blob: e66ab25d02a48f206e04cc79b3a32184ba1da041 [file] [log] [blame]
/*
* (C) Copyright 2008
* Texas Instruments, <www.ti.com>
* Sukumar Ghorai <s-ghorai@ti.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation's version 2 of
* the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <config.h>
#include <cpu_func.h>
#include <log.h>
#include <malloc.h>
#include <memalign.h>
#include <mmc.h>
#include <part.h>
#include <i2c.h>
#if defined(CONFIG_OMAP54XX)
#include <palmas.h>
#endif
#include <asm/cache.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <asm/arch/mmc_host_def.h>
#ifdef CONFIG_OMAP54XX
#include <asm/arch/mux_dra7xx.h>
#include <asm/arch/dra7xx_iodelay.h>
#endif
#if !defined(CONFIG_ARCH_KEYSTONE)
#include <asm/gpio.h>
#include <asm/arch/sys_proto.h>
#endif
#ifdef CONFIG_MMC_OMAP36XX_PINS
#include <asm/arch/mux.h>
#endif
#include <dm.h>
#include <dm/devres.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <power/regulator.h>
#include <thermal.h>
DECLARE_GLOBAL_DATA_PTR;
/* simplify defines to OMAP_HSMMC_USE_GPIO */
#if (defined(CONFIG_OMAP_GPIO) && !defined(CONFIG_XPL_BUILD)) || \
(defined(CONFIG_XPL_BUILD) && defined(CONFIG_SPL_GPIO))
#define OMAP_HSMMC_USE_GPIO
#else
#undef OMAP_HSMMC_USE_GPIO
#endif
/* common definitions for all OMAPs */
#define SYSCTL_SRC (1 << 25)
#define SYSCTL_SRD (1 << 26)
#ifdef CONFIG_IODELAY_RECALIBRATION
struct omap_hsmmc_pinctrl_state {
struct pad_conf_entry *padconf;
int npads;
struct iodelay_cfg_entry *iodelay;
int niodelays;
};
#endif
struct omap_hsmmc_data {
struct hsmmc *base_addr;
#if !CONFIG_IS_ENABLED(DM_MMC)
struct mmc_config cfg;
#endif
uint bus_width;
uint clock;
ushort last_cmd;
#ifdef OMAP_HSMMC_USE_GPIO
#if CONFIG_IS_ENABLED(DM_MMC)
struct gpio_desc cd_gpio; /* Change Detect GPIO */
struct gpio_desc wp_gpio; /* Write Protect GPIO */
#else
int cd_gpio;
int wp_gpio;
#endif
#endif
#if CONFIG_IS_ENABLED(DM_MMC)
enum bus_mode mode;
#endif
u8 controller_flags;
#ifdef CONFIG_MMC_OMAP_HS_ADMA
struct omap_hsmmc_adma_desc *adma_desc_table;
uint desc_slot;
#endif
const char *hw_rev;
struct udevice *pbias_supply;
uint signal_voltage;
#ifdef CONFIG_IODELAY_RECALIBRATION
struct omap_hsmmc_pinctrl_state *default_pinctrl_state;
struct omap_hsmmc_pinctrl_state *hs_pinctrl_state;
struct omap_hsmmc_pinctrl_state *hs200_1_8v_pinctrl_state;
struct omap_hsmmc_pinctrl_state *ddr_1_8v_pinctrl_state;
struct omap_hsmmc_pinctrl_state *sdr12_pinctrl_state;
struct omap_hsmmc_pinctrl_state *sdr25_pinctrl_state;
struct omap_hsmmc_pinctrl_state *ddr50_pinctrl_state;
struct omap_hsmmc_pinctrl_state *sdr50_pinctrl_state;
struct omap_hsmmc_pinctrl_state *sdr104_pinctrl_state;
#endif
};
struct omap_mmc_of_data {
u8 controller_flags;
};
#ifdef CONFIG_MMC_OMAP_HS_ADMA
struct omap_hsmmc_adma_desc {
u8 attr;
u8 reserved;
u16 len;
u32 addr;
};
#define ADMA_MAX_LEN 63488
/* Decriptor table defines */
#define ADMA_DESC_ATTR_VALID BIT(0)
#define ADMA_DESC_ATTR_END BIT(1)
#define ADMA_DESC_ATTR_INT BIT(2)
#define ADMA_DESC_ATTR_ACT1 BIT(4)
#define ADMA_DESC_ATTR_ACT2 BIT(5)
#define ADMA_DESC_TRANSFER_DATA ADMA_DESC_ATTR_ACT2
#define ADMA_DESC_LINK_DESC (ADMA_DESC_ATTR_ACT1 | ADMA_DESC_ATTR_ACT2)
#endif
/* If we fail after 1 second wait, something is really bad */
#define MAX_RETRY_MS 1000
#define MMC_TIMEOUT_MS 20
/* DMA transfers can take a long time if a lot a data is transferred.
