| /* |
| * arch/powerpc/cpu/ppc4xx/44x_spd_ddr.c |
| * This SPD DDR detection code supports IBM/AMCC PPC44x cpu with a |
| * DDR controller. Those are 440GP/GX/EP/GR. |
| * |
| * (C) Copyright 2001 |
| * Bill Hunter, Wave 7 Optics, williamhunter@attbi.com |
| * |
| * Based on code by: |
| * |
| * Kenneth Johansson ,Ericsson AB. |
| * kenneth.johansson@etx.ericsson.se |
| * |
| * hacked up by bill hunter. fixed so we could run before |
| * serial_init and console_init. previous version avoided this by |
| * running out of cache memory during serial/console init, then running |
| * this code later. |
| * |
| * (C) Copyright 2002 |
| * Jun Gu, Artesyn Technology, jung@artesyncp.com |
| * Support for AMCC 440 based on OpenBIOS draminit.c from IBM. |
| * |
| * (C) Copyright 2005-2007 |
| * Stefan Roese, DENX Software Engineering, sr@denx.de. |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| /* define DEBUG for debugging output (obviously ;-)) */ |
| #if 0 |
| #define DEBUG |
| #endif |
| |
| #include <common.h> |
| #include <asm/processor.h> |
| #include <i2c.h> |
| #include <asm/ppc4xx.h> |
| #include <asm/mmu.h> |
| |
| #include "ecc.h" |
| |
| #if defined(CONFIG_SPD_EEPROM) && \ |
| (defined(CONFIG_440GP) || defined(CONFIG_440GX) || \ |
| defined(CONFIG_440EP) || defined(CONFIG_440GR)) |
| |
| /* |
| * Set default values |
| */ |
| #ifndef CONFIG_SYS_I2C_SPEED |
| #define CONFIG_SYS_I2C_SPEED 50000 |
| #endif |
| |
| #define ONE_BILLION 1000000000 |
| |
| /* |
| * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed |
| */ |
| void __spd_ddr_init_hang (void) |
| { |
| hang (); |
| } |
| void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang"))); |
| |
| /*-----------------------------------------------------------------------------+ |
| | General Definition |
| +-----------------------------------------------------------------------------*/ |
| #define DEFAULT_SPD_ADDR1 0x53 |
| #define DEFAULT_SPD_ADDR2 0x52 |
| #define MAXBANKS 4 /* at most 4 dimm banks */ |
| #define MAX_SPD_BYTES 256 |
| #define NUMHALFCYCLES 4 |
| #define NUMMEMTESTS 8 |
| #define NUMMEMWORDS 8 |
| #define MAXBXCR 4 |
| |
| /* |
| * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory |
| * region. Right now the cache should still be disabled in U-Boot because of the |
| * EMAC driver, that need it's buffer descriptor to be located in non cached |
| * memory. |
| * |
| * If at some time this restriction doesn't apply anymore, just define |
| * CONFIG_4xx_DCACHE in the board config file and this code should setup |
| * everything correctly. |
| */ |
| #ifdef CONFIG_4xx_DCACHE |
| #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */ |
| #else |
| #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */ |
| #endif |
| |
| /* bank_parms is used to sort the bank sizes by descending order */ |
| struct bank_param { |
| unsigned long cr; |
| unsigned long bank_size_bytes; |
| }; |
| |
| typedef struct bank_param BANKPARMS; |
| |
| #ifdef CONFIG_SYS_SIMULATE_SPD_EEPROM |
| extern const unsigned char cfg_simulate_spd_eeprom[128]; |
| #endif |
| |
| static unsigned char spd_read(uchar chip, uint addr); |
| static void get_spd_info(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| static void check_mem_type(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| static void check_volt_type(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| static void program_cfg0(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| static void program_cfg1(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| static void program_rtr(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| static void program_tr0(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| static void program_tr1(void); |
| |
| static unsigned long program_bxcr(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| |
| /* |
| * This function is reading data from the DIMM module EEPROM over the SPD bus |
| * and uses that to program the sdram controller. |
| * |
