| /* |
| * (C) Copyright 2002 |
| * Custom IDEAS, Inc. <www.cideas.com> |
| * Gerald Van Baren <vanbaren@cideas.com> |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| #include <asm/u-boot.h> |
| #include <common.h> |
| #include <ioports.h> |
| #include <mpc8260.h> |
| #include <i2c.h> |
| #include <spi.h> |
| |
| #ifdef CONFIG_SHOW_BOOT_PROGRESS |
| #include <status_led.h> |
| #endif |
| |
| #include "clkinit.h" |
| #include "ioconfig.h" /* I/O configuration table */ |
| |
| /* |
| * PBI Page Based Interleaving |
| * PSDMR_PBI page based interleaving |
| * 0 bank based interleaving |
| * External Address Multiplexing (EAMUX) adds a clock to address cycles |
| * (this can help with marginal board layouts) |
| * PSDMR_EAMUX adds a clock |
| * 0 no extra clock |
| * Buffer Command (BUFCMD) adds a clock to command cycles. |
| * PSDMR_BUFCMD adds a clock |
| * 0 no extra clock |
| */ |
| #define CONFIG_PBI PSDMR_PBI |
| #define PESSIMISTIC_SDRAM 0 |
| #define EAMUX 0 /* EST requires EAMUX */ |
| #define BUFCMD 0 |
| |
| /* |
| * ADC/DAC Defines: |
| */ |
| #define INITIAL_SAMPLE_RATE 10016 /* Initial Daq sample rate */ |
| #define INITIAL_RIGHT_JUST 0 /* Initial DAC right justification */ |
| #define INITIAL_MCLK_DIVIDE 0 /* Initial MCLK Divide */ |
| #define INITIAL_SAMPLE_64X 1 /* Initial 64x clocking mode */ |
| #define INITIAL_SAMPLE_128X 0 /* Initial 128x clocking mode */ |
| |
| /* |
| * ADC Defines: |
| */ |
| #define I2C_ADC_1_ADDR 0x0E /* I2C Address of the ADC #1 */ |
| #define I2C_ADC_2_ADDR 0x0F /* I2C Address of the ADC #2 */ |
| |
| #define ADC_SDATA1_MASK 0x00020000 /* PA14 - CH12SDATA_PU */ |
| #define ADC_SDATA2_MASK 0x00010000 /* PA15 - CH34SDATA_PU */ |
| |
| #define ADC_VREF_CAP 100 /* VREF capacitor in uF */ |
| #define ADC_INITIAL_DELAY (10 * ADC_VREF_CAP) /* 10 usec per uF, in usec */ |
| #define ADC_SDATA_DELAY 100 /* ADC SDATA release delay in usec */ |
| #define ADC_CAL_DELAY (1000000 / INITIAL_SAMPLE_RATE * 4500) |
| /* Wait at least 4100 LRCLK's */ |
| |
| #define ADC_REG1_FRAME_START 0x80 /* Frame start */ |
| #define ADC_REG1_GROUND_CAL 0x40 /* Ground calibration enable */ |
| #define ADC_REG1_ANA_MOD_PDOWN 0x20 /* Analog modulator section in power down */ |
| #define ADC_REG1_DIG_MOD_PDOWN 0x10 /* Digital modulator section in power down */ |
| |
| #define ADC_REG2_128x 0x80 /* Oversample at 128x */ |
| #define ADC_REG2_CAL 0x40 /* System calibration enable */ |
| #define ADC_REG2_CHANGE_SIGN 0x20 /* Change sign enable */ |
| #define ADC_REG2_LR_DISABLE 0x10 /* Left/Right output disable */ |
| #define ADC_REG2_HIGH_PASS_DIS 0x08 /* High pass filter disable */ |
| #define ADC_REG2_SLAVE_MODE 0x04 /* Slave mode */ |
| #define ADC_REG2_DFS 0x02 /* Digital format select */ |
| #define ADC_REG2_MUTE 0x01 /* Mute */ |
| |
| #define ADC_REG7_ADDR_ENABLE 0x80 /* Address enable */ |
| #define ADC_REG7_PEAK_ENABLE 0x40 /* Peak enable */ |
| #define ADC_REG7_PEAK_UPDATE 0x20 /* Peak update */ |
| #define ADC_REG7_PEAK_FORMAT 0x10 /* Peak display format */ |
| #define ADC_REG7_DIG_FILT_PDOWN 0x04 /* Digital filter power down enable */ |
