand_hwcontrol;
nand->options |= NAND_NO_PADDING | NAND_CACHEPRG;
/* If we are 16 bit dev, our gpmc config tells us that */
if ((readl(&gpmc_cfg->cs[cs].config1) & 0x3000) == 0x1000)
nand->options |= NAND_BUSWIDTH_16;
nand->chip_delay = 100;
nand->ecc.layout = &omap_ecclayout;
/* select ECC scheme */
#if defined(CONFIG_NAND_OMAP_ECCSCHEME)
err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
#else
/* pagesize and oobsize are not required to configure sw ecc-scheme */
err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
0, 0);
#endif
if (err)
return err;
#ifdef CONFIG_SPL_BUILD
if (nand->options & NAND_BUSWIDTH_16)
nand->read_buf = nand_read_buf16;
else
nand->read_buf = nand_read_buf;
nand->dev_ready = omap_spl_dev_ready;
#endif
return 0;
}