| * This works on boards that has the same schematics that the AMCC walnut has. |
| * |
| * BUG: Don't handle ECC memory |
| * BUG: A few values in the TR register is currently hardcoded |
| */ |
| long int spd_sdram(void) { |
| unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS; |
| unsigned long dimm_populated[sizeof(iic0_dimm_addr)]; |
| unsigned long total_size; |
| unsigned long cfg0; |
| unsigned long mcsts; |
| unsigned long num_dimm_banks; /* on board dimm banks */ |
| |
| num_dimm_banks = sizeof(iic0_dimm_addr); |
| |
| /* |
| * Make sure I2C controller is initialized |
| * before continuing. |
| */ |
| i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE); |
| |
| /* |
| * Read the SPD information using I2C interface. Check to see if the |
| * DIMM slots are populated. |
| */ |
| get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /* |
| * Check the memory type for the dimms plugged. |
| */ |
| check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /* |
| * Check the voltage type for the dimms plugged. |
| */ |
| check_volt_type(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| #if defined(CONFIG_440GX) || defined(CONFIG_440EP) || defined(CONFIG_440GR) |
| /* |
| * Soft-reset SDRAM controller. |
| */ |
| mtsdr(SDR0_SRST, SDR0_SRST_DMC); |
| mtsdr(SDR0_SRST, 0x00000000); |
| #endif |
| |
| /* |
| * program 440GP SDRAM controller options (SDRAM0_CFG0) |
| */ |
| program_cfg0(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /* |
| * program 440GP SDRAM controller options (SDRAM0_CFG1) |
| */ |
| program_cfg1(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /* |
| * program SDRAM refresh register (SDRAM0_RTR) |
| */ |
| program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /* |
| * program SDRAM Timing Register 0 (SDRAM0_TR0) |
| */ |
| program_tr0(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /* |
| * program the BxCR registers to find out total sdram installed |
| */ |
| total_size = program_bxcr(dimm_populated, iic0_dimm_addr, |
| num_dimm_banks); |
| |
| #ifdef CONFIG_PROG_SDRAM_TLB /* this define should eventually be removed */ |
| /* and program tlb entries for this size (dynamic) */ |
| program_tlb(0, 0, total_size, MY_TLB_WORD2_I_ENABLE); |
| #endif |
| |
| /* |
| * program SDRAM Clock Timing Register (SDRAM0_CLKTR) |
| */ |
| mtsdram(SDRAM0_CLKTR, 0x40000000); |
| |
| /* |
| * delay to ensure 200 usec has elapsed |
| */ |
| udelay(400); |
| |
| /* |
| * enable the memory controller |
| */ |
| mfsdram(SDRAM0_CFG0, cfg0); |
| mtsdram(SDRAM0_CFG0, cfg0 | SDRAM_CFG0_DCEN); |
| |
| /* |
| * wait for SDRAM_CFG0_DC_EN to complete |
| */ |
| while (1) { |
| mfsdram(SDRAM0_MCSTS, mcsts); |
| if ((mcsts & SDRAM_MCSTS_MRSC) != 0) |
| break; |
| } |
| |
| /* |
| * program SDRAM Timing Register 1, adding some delays |
| */ |
| program_tr1(); |
| |
| #ifdef CONFIG_DDR_ECC |
| /* |
| * If ecc is enabled, initialize the parity bits. |
| */ |
| ecc_init(CONFIG_SYS_SDRAM_BASE, total_size); |
| #endif |
| |
| return total_size; |
| } |
| |
| static unsigned char spd_read(uchar chip, uint addr) |
| { |
| unsigned char data[2]; |
| |
| #ifdef CONFIG_SYS_SIMULATE_SPD_EEPROM |
| if (chip == CONFIG_SYS_SIMULATE_SPD_EEPROM) { |
| /* |
| * Onboard spd eeprom requested -> simulate values |
| */ |
| return cfg_simulate_spd_eeprom[addr]; |
| } |
| #endif /* CONFIG_SYS_SIMULATE_SPD_EEPROM */ |
| |
| if (i2c_probe(chip) == 0) { |
| if (i2c_read(chip, addr, 1, data, 1) == 0) { |
| return data[0]; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void get_spd_info(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long dimm_found; |
| unsigned char num_of_bytes; |
| unsigned char total_size; |
| |
| dimm_found = false; |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| num_of_bytes = 0; |
| total_size = 0; |
| |
| num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0); |
| total_size = spd_read(iic0_dimm_addr[dimm_num], 1); |
| |
| if ((num_of_bytes != 0) && (total_size != 0)) { |
| dimm_populated[dimm_num] = true; |
| dimm_found = true; |