| #define ADC_REG7_FIR2_IN_EN 0x02 /* External FIR2 input enable */ |
| #define ADC_REG7_PSYCHO_EN 0x01 /* External pyscho filter input enable */ |
| |
| /* |
| * DAC Defines: |
| */ |
| |
| #define I2C_DAC_ADDR 0x11 /* I2C Address of the DAC */ |
| |
| #define DAC_RST_MASK 0x00008000 /* PA16 - DAC_RST* */ |
| #define DAC_RESET_DELAY 100 /* DAC reset delay in usec */ |
| #define DAC_INITIAL_DELAY 5000 /* DAC initialization delay in usec */ |
| |
| #define DAC_REG1_AMUTE 0x80 /* Auto-mute */ |
| |
| #define DAC_REG1_LEFT_JUST_24_BIT (0 << 4) /* Fmt 0: Left justified 24 bit */ |
| #define DAC_REG1_I2S_24_BIT (1 << 4) /* Fmt 1: I2S up to 24 bit */ |
| #define DAC_REG1_RIGHT_JUST_16BIT (2 << 4) /* Fmt 2: Right justified 16 bit */ |
| #define DAC_REG1_RIGHT_JUST_24BIT (3 << 4) /* Fmt 3: Right justified 24 bit */ |
| #define DAC_REG1_RIGHT_JUST_20BIT (4 << 4) /* Fmt 4: Right justified 20 bit */ |
| #define DAC_REG1_RIGHT_JUST_18BIT (5 << 4) /* Fmt 5: Right justified 18 bit */ |
| |
| #define DAC_REG1_DEM_NO (0 << 2) /* No De-emphasis */ |
| #define DAC_REG1_DEM_44KHZ (1 << 2) /* 44.1KHz De-emphasis */ |
| #define DAC_REG1_DEM_48KHZ (2 << 2) /* 48KHz De-emphasis */ |
| #define DAC_REG1_DEM_32KHZ (3 << 2) /* 32KHz De-emphasis */ |
| |
| #define DAC_REG1_SINGLE 0 /* 4- 50KHz sample rate */ |
| #define DAC_REG1_DOUBLE 1 /* 50-100KHz sample rate */ |
| #define DAC_REG1_QUAD 2 /* 100-200KHz sample rate */ |
| #define DAC_REG1_DSD 3 /* Direct Stream Data, DSD */ |
| |
| #define DAC_REG5_INVERT_A 0x80 /* Invert channel A */ |
| #define DAC_REG5_INVERT_B 0x40 /* Invert channel B */ |
| #define DAC_REG5_I2C_MODE 0x20 /* Control port (I2C) mode */ |
| #define DAC_REG5_POWER_DOWN 0x10 /* Power down mode */ |
| #define DAC_REG5_MUTEC_A_B 0x08 /* Mutec A=B */ |
| #define DAC_REG5_FREEZE 0x04 /* Freeze */ |
| #define DAC_REG5_MCLK_DIV 0x02 /* MCLK divide by 2 */ |
| #define DAC_REG5_RESERVED 0x01 /* Reserved */ |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| /* |
| * Check Board Identity: |
| */ |
| |
| int checkboard(void) |
| { |
| printf ("SACSng\n"); |
| |
| return 0; |
| } |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| long int initdram(int board_type) |
| { |
| volatile immap_t *immap = (immap_t *)CFG_IMMR; |
| volatile memctl8260_t *memctl = &immap->im_memctl; |
| volatile uchar c = 0; |
| volatile uchar *ramaddr = (uchar *)(CFG_SDRAM_BASE + 0x8); |
| uint psdmr = CFG_PSDMR; |
| int i; |
| uint psrt = 14; /* for no SPD */ |
| uint chipselects = 1; /* for no SPD */ |
| uint sdram_size = CFG_SDRAM0_SIZE * 1024 * 1024; /* for no SPD */ |
| uint or = CFG_OR2_PRELIM; /* for no SPD */ |
| #ifdef SDRAM_SPD_ADDR |
| uint data_width; |
| uint rows; |
| uint banks; |
| uint cols; |
| uint caslatency; |
| uint width; |
| uint rowst; |
| uint sdam; |
| uint bsma; |
| uint sda10; |
| u_char spd_size; |
| u_char data; |
| u_char cksum; |
| int j; |
| #endif |
| |
| #ifdef SDRAM_SPD_ADDR |
| /* Keep the compiler from complaining about potentially uninitialized vars */ |
| data_width = chipselects = rows = banks = cols = caslatency = psrt = 0; |
| |
| /* |
| * Read the SDRAM SPD EEPROM via I2C. |