* The timeout must take in account the amount of data. Let's assume
* that the time will never exceed 333 ms per MB (in other word we assume
* that the bandwidth is always above 3MB/s).
*/
#define DMA_TIMEOUT_PER_MB 333
#define OMAP_HSMMC_SUPPORTS_DUAL_VOLT BIT(0)
#define OMAP_HSMMC_NO_1_8_V BIT(1)
#define OMAP_HSMMC_USE_ADMA BIT(2)
#define OMAP_HSMMC_REQUIRE_IODELAY BIT(3)
static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size);
static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
unsigned int siz);
static void omap_hsmmc_start_clock(struct hsmmc *mmc_base);
static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base);
static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit);
static inline struct omap_hsmmc_data *omap_hsmmc_get_data(struct mmc *mmc)
{
#if CONFIG_IS_ENABLED(DM_MMC)
return dev_get_priv(mmc->dev);
#else
return (struct omap_hsmmc_data *)mmc->priv;
#endif
}
#if defined(CONFIG_OMAP34XX) || defined(CONFIG_IODELAY_RECALIBRATION)
static inline struct mmc_config *omap_hsmmc_get_cfg(struct mmc *mmc)
{
#if CONFIG_IS_ENABLED(DM_MMC)
struct omap_hsmmc_plat *plat = dev_get_plat(mmc->dev);
return &plat->cfg;
#else
return &((struct omap_hsmmc_data *)mmc->priv)->cfg;
#endif
}
#endif
#if defined(OMAP_HSMMC_USE_GPIO) && !CONFIG_IS_ENABLED(DM_MMC)
static int omap_mmc_setup_gpio_in(int gpio, const char *label)
{
int ret;
#if !CONFIG_IS_ENABLED(DM_GPIO)
if (!gpio_is_valid(gpio))
return -1;
#endif
ret = gpio_request(gpio, label);
if (ret)
return ret;
ret = gpio_direction_input(gpio);
if (ret)
return ret;
return gpio;
}
#endif
static unsigned char mmc_board_init(struct mmc *mmc)
{
#if defined(CONFIG_OMAP34XX)
struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
t2_t *t2_base = (t2_t *)T2_BASE;
struct prcm *prcm_base = (struct prcm *)PRCM_BASE;
u32 pbias_lite;
#ifdef CONFIG_MMC_OMAP36XX_PINS
u32 wkup_ctrl = readl(OMAP34XX_CTRL_WKUP_CTRL);
#endif
pbias_lite = readl(&t2_base->pbias_lite);
pbias_lite &= ~(PBIASLITEPWRDNZ1 | PBIASLITEPWRDNZ0);
#ifdef CONFIG_TARGET_OMAP3_CAIRO
/* for cairo board, we need to set up 1.8 Volt bias level on MMC1 */
pbias_lite &= ~PBIASLITEVMODE0;
#endif
#ifdef CONFIG_TARGET_OMAP3_LOGIC
/* For Logic PD board, 1.8V bias to go enable gpio127 for mmc_cd */
pbias_lite &= ~PBIASLITEVMODE1;
#endif
#ifdef CONFIG_MMC_OMAP36XX_PINS
if (get_cpu_family() == CPU_OMAP36XX) {
/* Disable extended drain IO before changing PBIAS */
wkup_ctrl &= ~OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ;
writel(wkup_ctrl, OMAP34XX_CTRL_WKUP_CTRL);
}
#endif
writel(pbias_lite, &t2_base->pbias_lite);
writel(pbias_lite | PBIASLITEPWRDNZ1 |
PBIASSPEEDCTRL0 | PBIASLITEPWRDNZ0,
&t2_base->pbias_lite);
#ifdef CONFIG_MMC_OMAP36XX_PINS
if (get_cpu_family() == CPU_OMAP36XX)
/* Enable extended drain IO after changing PBIAS */
writel(wkup_ctrl |
OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ,
OMAP34XX_CTRL_WKUP_CTRL);
#endif
writel(readl(&t2_base->devconf0) | MMCSDIO1ADPCLKISEL,
&t2_base->devconf0);
writel(readl(&t2_base->devconf1) | MMCSDIO2ADPCLKISEL,
&t2_base->devconf1);
/* Change from default of 52MHz to 26MHz if necessary */
if (!(cfg->host_caps & MMC_MODE_HS_52MHz))
writel(readl(&t2_base->ctl_prog_io1) & ~CTLPROGIO1SPEEDCTRL,
&t2_base->ctl_prog_io1);
writel(readl(&prcm_base->fclken1_core) |
EN_MMC1 | EN_MMC2 | EN_MMC3,
&prcm_base->fclken1_core);
writel(readl(&prcm_base->iclken1_core) |
EN_MMC1 | EN_MMC2 | EN_MMC3,
&prcm_base->iclken1_core);
#endif