| debug("DIMM slot %lu: populated\n", dimm_num); |
| } else { |
| dimm_populated[dimm_num] = false; |
| debug("DIMM slot %lu: Not populated\n", dimm_num); |
| } |
| } |
| |
| if (dimm_found == false) { |
| printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n"); |
| spd_ddr_init_hang (); |
| } |
| } |
| |
| static void check_mem_type(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned char dimm_type; |
| |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_populated[dimm_num] == true) { |
| dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2); |
| switch (dimm_type) { |
| case 7: |
| debug("DIMM slot %lu: DDR SDRAM detected\n", dimm_num); |
| break; |
| default: |
| printf("ERROR: Unsupported DIMM detected in slot %lu.\n", |
| dimm_num); |
| printf("Only DDR SDRAM DIMMs are supported.\n"); |
| printf("Replace the DIMM module with a supported DIMM.\n\n"); |
| spd_ddr_init_hang (); |
| break; |
| } |
| } |
| } |
| } |
| |
| static void check_volt_type(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long voltage_type; |
| |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_populated[dimm_num] == true) { |
| voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8); |
| if (voltage_type != 0x04) { |
| printf("ERROR: DIMM %lu with unsupported voltage level.\n", |
| dimm_num); |
| spd_ddr_init_hang (); |
| } else { |
| debug("DIMM %lu voltage level supported.\n", dimm_num); |
| } |
| break; |
| } |
| } |
| } |
| |
| static void program_cfg0(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long cfg0; |
| unsigned long ecc_enabled; |
| unsigned char ecc; |
| unsigned char attributes; |
| unsigned long data_width; |
| |
| /* |
| * get Memory Controller Options 0 data |
| */ |
| mfsdram(SDRAM0_CFG0, cfg0); |
| |
| /* |
| * clear bits |
| */ |
| cfg0 &= ~(SDRAM_CFG0_DCEN | SDRAM_CFG0_MCHK_MASK | |
| SDRAM_CFG0_RDEN | SDRAM_CFG0_PMUD | |
| SDRAM_CFG0_DMWD_MASK | |
| SDRAM_CFG0_UIOS_MASK | SDRAM_CFG0_PDP); |
| |
| |
| /* |
| * FIXME: assume the DDR SDRAMs in both banks are the same |
| */ |
| ecc_enabled = true; |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_populated[dimm_num] == true) { |
| ecc = spd_read(iic0_dimm_addr[dimm_num], 11); |
| if (ecc != 0x02) { |
| ecc_enabled = false; |
| } |
| |
| /* |
| * program Registered DIMM Enable |
| */ |
| attributes = spd_read(iic0_dimm_addr[dimm_num], 21); |
| if ((attributes & 0x02) != 0x00) { |
| cfg0 |= SDRAM_CFG0_RDEN; |
| } |
| |
| /* |
| * program DDR SDRAM Data Width |
| */ |
| data_width = |
| (unsigned long)spd_read(iic0_dimm_addr[dimm_num],6) + |
| (((unsigned long)spd_read(iic0_dimm_addr[dimm_num],7)) << 8); |
| if (data_width == 64 || data_width == 72) { |
| cfg0 |= SDRAM_CFG0_DMWD_64; |
| } else if (data_width == 32 || data_width == 40) { |
| cfg0 |= SDRAM_CFG0_DMWD_32; |
| } else { |
| printf("WARNING: DIMM with datawidth of %lu bits.\n", |
| data_width); |
| printf("Only DIMMs with 32 or 64 bit datawidths supported.\n"); |
| spd_ddr_init_hang (); |
| } |
| break; |
| } |
| } |
| |
| /* |
| * program Memory Data Error Checking |
| */ |
| if (ecc_enabled == true) { |
| cfg0 |= SDRAM_CFG0_MCHK_GEN; |
| } else { |
| cfg0 |= SDRAM_CFG0_MCHK_NON; |
| } |
| |
| /* |
| * program Page Management Unit (0 == enabled) |
| */ |
| cfg0 &= ~SDRAM_CFG0_PMUD; |
| |
| /* |
| * program Memory Controller Options 0 |
| * Note: DCEN must be enabled after all DDR SDRAM controller |
| * configuration registers get initialized. |
| */ |
| mtsdram(SDRAM0_CFG0, cfg0); |
| } |
| |
| static void program_cfg1(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long cfg1; |
| mfsdram(SDRAM0_CFG1, cfg1); |
| |
| /* |
| * Self-refresh exit, disable PM |
| */ |
| cfg1 &= ~(SDRAM_CFG1_SRE | SDRAM_CFG1_PMEN); |
| |
| /* |
| * program Memory Controller Options 1 |
| */ |
| mtsdram(SDRAM0_CFG1, cfg1); |
| } |
| |
| static void program_rtr(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long bus_period_x_10; |
| unsigned long refresh_rate = 0; |
| unsigned char refresh_rate_type; |