| */ |
| i2c_read(SDRAM_SPD_ADDR, 0, 1, &data, 1); |
| spd_size = data; |
| cksum = data; |
| for(j = 1; j < 64; j++) { /* read only the checksummed bytes */ |
| /* note: the I2C address autoincrements when alen == 0 */ |
| i2c_read(SDRAM_SPD_ADDR, 0, 0, &data, 1); |
| if(j == 5) chipselects = data & 0x0F; |
| else if(j == 6) data_width = data; |
| else if(j == 7) data_width |= data << 8; |
| else if(j == 3) rows = data & 0x0F; |
| else if(j == 4) cols = data & 0x0F; |
| else if(j == 12) { |
| /* |
| * Refresh rate: this assumes the prescaler is set to |
| * approximately 1uSec per tick. |
| */ |
| switch(data & 0x7F) { |
| default: |
| case 0: psrt = 14 ; /* 15.625uS */ break; |
| case 1: psrt = 2; /* 3.9uS */ break; |
| case 2: psrt = 6; /* 7.8uS */ break; |
| case 3: psrt = 29; /* 31.3uS */ break; |
| case 4: psrt = 60; /* 62.5uS */ break; |
| case 5: psrt = 120; /* 125uS */ break; |
| } |
| } |
| else if(j == 17) banks = data; |
| else if(j == 18) { |
| caslatency = 3; /* default CL */ |
| #if(PESSIMISTIC_SDRAM) |
| if((data & 0x04) != 0) caslatency = 3; |
| else if((data & 0x02) != 0) caslatency = 2; |
| else if((data & 0x01) != 0) caslatency = 1; |
| #else |
| if((data & 0x01) != 0) caslatency = 1; |
| else if((data & 0x02) != 0) caslatency = 2; |
| else if((data & 0x04) != 0) caslatency = 3; |
| #endif |
| else { |
| printf ("WARNING: Unknown CAS latency 0x%02X, using 3\n", |
| data); |
| } |
| } |
| else if(j == 63) { |
| if(data != cksum) { |
| printf ("WARNING: Configuration data checksum failure:" |
| " is 0x%02x, calculated 0x%02x\n", |
| data, cksum); |
| } |
| } |
| cksum += data; |
| } |
| |
| /* We don't trust CL less than 2 (only saw it on an old 16MByte DIMM) */ |
| if(caslatency < 2) { |
| printf("CL was %d, forcing to 2\n", caslatency); |
| caslatency = 2; |
| } |
| if(rows > 14) { |
| printf("This doesn't look good, rows = %d, should be <= 14\n", rows); |
| rows = 14; |
| } |
| if(cols > 11) { |
| printf("This doesn't look good, columns = %d, should be <= 11\n", cols); |
| cols = 11; |
| } |
| |
| if((data_width != 64) && (data_width != 72)) |
| { |
| printf("WARNING: SDRAM width unsupported, is %d, expected 64 or 72.\n", |
| data_width); |
| } |
| width = 3; /* 2^3 = 8 bytes = 64 bits wide */ |
| /* |
| * Convert banks into log2(banks) |
| */ |
| if (banks == 2) banks = 1; |
| else if(banks == 4) banks = 2; |
| else if(banks == 8) banks = 3; |
| |
| sdram_size = 1 << (rows + cols + banks + width); |
| |
| #if(CONFIG_PBI == 0) /* bank-based interleaving */ |
| rowst = ((32 - 6) - (rows + cols + width)) * 2; |
| #else |
| rowst = 32 - (rows + banks + cols + width); |
| #endif |
| |
| or = ~(sdram_size - 1) | /* SDAM address mask */ |
| ((banks-1) << 13) | /* banks per device */ |
| (rowst << 9) | /* rowst */ |
| ((rows - 9) << 6); /* numr */ |
| |
| memctl->memc_or2 = or; |
| |
| /* |
| * SDAM specifies the number of columns that are multiplexed |
| * (reference AN2165/D), defined to be (columns - 6) for page |
| * interleave, (columns - 8) for bank interleave. |
| * |
| * BSMA is 14 - max(rows, cols). The bank select lines come |