#if defined(CONFIG_OMAP54XX) && !CONFIG_IS_ENABLED(DM_REGULATOR)
/* PBIAS config needed for MMC1 only */
if (mmc_get_blk_desc(mmc)->devnum == 0)
vmmc_pbias_config(LDO_VOLT_3V3);
#endif
return 0;
}
void mmc_init_stream(struct hsmmc *mmc_base)
{
ulong start;
writel(readl(&mmc_base->con) | INIT_INITSTREAM, &mmc_base->con);
writel(MMC_CMD0, &mmc_base->cmd);
start = get_timer(0);
while (!(readl(&mmc_base->stat) & CC_MASK)) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for cc!\n", __func__);
return;
}
}
writel(CC_MASK, &mmc_base->stat)
;
writel(MMC_CMD0, &mmc_base->cmd)
;
start = get_timer(0);
while (!(readl(&mmc_base->stat) & CC_MASK)) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for cc2!\n", __func__);
return;
}
}
writel(readl(&mmc_base->con) & ~INIT_INITSTREAM, &mmc_base->con);
}
#if CONFIG_IS_ENABLED(DM_MMC)
#ifdef CONFIG_IODELAY_RECALIBRATION
static void omap_hsmmc_io_recalibrate(struct mmc *mmc)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
struct omap_hsmmc_pinctrl_state *pinctrl_state;
switch (priv->mode) {
case MMC_HS_200:
pinctrl_state = priv->hs200_1_8v_pinctrl_state;
break;
case UHS_SDR104:
pinctrl_state = priv->sdr104_pinctrl_state;
break;
case UHS_SDR50:
pinctrl_state = priv->sdr50_pinctrl_state;
break;
case UHS_DDR50:
pinctrl_state = priv->ddr50_pinctrl_state;
break;
case UHS_SDR25:
pinctrl_state = priv->sdr25_pinctrl_state;
break;
case UHS_SDR12:
pinctrl_state = priv->sdr12_pinctrl_state;
break;
case SD_HS:
case MMC_HS:
case MMC_HS_52:
pinctrl_state = priv->hs_pinctrl_state;
break;
case MMC_DDR_52:
pinctrl_state = priv->ddr_1_8v_pinctrl_state;
default:
pinctrl_state = priv->default_pinctrl_state;
break;
}
if (!pinctrl_state)
pinctrl_state = priv->default_pinctrl_state;
if (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY) {
if (pinctrl_state->iodelay)
late_recalibrate_iodelay(pinctrl_state->padconf,
pinctrl_state->npads,
pinctrl_state->iodelay,
pinctrl_state->niodelays);
else
do_set_mux32((*ctrl)->control_padconf_core_base,
pinctrl_state->padconf,
pinctrl_state->npads);
}
}
#endif
static void omap_hsmmc_set_timing(struct mmc *mmc)
{
u32 val;
struct hsmmc *mmc_base;
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
mmc_base = priv->base_addr;
omap_hsmmc_stop_clock(mmc_base);
val = readl(&mmc_base->ac12);
val &= ~AC12_UHSMC_MASK;
priv->mode = mmc->selected_mode;
if (mmc_is_mode_ddr(priv->mode))
writel(readl(&mmc_base->con) | DDR, &mmc_base->con);
else
writel(readl(&mmc_base->con) & ~DDR, &mmc_base->con);
switch (priv->mode) {
case MMC_HS_200:
case UHS_SDR104:
val |= AC12_UHSMC_SDR104;
break;
case UHS_SDR50:
val |= AC12_UHSMC_SDR50;
break;
case MMC_DDR_52:
case UHS_DDR50:
val |= AC12_UHSMC_DDR50;
break;
case SD_HS:
case MMC_HS_52:
case UHS_SDR25:
val |= AC12_UHSMC_SDR25;
break;
case MMC_LEGACY:
case MMC_HS:
case UHS_SDR12:
val |= AC12_UHSMC_SDR12;
break;
default:
val |= AC12_UHSMC_RES;
break;
}
writel(val, &mmc_base->ac12);
#ifdef CONFIG_IODELAY_RECALIBRATION
omap_hsmmc_io_recalibrate(mmc);
#endif
omap_hsmmc_start_clock(mmc_base);
}
static void omap_hsmmc_conf_bus_power(struct mmc *mmc, uint signal_voltage)
{
struct hsmmc *mmc_base;
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
u32 hctl, ac12;
mmc_base = priv->base_addr;
hctl = readl(&mmc_base->hctl) & ~SDVS_MASK;
ac12 = readl(&mmc_base->ac12) & ~AC12_V1V8_SIGEN;
switch (signal_voltage) {
case MMC_SIGNAL_VOLTAGE_330:
hctl |= SDVS_3V3;
break;
case MMC_SIGNAL_VOLTAGE_180:
hctl |= SDVS_1V8;
ac12 |= AC12_V1V8_SIGEN;