| unsigned long refresh_interval; |
| unsigned long sdram_rtr; |
| PPC4xx_SYS_INFO sys_info; |
| |
| /* |
| * get the board info |
| */ |
| get_sys_info(&sys_info); |
| bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10); |
| |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_populated[dimm_num] == true) { |
| refresh_rate_type = 0x7F & spd_read(iic0_dimm_addr[dimm_num], 12); |
| switch (refresh_rate_type) { |
| case 0x00: |
| refresh_rate = 15625; |
| break; |
| case 0x01: |
| refresh_rate = 15625/4; |
| break; |
| case 0x02: |
| refresh_rate = 15625/2; |
| break; |
| case 0x03: |
| refresh_rate = 15626*2; |
| break; |
| case 0x04: |
| refresh_rate = 15625*4; |
| break; |
| case 0x05: |
| refresh_rate = 15625*8; |
| break; |
| default: |
| printf("ERROR: DIMM %lu, unsupported refresh rate/type.\n", |
| dimm_num); |
| printf("Replace the DIMM module with a supported DIMM.\n"); |
| break; |
| } |
| |
| break; |
| } |
| } |
| |
| refresh_interval = refresh_rate * 10 / bus_period_x_10; |
| sdram_rtr = (refresh_interval & 0x3ff8) << 16; |
| |
| /* |
| * program Refresh Timer Register (SDRAM0_RTR) |
| */ |
| mtsdram(SDRAM0_RTR, sdram_rtr); |
| } |
| |
| static void program_tr0(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long tr0; |
| unsigned char wcsbc; |
| unsigned char t_rp_ns; |
| unsigned char t_rcd_ns; |
| unsigned char t_ras_ns; |
| unsigned long t_rp_clk; |
| unsigned long t_ras_rcd_clk; |
| unsigned long t_rcd_clk; |
| unsigned long t_rfc_clk; |
| unsigned long plb_check; |
| unsigned char cas_bit; |
| unsigned long cas_index; |
| unsigned char cas_2_0_available; |
| unsigned char cas_2_5_available; |
| unsigned char cas_3_0_available; |
| unsigned long cycle_time_ns_x_10[3]; |
| unsigned long tcyc_3_0_ns_x_10; |
| unsigned long tcyc_2_5_ns_x_10; |
| unsigned long tcyc_2_0_ns_x_10; |
| unsigned long tcyc_reg; |
| unsigned long bus_period_x_10; |
| PPC4xx_SYS_INFO sys_info; |
| unsigned long residue; |
| |
| /* |
| * get the board info |
| */ |
| get_sys_info(&sys_info); |
| bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10); |
| |
| /* |
| * get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits |
| */ |
| mfsdram(SDRAM0_TR0, tr0); |
| tr0 &= ~(SDRAM_TR0_SDWR_MASK | SDRAM_TR0_SDWD_MASK | |
| SDRAM_TR0_SDCL_MASK | SDRAM_TR0_SDPA_MASK | |
| SDRAM_TR0_SDCP_MASK | SDRAM_TR0_SDLD_MASK | |
| SDRAM_TR0_SDRA_MASK | SDRAM_TR0_SDRD_MASK); |
| |
| /* |
| * initialization |
| */ |
| wcsbc = 0; |
| t_rp_ns = 0; |
| t_rcd_ns = 0; |
| t_ras_ns = 0; |
| cas_2_0_available = true; |
| cas_2_5_available = true; |
| cas_3_0_available = true; |
| tcyc_2_0_ns_x_10 = 0; |
| tcyc_2_5_ns_x_10 = 0; |
| tcyc_3_0_ns_x_10 = 0; |
| |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_populated[dimm_num] == true) { |
| wcsbc = spd_read(iic0_dimm_addr[dimm_num], 15); |
| t_rp_ns = spd_read(iic0_dimm_addr[dimm_num], 27) >> 2; |
| t_rcd_ns = spd_read(iic0_dimm_addr[dimm_num], 29) >> 2; |
| t_ras_ns = spd_read(iic0_dimm_addr[dimm_num], 30); |
| cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18); |
| |
| for (cas_index = 0; cas_index < 3; cas_index++) { |
| switch (cas_index) { |
| case 0: |
| tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9); |
| break; |
| case 1: |
| tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23); |
| break; |
| default: |
| tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25); |
| break; |
| } |
| |
| if ((tcyc_reg & 0x0F) >= 10) { |
| printf("ERROR: Tcyc incorrect for DIMM in slot %lu\n", |
| dimm_num); |
| spd_ddr_init_hang (); |
| } |
| |
| cycle_time_ns_x_10[cas_index] = |
| (((tcyc_reg & 0xF0) >> 4) * 10) + (tcyc_reg & 0x0F); |
| } |
| |
| cas_index = 0; |
| |
| if ((cas_bit & 0x80) != 0) { |
| cas_index += 3; |
| } else if ((cas_bit & 0x40) != 0) { |
| cas_index += 2; |
| } else if ((cas_bit & 0x20) != 0) { |
| cas_index += 1; |
| } |
| |
| if (((cas_bit & 0x10) != 0) && (cas_index < 3)) { |
| tcyc_3_0_ns_x_10 = cycle_time_ns_x_10[cas_index]; |
| cas_index++; |
| } else { |
| if (cas_index != 0) { |