| * into play above the highest "address" line going into the |
| * the SDRAM. |
| */ |
| #if(CONFIG_PBI == 0) /* bank-based interleaving */ |
| sdam = cols - 8; |
| bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols); |
| sda10 = sdam + 2; |
| #else |
| sdam = cols - 6; |
| bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols); |
| sda10 = sdam; |
| #endif |
| #if(PESSIMISTIC_SDRAM) |
| psdmr = (CONFIG_PBI |\ |
| PSDMR_RFEN |\ |
| PSDMR_RFRC_16_CLK |\ |
| PSDMR_PRETOACT_8W |\ |
| PSDMR_ACTTORW_8W |\ |
| PSDMR_WRC_4C |\ |
| PSDMR_EAMUX |\ |
| PSDMR_BUFCMD) |\ |
| caslatency |\ |
| ((caslatency - 1) << 6) | /* LDOTOPRE is CL - 1 */ \ |
| (sdam << 24) |\ |
| (bsma << 21) |\ |
| (sda10 << 18); |
| #else |
| psdmr = (CONFIG_PBI |\ |
| PSDMR_RFEN |\ |
| PSDMR_RFRC_7_CLK |\ |
| PSDMR_PRETOACT_3W | /* 1 for 7E parts (fast PC-133) */ \ |
| PSDMR_ACTTORW_2W | /* 1 for 7E parts (fast PC-133) */ \ |
| PSDMR_WRC_1C | /* 1 clock + 7nSec */ |
| EAMUX |\ |
| BUFCMD) |\ |
| caslatency |\ |
| ((caslatency - 1) << 6) | /* LDOTOPRE is CL - 1 */ \ |
| (sdam << 24) |\ |
| (bsma << 21) |\ |
| (sda10 << 18); |
| #endif |
| #endif |
| |
| /* |
| * Quote from 8260 UM (10.4.2 SDRAM Power-On Initialization, 10-35): |
| * |
| * "At system reset, initialization software must set up the |
| * programmable parameters in the memory controller banks registers |
| * (ORx, BRx, P/LSDMR). After all memory parameters are configured, |
| * system software should execute the following initialization sequence |
| * for each SDRAM device. |
| * |
| * 1. Issue a PRECHARGE-ALL-BANKS command |
| * 2. Issue eight CBR REFRESH commands |
| * 3. Issue a MODE-SET command to initialize the mode register |
| * |
| * Quote from Micron MT48LC8M16A2 data sheet: |
| * |
| * "...the SDRAM requires a 100uS delay prior to issuing any |
| * command other than a COMMAND INHIBIT or NOP. Starting at some |
| * point during this 100uS period and continuing at least through |
| * the end of this period, COMMAND INHIBIT or NOP commands should |
| * be applied." |
| * |
| * "Once the 100uS delay has been satisfied with at least one COMMAND |
| * INHIBIT or NOP command having been applied, a /PRECHARGE command/ |
| * should be applied. All banks must then be precharged, thereby |
| * placing the device in the all banks idle state." |
| * |
| * "Once in the idle state, /two/ AUTO REFRESH cycles must be |
| * performed. After the AUTO REFRESH cycles are complete, the |
| * SDRAM is ready for mode register programming." |
| * |
| * (/emphasis/ mine, gvb) |
| * |
| * The way I interpret this, Micron start up sequence is: |
| * 1. Issue a PRECHARGE-BANK command (initial precharge) |
| * 2. Issue a PRECHARGE-ALL-BANKS command ("all banks ... precharged") |
| * 3. Issue two (presumably, doing eight is OK) CBR REFRESH commands |
| * 4. Issue a MODE-SET command to initialize the mode register |
| * |
| * -------- |
| * |
| * The initial commands are executed by setting P/LSDMR[OP] and |
| * accessing the SDRAM with a single-byte transaction." |
| * |
| * The appropriate BRx/ORx registers have already been set when we |