break;
}
writel(hctl, &mmc_base->hctl);
writel(ac12, &mmc_base->ac12);
}
static int omap_hsmmc_wait_dat0(struct udevice *dev, int state, int timeout_us)
{
int ret = -ETIMEDOUT;
u32 con;
bool dat0_high;
bool target_dat0_high = !!state;
struct omap_hsmmc_data *priv = dev_get_priv(dev);
struct hsmmc *mmc_base = priv->base_addr;
con = readl(&mmc_base->con);
writel(con | CON_CLKEXTFREE | CON_PADEN, &mmc_base->con);
timeout_us = DIV_ROUND_UP(timeout_us, 10); /* check every 10 us. */
while (timeout_us--) {
dat0_high = !!(readl(&mmc_base->pstate) & PSTATE_DLEV_DAT0);
if (dat0_high == target_dat0_high) {
ret = 0;
break;
}
udelay(10);
}
writel(con, &mmc_base->con);
return ret;
}
#if CONFIG_IS_ENABLED(MMC_IO_VOLTAGE)
#if CONFIG_IS_ENABLED(DM_REGULATOR)
static int omap_hsmmc_set_io_regulator(struct mmc *mmc, int mV)
{
int ret = 0;
int uV = mV * 1000;
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
if (!mmc->vqmmc_supply)
return 0;
/* Disable PBIAS */
ret = regulator_set_enable_if_allowed(priv->pbias_supply, false);
if (ret)
return ret;
/* Turn off IO voltage */
ret = regulator_set_enable_if_allowed(mmc->vqmmc_supply, false);
if (ret)
return ret;
/* Program a new IO voltage value */
ret = regulator_set_value(mmc->vqmmc_supply, uV);
if (ret)
return ret;
/* Turn on IO voltage */
ret = regulator_set_enable_if_allowed(mmc->vqmmc_supply, true);
if (ret)
return ret;
/* Program PBIAS voltage*/
ret = regulator_set_value(priv->pbias_supply, uV);
if (ret && ret != -ENOSYS)
return ret;
/* Enable PBIAS */
ret = regulator_set_enable_if_allowed(priv->pbias_supply, true);
if (ret)
return ret;
return 0;
}
#endif
static int omap_hsmmc_set_signal_voltage(struct mmc *mmc)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
struct hsmmc *mmc_base = priv->base_addr;
int mv = mmc_voltage_to_mv(mmc->signal_voltage);
u32 capa_mask;
__maybe_unused u8 palmas_ldo_volt;
u32 val;
if (mv < 0)
return -EINVAL;
if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
mv = 3300;
capa_mask = VS33_3V3SUP;
palmas_ldo_volt = LDO_VOLT_3V3;
} else if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_180) {
capa_mask = VS18_1V8SUP;
palmas_ldo_volt = LDO_VOLT_1V8;
} else {
return -EOPNOTSUPP;
}
val = readl(&mmc_base->capa);
if (!(val & capa_mask))
return -EOPNOTSUPP;
priv->signal_voltage = mmc->signal_voltage;
omap_hsmmc_conf_bus_power(mmc, mmc->signal_voltage);
#if CONFIG_IS_ENABLED(DM_REGULATOR)
return omap_hsmmc_set_io_regulator(mmc, mv);
#elif defined(CONFIG_OMAP54XX) && defined(CONFIG_PALMAS_POWER)
if (mmc_get_blk_desc(mmc)->devnum == 0)
vmmc_pbias_config(palmas_ldo_volt);
return 0;
#else
return 0;
#endif
}
#endif
static uint32_t omap_hsmmc_set_capabilities(struct mmc *mmc)
{
struct hsmmc *mmc_base;
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
u32 val;
mmc_base = priv->base_addr;
val = readl(&mmc_base->capa);
if (priv->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
val |= (VS33_3V3SUP | VS18_1V8SUP);
} else if (priv->controller_flags & OMAP_HSMMC_NO_1_8_V) {
val |= VS33_3V3SUP;
val &= ~VS18_1V8SUP;
} else {
val |= VS18_1V8SUP;
val &= ~VS33_3V3SUP;
}
writel(val, &mmc_base->capa);
return val;
}
#if CONFIG_IS_ENABLED(MMC_SUPPORTS_TUNING)
static void omap_hsmmc_disable_tuning(struct mmc *mmc)
{
struct hsmmc *mmc_base;
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
u32 val;
mmc_base = priv->base_addr;
val = readl(&mmc_base->ac12);
val &= ~(AC12_SCLK_SEL);
writel(val, &mmc_base->ac12);
val = readl(&mmc_base->dll);