| cas_index++; |
| } |
| cas_3_0_available = false; |
| } |
| |
| if (((cas_bit & 0x08) != 0) || (cas_index < 3)) { |
| tcyc_2_5_ns_x_10 = cycle_time_ns_x_10[cas_index]; |
| cas_index++; |
| } else { |
| if (cas_index != 0) { |
| cas_index++; |
| } |
| cas_2_5_available = false; |
| } |
| |
| if (((cas_bit & 0x04) != 0) || (cas_index < 3)) { |
| tcyc_2_0_ns_x_10 = cycle_time_ns_x_10[cas_index]; |
| cas_index++; |
| } else { |
| if (cas_index != 0) { |
| cas_index++; |
| } |
| cas_2_0_available = false; |
| } |
| |
| break; |
| } |
| } |
| |
| /* |
| * Program SD_WR and SD_WCSBC fields |
| */ |
| tr0 |= SDRAM_TR0_SDWR_2_CLK; /* Write Recovery: 2 CLK */ |
| switch (wcsbc) { |
| case 0: |
| tr0 |= SDRAM_TR0_SDWD_0_CLK; |
| break; |
| default: |
| tr0 |= SDRAM_TR0_SDWD_1_CLK; |
| break; |
| } |
| |
| /* |
| * Program SD_CASL field |
| */ |
| if ((cas_2_0_available == true) && |
| (bus_period_x_10 >= tcyc_2_0_ns_x_10)) { |
| tr0 |= SDRAM_TR0_SDCL_2_0_CLK; |
| } else if ((cas_2_5_available == true) && |
| (bus_period_x_10 >= tcyc_2_5_ns_x_10)) { |
| tr0 |= SDRAM_TR0_SDCL_2_5_CLK; |
| } else if ((cas_3_0_available == true) && |
| (bus_period_x_10 >= tcyc_3_0_ns_x_10)) { |
| tr0 |= SDRAM_TR0_SDCL_3_0_CLK; |
| } else { |
| printf("ERROR: No supported CAS latency with the installed DIMMs.\n"); |
| printf("Only CAS latencies of 2.0, 2.5, and 3.0 are supported.\n"); |
| printf("Make sure the PLB speed is within the supported range.\n"); |
| spd_ddr_init_hang (); |
| } |
| |
| /* |
| * Calculate Trp in clock cycles and round up if necessary |
| * Program SD_PTA field |
| */ |
| t_rp_clk = sys_info.freqPLB * t_rp_ns / ONE_BILLION; |
| plb_check = ONE_BILLION * t_rp_clk / t_rp_ns; |
| if (sys_info.freqPLB != plb_check) { |
| t_rp_clk++; |
| } |
| switch ((unsigned long)t_rp_clk) { |
| case 0: |
| case 1: |
| case 2: |
| tr0 |= SDRAM_TR0_SDPA_2_CLK; |
| break; |
| case 3: |
| tr0 |= SDRAM_TR0_SDPA_3_CLK; |
| break; |
| default: |
| tr0 |= SDRAM_TR0_SDPA_4_CLK; |
| break; |
| } |
| |
| /* |
| * Program SD_CTP field |
| */ |
| t_ras_rcd_clk = sys_info.freqPLB * (t_ras_ns - t_rcd_ns) / ONE_BILLION; |
| plb_check = ONE_BILLION * t_ras_rcd_clk / (t_ras_ns - t_rcd_ns); |
| if (sys_info.freqPLB != plb_check) { |
| t_ras_rcd_clk++; |
| } |
| switch (t_ras_rcd_clk) { |
| case 0: |
| case 1: |
| case 2: |
| tr0 |= SDRAM_TR0_SDCP_2_CLK; |
| break; |
| case 3: |
| tr0 |= SDRAM_TR0_SDCP_3_CLK; |
| break; |
| case 4: |
| tr0 |= SDRAM_TR0_SDCP_4_CLK; |
| break; |
| default: |
| tr0 |= SDRAM_TR0_SDCP_5_CLK; |
| break; |
| } |
| |
| /* |
| * Program SD_LDF field |
| */ |
| tr0 |= SDRAM_TR0_SDLD_2_CLK; |
| |
| /* |
| * Program SD_RFTA field |
| * FIXME tRFC hardcoded as 75 nanoseconds |
| */ |
| t_rfc_clk = sys_info.freqPLB / (ONE_BILLION / 75); |
| residue = sys_info.freqPLB % (ONE_BILLION / 75); |
| if (residue >= (ONE_BILLION / 150)) { |
| t_rfc_clk++; |
| } |
| switch (t_rfc_clk) { |
| case 0: |
| case 1: |
| case 2: |
| case 3: |
| case 4: |
| case 5: |
| case 6: |
| tr0 |= SDRAM_TR0_SDRA_6_CLK; |
| break; |
| case 7: |
| tr0 |= SDRAM_TR0_SDRA_7_CLK; |
| break; |
| case 8: |
| tr0 |= SDRAM_TR0_SDRA_8_CLK; |
| break; |
| case 9: |
| tr0 |= SDRAM_TR0_SDRA_9_CLK; |
| break; |
| case 10: |
| tr0 |= SDRAM_TR0_SDRA_10_CLK; |
| break; |
| case 11: |
| tr0 |= SDRAM_TR0_SDRA_11_CLK; |
| break; |
| case 12: |
| tr0 |= SDRAM_TR0_SDRA_12_CLK; |
| break; |
| default: |
| tr0 |= SDRAM_TR0_SDRA_13_CLK; |
| break; |
| } |
| |
| /* |
| * Program SD_RCD field |
| */ |
| t_rcd_clk = sys_info.freqPLB * t_rcd_ns / ONE_BILLION; |
| plb_check = ONE_BILLION * t_rcd_clk / t_rcd_ns; |
| if (sys_info.freqPLB != plb_check) { |
| t_rcd_clk++; |
| } |
| switch (t_rcd_clk) { |
| case 0: |
| case 1: |
| case 2: |
| tr0 |= SDRAM_TR0_SDRD_2_CLK; |
| break; |
| case 3: |
| tr0 |= SDRAM_TR0_SDRD_3_CLK; |
| break; |
| default: |
| tr0 |= SDRAM_TR0_SDRD_4_CLK; |
| break; |
| } |
| |
| debug("tr0: %lx\n", tr0); |
| mtsdram(SDRAM0_TR0, tr0); |
| } |
| |
| static int short_mem_test(void) |
| { |
| unsigned long i, j; |