| * get here. The SDRAM can be accessed at the address CFG_SDRAM_BASE. |
| */ |
| |
| memctl->memc_mptpr = CFG_MPTPR; |
| memctl->memc_psrt = psrt; |
| |
| memctl->memc_psdmr = psdmr | PSDMR_OP_PREA; |
| *ramaddr = c; |
| |
| memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR; |
| for (i = 0; i < 8; i++) |
| *ramaddr = c; |
| |
| memctl->memc_psdmr = psdmr | PSDMR_OP_MRW; |
| *ramaddr = c; |
| |
| memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN; |
| *ramaddr = c; |
| |
| /* |
| * Do it a second time for the second set of chips if the DIMM has |
| * two chip selects (double sided). |
| */ |
| if(chipselects > 1) { |
| ramaddr += sdram_size; |
| |
| memctl->memc_br3 = CFG_BR3_PRELIM + sdram_size; |
| memctl->memc_or3 = or; |
| |
| memctl->memc_psdmr = psdmr | PSDMR_OP_PREA; |
| *ramaddr = c; |
| |
| memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR; |
| for (i = 0; i < 8; i++) |
| *ramaddr = c; |
| |
| memctl->memc_psdmr = psdmr | PSDMR_OP_MRW; |
| *ramaddr = c; |
| |
| memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN; |
| *ramaddr = c; |
| } |
| |
| /* return total ram size */ |
| return (sdram_size * chipselects); |
| } |
| |
| /*----------------------------------------------------------------------- |
| * Board Control Functions |
| */ |
| void board_poweroff (void) |
| { |
| while (1); /* hang forever */ |
| } |
| |
| |
| #ifdef CONFIG_MISC_INIT_R |
| /* ------------------------------------------------------------------------- */ |
| int misc_init_r(void) |
| { |
| /* |
| * Note: iop is used by the I2C macros, and iopa by the ADC/DAC initialization. |
| */ |
| volatile ioport_t *iopa = ioport_addr((immap_t *)CFG_IMMR, 0 /* port A */); |
| volatile ioport_t *iop = ioport_addr((immap_t *)CFG_IMMR, I2C_PORT); |
| |
| int reg; /* I2C register value */ |
| char *ep; /* Environment pointer */ |
| char str_buf[12] ; /* sprintf output buffer */ |
| int sample_rate; /* ADC/DAC sample rate */ |
| int sample_64x; /* Use 64/4 clocking for the ADC/DAC */ |
| int sample_128x; /* Use 128/4 clocking for the ADC/DAC */ |
| int right_just; /* Is the data to the DAC right justified? */ |
| int mclk_divide; /* MCLK Divide */ |
| |
| /* |
| * SACSng custom initialization: |
| * Start the ADC and DAC clocks, since the Crystal parts do not |
| * work on the I2C bus until the clocks are running. |
| */ |
| |
| sample_rate = INITIAL_SAMPLE_RATE; |
| if ((ep = getenv("DaqSampleRate")) != NULL) { |
| sample_rate = simple_strtol(ep, NULL, 10); |
| } |
| |
| sample_64x = INITIAL_SAMPLE_64X; |
| sample_128x = INITIAL_SAMPLE_128X; |
| if ((ep = getenv("Daq64xSampling")) != NULL) { |
| sample_64x = simple_strtol(ep, NULL, 10); |
| if (sample_64x) { |
| sample_128x = 0; |
| } |
| else { |
| sample_128x = 1; |
| } |
| } |
| else { |
| if ((ep = getenv("Daq128xSampling")) != NULL) { |
| sample_128x = simple_strtol(ep, NULL, 10); |
| if (sample_128x) { |
| sample_64x = 0; |
| } |
| else { |
| sample_64x = 1; |
| } |
| } |
| } |
| |
| /* |
| * Stop the clocks and wait for at least 1 LRCLK period |
| * to make sure the clocking has really stopped. |
| */ |
| Daq_Stop_Clocks(); |
| udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE); |
| |
| /* |
| * Initialize the clocks with the new rates |
| */ |
| Daq_Init_Clocks(sample_rate, sample_64x); |
| sample_rate = Daq_Get_SampleRate(); |
| |
| /* |
| * Start the clocks and wait for at least 1 LRCLK period |
| * to make sure the clocking has become stable. |
| */ |
| Daq_Start_Clocks(sample_rate); |
| udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE); |
| |
| sprintf(str_buf, "%d", sample_rate); |
| setenv("DaqSampleRate", str_buf); |
| |
| if (sample_64x) { |
| setenv("Daq64xSampling", "1"); |
| setenv("Daq128xSampling", NULL); |
| } |
| else { |
| setenv("Daq64xSampling", NULL); |
| setenv("Daq128xSampling", "1"); |
| } |
| |
| /* Display the ADC/DAC clocking information */ |
| Daq_Display_Clocks(); |
| |
| /* |
| * Determine the DAC data justification |
| */ |
| |
| right_just = INITIAL_RIGHT_JUST; |
| if ((ep = getenv("DaqDACRightJustified")) != NULL) { |
| right_just = simple_strtol(ep, NULL, 10); |
| } |
| |
| sprintf(str_buf, "%d", right_just); |
| setenv("DaqDACRightJustified", str_buf); |
| |
| /* |
| * Determine the DAC MCLK Divide |
| */ |
| |
| mclk_divide = INITIAL_MCLK_DIVIDE; |
| if ((ep = getenv("DaqDACMClockDivide")) != NULL) { |
| mclk_divide = simple_strtol(ep, NULL, 10); |
| } |
| |
| sprintf(str_buf, "%d", mclk_divide); |
| setenv("DaqDACMClockDivide", str_buf); |
| |
| /* |
| * Initializing the I2C address in the Crystal A/Ds: |
| * |
| * 1) Wait for VREF cap to settle (10uSec per uF) |
| * 2) Release pullup on SDATA |
| * 3) Write the I2C address to register 6 |
| * 4) Enable address matching by setting the MSB in register 7 |
| */ |
| |
| printf("Initializing the ADC...\n"); |
| udelay(ADC_INITIAL_DELAY); /* 10uSec per uF of VREF cap */ |
| |
| iopa->pdat &= ~ADC_SDATA1_MASK; /* release SDATA1 */ |
| udelay(ADC_SDATA_DELAY); /* arbitrary settling time */ |
| |
| i2c_reg_write(0x00, 0x06, I2C_ADC_1_ADDR); /* set address */ |
| i2c_reg_write(I2C_ADC_1_ADDR, 0x07, /* turn on ADDREN */ |
| ADC_REG7_ADDR_ENABLE); |
| |
| i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* 128x, slave mode, !HPEN */ |
| (sample_64x ? 0 : ADC_REG2_128x) | |
| ADC_REG2_HIGH_PASS_DIS | |
| ADC_REG2_SLAVE_MODE); |
| |
| reg = i2c_reg_read(I2C_ADC_1_ADDR, 0x06) & 0x7F; |
| if(reg != I2C_ADC_1_ADDR) |
| printf("Init of ADC U10 failed: address is 0x%02X should be 0x%02X\n", |
| reg, I2C_ADC_1_ADDR); |
| |
| iopa->pdat &= ~ADC_SDATA2_MASK; /* release SDATA2 */ |
| udelay(ADC_SDATA_DELAY); /* arbitrary settling time */ |
| |
| i2c_reg_write(0x00, 0x06, I2C_ADC_2_ADDR); /* set address (do not set ADDREN yet) */ |
| |
| i2c_reg_write(I2C_ADC_2_ADDR, 0x02, /* 64x, slave mode, !HPEN */ |
| (sample_64x ? 0 : ADC_REG2_128x) | |
| ADC_REG2_HIGH_PASS_DIS | |
| ADC_REG2_SLAVE_MODE); |
| |
| reg = i2c_reg_read(I2C_ADC_2_ADDR, 0x06) & 0x7F; |
| if(reg != I2C_ADC_2_ADDR) |
| printf("Init of ADC U15 failed: address is 0x%02X should be 0x%02X\n", |
| reg, I2C_ADC_2_ADDR); |
| |
| i2c_reg_write(I2C_ADC_1_ADDR, 0x01, /* set FSTART and GNDCAL */ |
| ADC_REG1_FRAME_START | |
| ADC_REG1_GROUND_CAL); |
| |