val &= ~(DLL_FORCE_VALUE | DLL_SWT);
writel(val, &mmc_base->dll);
}
static void omap_hsmmc_set_dll(struct mmc *mmc, int count)
{
int i;
struct hsmmc *mmc_base;
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
u32 val;
mmc_base = priv->base_addr;
val = readl(&mmc_base->dll);
val |= DLL_FORCE_VALUE;
val &= ~(DLL_FORCE_SR_C_MASK << DLL_FORCE_SR_C_SHIFT);
val |= (count << DLL_FORCE_SR_C_SHIFT);
writel(val, &mmc_base->dll);
val |= DLL_CALIB;
writel(val, &mmc_base->dll);
for (i = 0; i < 1000; i++) {
if (readl(&mmc_base->dll) & DLL_CALIB)
break;
}
val &= ~DLL_CALIB;
writel(val, &mmc_base->dll);
}
static int omap_hsmmc_execute_tuning(struct udevice *dev, uint opcode)
{
struct omap_hsmmc_data *priv = dev_get_priv(dev);
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct mmc *mmc = upriv->mmc;
struct hsmmc *mmc_base;
u32 val;
u8 cur_match, prev_match = 0;
int ret;
u32 phase_delay = 0;
u32 start_window = 0, max_window = 0;
u32 length = 0, max_len = 0;
bool single_point_failure = false;
struct udevice *thermal_dev;
int temperature;
int i;
mmc_base = priv->base_addr;
val = readl(&mmc_base->capa2);
/* clock tuning is not needed for upto 52MHz */
if (!((mmc->selected_mode == MMC_HS_200) ||
(mmc->selected_mode == UHS_SDR104) ||
((mmc->selected_mode == UHS_SDR50) && (val & CAPA2_TSDR50))))
return 0;
ret = uclass_first_device_err(UCLASS_THERMAL, &thermal_dev);
if (ret) {
printf("Couldn't get thermal device for tuning\n");
return ret;
}
ret = thermal_get_temp(thermal_dev, &temperature);
if (ret) {
printf("Couldn't get temperature for tuning\n");
return ret;
}
val = readl(&mmc_base->dll);
val |= DLL_SWT;
writel(val, &mmc_base->dll);
/*
* Stage 1: Search for a maximum pass window ignoring any
* any single point failures. If the tuning value ends up
* near it, move away from it in stage 2 below
*/
while (phase_delay <= MAX_PHASE_DELAY) {
omap_hsmmc_set_dll(mmc, phase_delay);
cur_match = !mmc_send_tuning(mmc, opcode);
if (cur_match) {
if (prev_match) {
length++;
} else if (single_point_failure) {
/* ignore single point failure */
length++;
single_point_failure = false;
} else {
start_window = phase_delay;
length = 1;
}
} else {
single_point_failure = prev_match;
}
if (length > max_len) {
max_window = start_window;
max_len = length;
}
prev_match = cur_match;
phase_delay += 4;
}
if (!max_len) {
ret = -EIO;
goto tuning_error;
}
val = readl(&mmc_base->ac12);
if (!(val & AC12_SCLK_SEL)) {
ret = -EIO;
goto tuning_error;
}
/*
* Assign tuning value as a ratio of maximum pass window based
* on temperature
*/
if (temperature < -20000)
phase_delay = min(max_window + 4 * max_len - 24,
max_window +
DIV_ROUND_UP(13 * max_len, 16) * 4);
else if (temperature < 20000)
phase_delay = max_window + DIV_ROUND_UP(9 * max_len, 16) * 4;
else if (temperature < 40000)
phase_delay = max_window + DIV_ROUND_UP(8 * max_len, 16) * 4;
else if (temperature < 70000)
phase_delay = max_window + DIV_ROUND_UP(7 * max_len, 16) * 4;
else if (temperature < 90000)
phase_delay = max_window + DIV_ROUND_UP(5 * max_len, 16) * 4;
else if (temperature < 120000)
phase_delay = max_window + DIV_ROUND_UP(4 * max_len, 16) * 4;
else
phase_delay = max_window + DIV_ROUND_UP(3 * max_len, 16) * 4;
/*
* Stage 2: Search for a single point failure near the chosen tuning
* value in two steps. First in the +3 to +10 range and then in the
* +2 to -10 range. If found, move away from it in the appropriate
* direction by the appropriate amount depending on the temperature.