| unsigned long bxcr_num; |
| unsigned long *membase; |
| const unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = { |
| {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, |
| 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF}, |
| {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, |
| 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000}, |
| {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, |
| 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555}, |
| {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, |
| 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA}, |
| {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, |
| 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A}, |
| {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, |
| 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5}, |
| {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, |
| 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA}, |
| {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, |
| 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55}}; |
| |
| for (bxcr_num = 0; bxcr_num < MAXBXCR; bxcr_num++) { |
| mtdcr(SDRAM0_CFGADDR, SDRAM0_B0CR + (bxcr_num << 2)); |
| if ((mfdcr(SDRAM0_CFGDATA) & SDRAM_BXCR_SDBE) == SDRAM_BXCR_SDBE) { |
| /* Bank is enabled */ |
| membase = (unsigned long*) |
| (mfdcr(SDRAM0_CFGDATA) & SDRAM_BXCR_SDBA_MASK); |
| |
| /* |
| * Run the short memory test |
| */ |
| for (i = 0; i < NUMMEMTESTS; i++) { |
| for (j = 0; j < NUMMEMWORDS; j++) { |
| /* printf("bank enabled base:%x\n", &membase[j]); */ |
| membase[j] = test[i][j]; |
| ppcDcbf((unsigned long)&(membase[j])); |
| } |
| |
| for (j = 0; j < NUMMEMWORDS; j++) { |
| if (membase[j] != test[i][j]) { |
| ppcDcbf((unsigned long)&(membase[j])); |
| return 0; |
| } |
| ppcDcbf((unsigned long)&(membase[j])); |
| } |
| |
| if (j < NUMMEMWORDS) |
| return 0; |
| } |
| |
| /* |
| * see if the rdclt value passed |
| */ |
| if (i < NUMMEMTESTS) |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static void program_tr1(void) |
| { |
| unsigned long tr0; |
| unsigned long tr1; |
| unsigned long cfg0; |
| unsigned long ecc_temp; |
| unsigned long dlycal; |
| unsigned long dly_val; |
| unsigned long k; |
| unsigned long max_pass_length; |
| unsigned long current_pass_length; |
| unsigned long current_fail_length; |
| unsigned long current_start; |
| unsigned long rdclt; |
| unsigned long rdclt_offset; |
| long max_start; |
| long max_end; |
| long rdclt_average; |
| unsigned char window_found; |
| unsigned char fail_found; |
| unsigned char pass_found; |
| PPC4xx_SYS_INFO sys_info; |
| |
| /* |
| * get the board info |
| */ |
| get_sys_info(&sys_info); |
| |
| /* |
| * get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits |
| */ |
| mfsdram(SDRAM0_TR1, tr1); |
| tr1 &= ~(SDRAM_TR1_RDSS_MASK | SDRAM_TR1_RDSL_MASK | |
| SDRAM_TR1_RDCD_MASK | SDRAM_TR1_RDCT_MASK); |
| |
| mfsdram(SDRAM0_TR0, tr0); |
| if (((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) && |
| (sys_info.freqPLB > 100000000)) { |
| tr1 |= SDRAM_TR1_RDSS_TR2; |
| tr1 |= SDRAM_TR1_RDSL_STAGE3; |
| tr1 |= SDRAM_TR1_RDCD_RCD_1_2; |
| } else { |
| tr1 |= SDRAM_TR1_RDSS_TR1; |
| tr1 |= SDRAM_TR1_RDSL_STAGE2; |
| tr1 |= SDRAM_TR1_RDCD_RCD_0_0; |
| } |
| |
| /* |
| * save CFG0 ECC setting to a temporary variable and turn ECC off |
| */ |
| mfsdram(SDRAM0_CFG0, cfg0); |
| ecc_temp = cfg0 & SDRAM_CFG0_MCHK_MASK; |
| mtsdram(SDRAM0_CFG0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | SDRAM_CFG0_MCHK_NON); |
| |
| /* |
| * get the delay line calibration register value |
| */ |
| mfsdram(SDRAM0_DLYCAL, dlycal); |
| dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2; |
| |
| max_pass_length = 0; |
| max_start = 0; |
| max_end = 0; |
| current_pass_length = 0; |
| current_fail_length = 0; |
| current_start = 0; |
| rdclt_offset = 0; |
| window_found = false; |
| fail_found = false; |
| pass_found = false; |
| debug("Starting memory test "); |
| |