| i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* Start calibration */ |
| (sample_64x ? 0 : ADC_REG2_128x) | |
| ADC_REG2_CAL | |
| ADC_REG2_HIGH_PASS_DIS | |
| ADC_REG2_SLAVE_MODE); |
| |
| udelay(ADC_CAL_DELAY); /* a minimum of 4100 LRCLKs */ |
| i2c_reg_write(I2C_ADC_1_ADDR, 0x01, 0x00); /* remove GNDCAL */ |
| |
| /* |
| * Now that we have synchronized the ADC's, enable address |
| * selection on the second ADC as well as the first. |
| */ |
| i2c_reg_write(I2C_ADC_2_ADDR, 0x07, ADC_REG7_ADDR_ENABLE); |
| |
| /* |
| * Initialize the Crystal DAC |
| * |
| * Two of the config lines are used for I2C so we have to set them |
| * to the proper initialization state without inadvertantly |
| * sending an I2C "start" sequence. When we bring the I2C back to |
| * the normal state, we send an I2C "stop" sequence. |
| */ |
| printf("Initializing the DAC...\n"); |
| |
| /* |
| * Bring the I2C clock and data lines low for initialization |
| */ |
| I2C_SCL(0); |
| I2C_DELAY; |
| I2C_SDA(0); |
| I2C_ACTIVE; |
| I2C_DELAY; |
| |
| /* Reset the DAC */ |
| iopa->pdat &= ~DAC_RST_MASK; |
| udelay(DAC_RESET_DELAY); |
| |
| /* Release the DAC reset */ |
| iopa->pdat |= DAC_RST_MASK; |
| udelay(DAC_INITIAL_DELAY); |
| |
| /* |
| * Cause the DAC to: |
| * Enable control port (I2C mode) |
| * Going into power down |
| */ |
| i2c_reg_write(I2C_DAC_ADDR, 0x05, |
| DAC_REG5_I2C_MODE | |
| DAC_REG5_POWER_DOWN); |
| |
| /* |
| * Cause the DAC to: |
| * Enable control port (I2C mode) |
| * Going into power down |
| * . MCLK divide by 1 |
| * . MCLK divide by 2 |
| */ |
| i2c_reg_write(I2C_DAC_ADDR, 0x05, |
| DAC_REG5_I2C_MODE | |
| DAC_REG5_POWER_DOWN | |
| (mclk_divide ? DAC_REG5_MCLK_DIV : 0)); |
| |
| /* |
| * Cause the DAC to: |
| * Auto-mute disabled |
| * . Format 0, left justified 24 bits |
| * . Format 3, right justified 24 bits |
| * No de-emphasis |
| * . Single speed mode |
| * . Double speed mode |
| */ |
| i2c_reg_write(I2C_DAC_ADDR, 0x01, |
| (right_just ? DAC_REG1_RIGHT_JUST_24BIT : |
| DAC_REG1_LEFT_JUST_24_BIT) | |
| DAC_REG1_DEM_NO | |
| (sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE)); |
| |
| sprintf(str_buf, "%d", |
| sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE); |
| setenv("DaqDACFunctionalMode", str_buf); |
| |
| /* |
| * Cause the DAC to: |
| * Enable control port (I2C mode) |
| * Remove power down |
| * . MCLK divide by 1 |
| * . MCLK divide by 2 |
| */ |
| i2c_reg_write(I2C_DAC_ADDR, 0x05, |
| DAC_REG5_I2C_MODE | |
| (mclk_divide ? DAC_REG5_MCLK_DIV : 0)); |
| |
| /* |
| * Create a I2C stop condition: |
| * low->high on data while clock is high. |
| */ |
| I2C_SCL(1); |
| I2C_DELAY; |
| I2C_SDA(1); |
| I2C_DELAY; |
| I2C_TRISTATE; |
| |
| printf("\n"); |
| |
| #ifdef CONFIG_SHOW_BOOT_PROGRESS |
| /* |
| * Turn off the RED fail LED now that we are up and running. |
| */ |
| status_led_set(STATUS_LED_RED, STATUS_LED_OFF); |
| #endif |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_SHOW_BOOT_PROGRESS |
| /* |
| * Show boot status: flash the LED if something goes wrong, indicating |
| * that last thing that worked and thus, by implication, what is broken. |