*/
for (i = 3; i <= 10; i++) {
omap_hsmmc_set_dll(mmc, phase_delay + i);
if (mmc_send_tuning(mmc, opcode)) {
if (temperature < 10000)
phase_delay += i + 6;
else if (temperature < 20000)
phase_delay += i - 12;
else if (temperature < 70000)
phase_delay += i - 8;
else if (temperature < 90000)
phase_delay += i - 6;
else
phase_delay += i - 6;
goto single_failure_found;
}
}
for (i = 2; i >= -10; i--) {
omap_hsmmc_set_dll(mmc, phase_delay + i);
if (mmc_send_tuning(mmc, opcode)) {
if (temperature < 10000)
phase_delay += i + 12;
else if (temperature < 20000)
phase_delay += i + 8;
else if (temperature < 70000)
phase_delay += i + 8;
else if (temperature < 90000)
phase_delay += i + 10;
else
phase_delay += i + 12;
goto single_failure_found;
}
}
single_failure_found:
omap_hsmmc_set_dll(mmc, phase_delay);
mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
return 0;
tuning_error:
omap_hsmmc_disable_tuning(mmc);
mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
return ret;
}
#endif
#endif
static void mmc_enable_irq(struct mmc *mmc, struct mmc_cmd *cmd)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
struct hsmmc *mmc_base = priv->base_addr;
u32 irq_mask = INT_EN_MASK;
/*
* TODO: Errata i802 indicates only DCRC interrupts can occur during
* tuning procedure and DCRC should be disabled. But see occurences
* of DEB, CIE, CEB, CCRC interupts during tuning procedure. These
* interrupts occur along with BRR, so the data is actually in the
* buffer. It has to be debugged why these interrutps occur
*/
if (cmd && mmc_is_tuning_cmd(cmd->cmdidx))
irq_mask &= ~(IE_DEB | IE_DCRC | IE_CIE | IE_CEB | IE_CCRC);
writel(irq_mask, &mmc_base->ie);
}
static int omap_hsmmc_init_setup(struct mmc *mmc)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
struct hsmmc *mmc_base;
unsigned int reg_val;
unsigned int dsor;
ulong start;
mmc_base = priv->base_addr;
mmc_board_init(mmc);
writel(readl(&mmc_base->sysconfig) | MMC_SOFTRESET,
&mmc_base->sysconfig);
start = get_timer(0);
while ((readl(&mmc_base->sysstatus) & RESETDONE) == 0) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for cc2!\n", __func__);
return -ETIMEDOUT;
}
}
writel(readl(&mmc_base->sysctl) | SOFTRESETALL, &mmc_base->sysctl);
start = get_timer(0);
while ((readl(&mmc_base->sysctl) & SOFTRESETALL) != 0x0) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for softresetall!\n",
__func__);
return -ETIMEDOUT;
}
}
#ifdef CONFIG_MMC_OMAP_HS_ADMA
reg_val = readl(&mmc_base->hl_hwinfo);
if (reg_val & MADMA_EN)
priv->controller_flags |= OMAP_HSMMC_USE_ADMA;
#endif
#if CONFIG_IS_ENABLED(DM_MMC)
reg_val = omap_hsmmc_set_capabilities(mmc);
omap_hsmmc_conf_bus_power(mmc, (reg_val & VS33_3V3SUP) ?