| for (k = 0; k < NUMHALFCYCLES; k++) { |
| for (rdclt = 0; rdclt < dly_val; rdclt++) { |
| /* |
| * Set the timing reg for the test. |
| */ |
| mtsdram(SDRAM0_TR1, (tr1 | SDRAM_TR1_RDCT_ENCODE(rdclt))); |
| |
| if (short_mem_test()) { |
| if (fail_found == true) { |
| pass_found = true; |
| if (current_pass_length == 0) { |
| current_start = rdclt_offset + rdclt; |
| } |
| |
| current_fail_length = 0; |
| current_pass_length++; |
| |
| if (current_pass_length > max_pass_length) { |
| max_pass_length = current_pass_length; |
| max_start = current_start; |
| max_end = rdclt_offset + rdclt; |
| } |
| } |
| } else { |
| current_pass_length = 0; |
| current_fail_length++; |
| |
| if (current_fail_length >= (dly_val>>2)) { |
| if (fail_found == false) { |
| fail_found = true; |
| } else if (pass_found == true) { |
| window_found = true; |
| break; |
| } |
| } |
| } |
| } |
| debug("."); |
| |
| if (window_found == true) |
| break; |
| |
| tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK; |
| rdclt_offset += dly_val; |
| } |
| debug("\n"); |
| |
| /* |
| * make sure we find the window |
| */ |
| if (window_found == false) { |
| printf("ERROR: Cannot determine a common read delay.\n"); |
| spd_ddr_init_hang (); |
| } |
| |
| /* |
| * restore the orignal ECC setting |
| */ |
| mtsdram(SDRAM0_CFG0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | ecc_temp); |
| |
| /* |
| * set the SDRAM TR1 RDCD value |
| */ |
| tr1 &= ~SDRAM_TR1_RDCD_MASK; |
| if ((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) { |
| tr1 |= SDRAM_TR1_RDCD_RCD_1_2; |
| } else { |
| tr1 |= SDRAM_TR1_RDCD_RCD_0_0; |
| } |
| |
| /* |
| * set the SDRAM TR1 RDCLT value |
| */ |
| tr1 &= ~SDRAM_TR1_RDCT_MASK; |
| while (max_end >= (dly_val << 1)) { |
| max_end -= (dly_val << 1); |
| max_start -= (dly_val << 1); |
| } |
| |
| rdclt_average = ((max_start + max_end) >> 1); |
| |
| if (rdclt_average < 0) { |
| rdclt_average = 0; |
| } |
| |
| if (rdclt_average >= dly_val) { |
| rdclt_average -= dly_val; |
| tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK; |
| } |
| tr1 |= SDRAM_TR1_RDCT_ENCODE(rdclt_average); |
| |
| debug("tr1: %lx\n", tr1); |
| |
| /* |
| * program SDRAM Timing Register 1 TR1 |
| */ |
| mtsdram(SDRAM0_TR1, tr1); |
| } |
| |
| static unsigned long program_bxcr(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long bank_base_addr; |
| unsigned long cr; |
| unsigned long i; |
| unsigned long j; |
| unsigned long temp; |
| unsigned char num_row_addr; |
| unsigned char num_col_addr; |
| unsigned char num_banks; |
| unsigned char bank_size_id; |
| unsigned long ctrl_bank_num[MAXBANKS]; |
| unsigned long bx_cr_num; |
| unsigned long largest_size_index; |
| unsigned long largest_size; |
| unsigned long current_size_index; |
| BANKPARMS bank_parms[MAXBXCR]; |
| unsigned long sorted_bank_num[MAXBXCR]; /* DDR Controller bank number table (sorted by size) */ |
| unsigned long sorted_bank_size[MAXBXCR]; /* DDR Controller bank size table (sorted by size)*/ |
| |
| /* |
| * Set the BxCR regs. First, wipe out the bank config registers. |
| */ |
| for (bx_cr_num = 0; bx_cr_num < MAXBXCR; bx_cr_num++) { |
| mtdcr(SDRAM0_CFGADDR, SDRAM0_B0CR + (bx_cr_num << 2)); |
| mtdcr(SDRAM0_CFGDATA, 0x00000000); |
| bank_parms[bx_cr_num].bank_size_bytes = 0; |
| } |
| |
| #ifdef CONFIG_BAMBOO |
| /* |
| * This next section is hardware dependent and must be programmed |
| * to match the hardware. For bamboo, the following holds... |
| * 1. SDRAM0_B0CR: Bank 0 of dimm 0 ctrl_bank_num : 0 (soldered onboard) |
| * 2. SDRAM0_B1CR: Bank 0 of dimm 1 ctrl_bank_num : 1 |
| * 3. SDRAM0_B2CR: Bank 1 of dimm 1 ctrl_bank_num : 1 |
| * 4. SDRAM0_B3CR: Bank 0 of dimm 2 ctrl_bank_num : 3 |
| * ctrl_bank_num corresponds to the first usable DDR controller bank number by DIMM |
| */ |
| ctrl_bank_num[0] = 0; |
| ctrl_bank_num[1] = 1; |
| ctrl_bank_num[2] = 3; |
| #else |
| /* |
| * Ocotea, Ebony and the other IBM/AMCC eval boards have |
| * 2 DIMM slots with each max 2 banks |
| */ |
| ctrl_bank_num[0] = 0; |