| * |
| * This stores the last OK value in RAM so this will not work properly |
| * before RAM is initialized. Since it is being used for indicating |
| * boot status (i.e. after RAM is initialized), that is OK. |
| */ |
| static void flash_code(uchar number, uchar modulo, uchar digits) |
| { |
| int j; |
| |
| /* |
| * Recursively do upper digits. |
| */ |
| if(digits > 1) { |
| flash_code(number / modulo, modulo, digits - 1); |
| } |
| |
| number = number % modulo; |
| |
| /* |
| * Zero is indicated by one long flash (dash). |
| */ |
| if(number == 0) { |
| status_led_set(STATUS_LED_BOOT, STATUS_LED_ON); |
| udelay(1000000); |
| status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF); |
| udelay(200000); |
| } else { |
| /* |
| * Non-zero is indicated by short flashes, one per count. |
| */ |
| for(j = 0; j < number; j++) { |
| status_led_set(STATUS_LED_BOOT, STATUS_LED_ON); |
| udelay(100000); |
| status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF); |
| udelay(200000); |
| } |
| } |
| /* |
| * Inter-digit pause: we've already waited 200 mSec, wait 1 sec total |
| */ |
| udelay(700000); |
| } |
| |
| static int last_boot_progress; |
| |
| void show_boot_progress (int status) |
| { |
| if(status != -1) { |
| last_boot_progress = status; |
| } else { |
| /* |
| * Houston, we have a problem. Blink the last OK status which |
| * indicates where things failed. |
| */ |
| status_led_set(STATUS_LED_RED, STATUS_LED_ON); |
| flash_code(last_boot_progress, 5, 3); |
| udelay(1000000); |
| status_led_set(STATUS_LED_RED, STATUS_LED_BLINKING); |
| } |
| } |
| #endif /* CONFIG_SHOW_BOOT_PROGRESS */ |
| |
| |
| /* |
| * The following are used to control the SPI chip selects for the SPI command. |
| */ |
| #if (CONFIG_COMMANDS & CFG_CMD_SPI) |
| |
| #define SPI_ADC_CS_MASK 0x00000800 |
| #define SPI_DAC_CS_MASK 0x00001000 |
| |
| void spi_adc_chipsel(int cs) |
| { |
| volatile ioport_t *iopd = ioport_addr((immap_t *)CFG_IMMR, 3 /* port D */); |
| |
| if(cs) |
| iopd->pdat &= ~SPI_ADC_CS_MASK; /* activate the chip select */ |
| else |
| iopd->pdat |= SPI_ADC_CS_MASK; /* deactivate the chip select */ |
| } |
| |
| void spi_dac_chipsel(int cs) |
| { |
| volatile ioport_t *iopd = ioport_addr((immap_t *)CFG_IMMR, 3 /* port D */); |
| |
| if(cs) |
| iopd->pdat &= ~SPI_DAC_CS_MASK; /* activate the chip select */ |
| else |
| iopd->pdat |= SPI_DAC_CS_MASK; /* deactivate the chip select */ |
| } |
| |
| /* |
| * The SPI command uses this table of functions for controlling the SPI |
| * chip selects: it calls the appropriate function to control the SPI |
| * chip selects. |
| */ |
| spi_chipsel_type spi_chipsel[] = { |
| spi_adc_chipsel, |
| spi_dac_chipsel |
| }; |
| int spi_chipsel_cnt = sizeof(spi_chipsel) / sizeof(spi_chipsel[0]); |
| |
| #endif /* CFG_CMD_SPI */ |
| |
| #endif /* CONFIG_MISC_INIT_R */ |
| |
| #ifdef CONFIG_POST |
| /* |
| * Returns 1 if keys pressed to start the power-on long-running tests |
| * Called from board_init_f(). |
| */ |
| int post_hotkeys_pressed(void) |
| { |
| return 0; /* No hotkeys supported */ |
| } |
| |
| #endif |