MMC_SIGNAL_VOLTAGE_330 : MMC_SIGNAL_VOLTAGE_180);
#else
writel(DTW_1_BITMODE | SDBP_PWROFF | SDVS_3V3, &mmc_base->hctl);
writel(readl(&mmc_base->capa) | VS33_3V3SUP | VS18_1V8SUP,
&mmc_base->capa);
#endif
reg_val = readl(&mmc_base->con) & RESERVED_MASK;
writel(CTPL_MMC_SD | reg_val | WPP_ACTIVEHIGH | CDP_ACTIVEHIGH |
MIT_CTO | DW8_1_4BITMODE | MODE_FUNC | STR_BLOCK |
HR_NOHOSTRESP | INIT_NOINIT | NOOPENDRAIN, &mmc_base->con);
dsor = 240;
mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
(ICE_STOP | DTO_15THDTO));
mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
(dsor << CLKD_OFFSET) | ICE_OSCILLATE);
start = get_timer(0);
while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for ics!\n", __func__);
return -ETIMEDOUT;
}
}
writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
writel(readl(&mmc_base->hctl) | SDBP_PWRON, &mmc_base->hctl);
mmc_enable_irq(mmc, NULL);
#if !CONFIG_IS_ENABLED(DM_MMC)
mmc_init_stream(mmc_base);
#endif
return 0;
}
/*
* MMC controller internal finite state machine reset
*
* Used to reset command or data internal state machines, using respectively
* SRC or SRD bit of SYSCTL register
*/
static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit)
{
ulong start;
mmc_reg_out(&mmc_base->sysctl, bit, bit);
/*
* CMD(DAT) lines reset procedures are slightly different
* for OMAP3 and OMAP4(AM335x,OMAP5,DRA7xx).
* According to OMAP3 TRM:
* Set SRC(SRD) bit in MMCHS_SYSCTL register to 0x1 and wait until it
* returns to 0x0.
* According to OMAP4(AM335x,OMAP5,DRA7xx) TRMs, CMD(DATA) lines reset
* procedure steps must be as follows:
* 1. Initiate CMD(DAT) line reset by writing 0x1 to SRC(SRD) bit in
* MMCHS_SYSCTL register (SD_SYSCTL for AM335x).
* 2. Poll the SRC(SRD) bit until it is set to 0x1.
* 3. Wait until the SRC (SRD) bit returns to 0x0
* (reset procedure is completed).
*/
#if defined(CONFIG_OMAP54XX) || defined(CONFIG_AM33XX) || defined(CONFIG_AM43XX)
if (!(readl(&mmc_base->sysctl) & bit)) {
start = get_timer(0);
while (!(readl(&mmc_base->sysctl) & bit)) {
if (get_timer(0) - start > MMC_TIMEOUT_MS)
return;
}
}
#endif
start = get_timer(0);
while ((readl(&mmc_base->sysctl) & bit) != 0) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for sysctl %x to clear\n",
__func__, bit);
return;
}
}
}
#ifdef CONFIG_MMC_OMAP_HS_ADMA
static void omap_hsmmc_adma_desc(struct mmc *mmc, char *buf, u16 len, bool end)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
struct omap_hsmmc_adma_desc *desc;
u8 attr;
desc = &priv->adma_desc_table[priv->desc_slot];
attr = ADMA_DESC_ATTR_VALID | ADMA_DESC_TRANSFER_DATA;
if (!end)
priv->desc_slot++;
else
attr |= ADMA_DESC_ATTR_END;
desc->len = len;
desc->addr = (u32)buf;
desc->reserved = 0;
desc->attr = attr;
}
static void omap_hsmmc_prepare_adma_table(struct mmc *mmc,
struct mmc_data *data)
{
uint total_len = data->blocksize * data->blocks;
uint desc_count = DIV_ROUND_UP(total_len, ADMA_MAX_LEN);
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
int i = desc_count;
char *buf;
priv->desc_slot = 0;
priv->adma_desc_table = (struct omap_hsmmc_adma_desc *)
memalign(ARCH_DMA_MINALIGN, desc_count *
sizeof(struct omap_hsmmc_adma_desc));
if (data->flags & MMC_DATA_READ)
buf = data->dest;
else
buf = (char *)data->src;
while (--i) {
omap_hsmmc_adma_desc(mmc, buf, ADMA_MAX_LEN, false);
buf += ADMA_MAX_LEN;
total_len -= ADMA_MAX_LEN;
}
omap_hsmmc_adma_desc(mmc, buf, total_len, true);
flush_dcache_range((long)priv->adma_desc_table,