| ctrl_bank_num[1] = 2; |
| #endif |
| |
| /* |
| * reset the bank_base address |
| */ |
| bank_base_addr = CONFIG_SYS_SDRAM_BASE; |
| |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_populated[dimm_num] == true) { |
| num_row_addr = spd_read(iic0_dimm_addr[dimm_num], 3); |
| num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4); |
| num_banks = spd_read(iic0_dimm_addr[dimm_num], 5); |
| bank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31); |
| debug("DIMM%ld: row=%d col=%d banks=%d\n", dimm_num, |
| num_row_addr, num_col_addr, num_banks); |
| |
| /* |
| * Set the SDRAM0_BxCR regs |
| */ |
| cr = 0; |
| switch (bank_size_id) { |
| case 0x02: |
| cr |= SDRAM_BXCR_SDSZ_8; |
| break; |
| case 0x04: |
| cr |= SDRAM_BXCR_SDSZ_16; |
| break; |
| case 0x08: |
| cr |= SDRAM_BXCR_SDSZ_32; |
| break; |
| case 0x10: |
| cr |= SDRAM_BXCR_SDSZ_64; |
| break; |
| case 0x20: |
| cr |= SDRAM_BXCR_SDSZ_128; |
| break; |
| case 0x40: |
| cr |= SDRAM_BXCR_SDSZ_256; |
| break; |
| case 0x80: |
| cr |= SDRAM_BXCR_SDSZ_512; |
| break; |
| default: |
| printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n", |
| dimm_num); |
| printf("ERROR: Unsupported value for the banksize: %d.\n", |
| bank_size_id); |
| printf("Replace the DIMM module with a supported DIMM.\n\n"); |
| spd_ddr_init_hang (); |
| } |
| |
| switch (num_col_addr) { |
| case 0x08: |
| cr |= SDRAM_BXCR_SDAM_1; |
| break; |
| case 0x09: |
| cr |= SDRAM_BXCR_SDAM_2; |
| break; |
| case 0x0A: |
| cr |= SDRAM_BXCR_SDAM_3; |
| break; |
| case 0x0B: |
| cr |= SDRAM_BXCR_SDAM_4; |
| break; |
| default: |
| printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n", |
| dimm_num); |
| printf("ERROR: Unsupported value for number of " |
| "column addresses: %d.\n", num_col_addr); |
| printf("Replace the DIMM module with a supported DIMM.\n\n"); |
| spd_ddr_init_hang (); |
| } |
| |
| /* |
| * enable the bank |
| */ |
| cr |= SDRAM_BXCR_SDBE; |
| |
| for (i = 0; i < num_banks; i++) { |
| bank_parms[ctrl_bank_num[dimm_num]+i].bank_size_bytes = |
| (4 << 20) * bank_size_id; |
| bank_parms[ctrl_bank_num[dimm_num]+i].cr = cr; |
| debug("DIMM%ld-bank %ld (SDRAM0_B%ldCR): " |
| "bank_size_bytes=%ld\n", |
| dimm_num, i, |
| ctrl_bank_num[dimm_num] + i, |
| bank_parms[ctrl_bank_num[dimm_num] + i].bank_size_bytes); |
| } |
| } |
| } |
| |
| /* Initialize sort tables */ |
| for (i = 0; i < MAXBXCR; i++) { |
| sorted_bank_num[i] = i; |
| sorted_bank_size[i] = bank_parms[i].bank_size_bytes; |
| } |
| |
| for (i = 0; i < MAXBXCR-1; i++) { |
| largest_size = sorted_bank_size[i]; |
| largest_size_index = 255; |
| |
| /* Find the largest remaining value */ |
| for (j = i + 1; j < MAXBXCR; j++) { |
| if (sorted_bank_size[j] > largest_size) { |
| /* Save largest remaining value and its index */ |
| largest_size = sorted_bank_size[j]; |
| largest_size_index = j; |
| } |
| } |
| |
| if (largest_size_index != 255) { |
| /* Swap the current and largest values */ |
| current_size_index = sorted_bank_num[largest_size_index]; |
| sorted_bank_size[largest_size_index] = sorted_bank_size[i]; |
| sorted_bank_size[i] = largest_size; |
| sorted_bank_num[largest_size_index] = sorted_bank_num[i]; |
| sorted_bank_num[i] = current_size_index; |
| } |
| } |
| |
| /* Set the SDRAM0_BxCR regs thanks to sort tables */ |
| for (bx_cr_num = 0, bank_base_addr = 0; bx_cr_num < MAXBXCR; bx_cr_num++) { |
| if (bank_parms[sorted_bank_num[bx_cr_num]].bank_size_bytes) { |
| mtdcr(SDRAM0_CFGADDR, SDRAM0_B0CR + (sorted_bank_num[bx_cr_num] << 2)); |
| temp = mfdcr(SDRAM0_CFGDATA) & ~(SDRAM_BXCR_SDBA_MASK | SDRAM_BXCR_SDSZ_MASK | |
| SDRAM_BXCR_SDAM_MASK | SDRAM_BXCR_SDBE); |
| temp = temp | (bank_base_addr & SDRAM_BXCR_SDBA_MASK) | |
| bank_parms[sorted_bank_num[bx_cr_num]].cr; |
| mtdcr(SDRAM0_CFGDATA, temp); |
| bank_base_addr += bank_parms[sorted_bank_num[bx_cr_num]].bank_size_bytes; |
| debug("SDRAM0_B%ldCR=0x%08lx\n", |
| sorted_bank_num[bx_cr_num], temp); |
| } |
| } |
| |
| return(bank_base_addr); |
| } |
| #endif /* CONFIG_SPD_EEPROM */ |