(long)priv->adma_desc_table +
ROUND(desc_count *
sizeof(struct omap_hsmmc_adma_desc),
ARCH_DMA_MINALIGN));
}
static void omap_hsmmc_prepare_data(struct mmc *mmc, struct mmc_data *data)
{
struct hsmmc *mmc_base;
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
u32 val;
char *buf;
mmc_base = priv->base_addr;
omap_hsmmc_prepare_adma_table(mmc, data);
if (data->flags & MMC_DATA_READ)
buf = data->dest;
else
buf = (char *)data->src;
val = readl(&mmc_base->hctl);
val |= DMA_SELECT;
writel(val, &mmc_base->hctl);
val = readl(&mmc_base->con);
val |= DMA_MASTER;
writel(val, &mmc_base->con);
writel((u32)priv->adma_desc_table, &mmc_base->admasal);
flush_dcache_range((u32)buf,
(u32)buf +
ROUND(data->blocksize * data->blocks,
ARCH_DMA_MINALIGN));
}
static void omap_hsmmc_dma_cleanup(struct mmc *mmc)
{
struct hsmmc *mmc_base;
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
u32 val;
mmc_base = priv->base_addr;
val = readl(&mmc_base->con);
val &= ~DMA_MASTER;
writel(val, &mmc_base->con);
val = readl(&mmc_base->hctl);
val &= ~DMA_SELECT;
writel(val, &mmc_base->hctl);
kfree(priv->adma_desc_table);
}
#else
#define omap_hsmmc_adma_desc
#define omap_hsmmc_prepare_adma_table
#define omap_hsmmc_prepare_data
#define omap_hsmmc_dma_cleanup
#endif
#if !CONFIG_IS_ENABLED(DM_MMC)
static int omap_hsmmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
#else
static int omap_hsmmc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct omap_hsmmc_data *priv = dev_get_priv(dev);
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct mmc *mmc = upriv->mmc;
#endif
struct hsmmc *mmc_base;
unsigned int flags, mmc_stat;
ulong start;
priv->last_cmd = cmd->cmdidx;
mmc_base = priv->base_addr;
if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
return 0;
start = get_timer(0);
while ((readl(&mmc_base->pstate) & (DATI_MASK | CMDI_MASK)) != 0) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting on cmd inhibit to clear\n",
__func__);
mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
return -ETIMEDOUT;
}
}
writel(0xFFFFFFFF, &mmc_base->stat);
if (readl(&mmc_base->stat)) {
mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
}
/*
* CMDREG
* CMDIDX[13:8] : Command index
* DATAPRNT[5] : Data Present Select
* ENCMDIDX[4] : Command Index Check Enable
* ENCMDCRC[3] : Command CRC Check Enable
* RSPTYP[1:0]
* 00 = No Response
* 01 = Length 136
* 10 = Length 48
* 11 = Length 48 Check busy after response
*/
/* Delay added before checking the status of frq change
* retry not supported by mmc.c(core file)
*/
if (cmd->cmdidx == SD_CMD_APP_SEND_SCR)
udelay(50000); /* wait 50 ms */
if (!(cmd->resp_type & MMC_RSP_PRESENT))
flags = 0;
else if (cmd->resp_type & MMC_RSP_136)
flags = RSP_TYPE_LGHT136 | CICE_NOCHECK;
else if (cmd->resp_type & MMC_RSP_BUSY)
flags = RSP_TYPE_LGHT48B;
else
flags = RSP_TYPE_LGHT48;
/* enable default flags */
flags = flags | (CMD_TYPE_NORMAL | CICE_NOCHECK | CCCE_NOCHECK |
MSBS_SGLEBLK);
flags &= ~(ACEN_ENABLE | BCE_ENABLE | DE_ENABLE);
if (cmd->resp_type & MMC_RSP_CRC)
flags |= CCCE_CHECK;
if (cmd->resp_type & MMC_RSP_OPCODE)
flags |= CICE_CHECK;
if (data) {
if ((cmd->cmdidx == MMC_CMD_READ_MULTIPLE_BLOCK) ||
(cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK)) {
flags |= (MSBS_MULTIBLK | BCE_ENABLE | ACEN_ENABLE);
data->blocksize = 512;
writel(data->blocksize | (data->blocks << 16),
&mmc_base->blk);
} else
writel(data->blocksize | NBLK_STPCNT, &mmc_base->blk);
if (data->flags & MMC_DATA_READ)
flags |= (DP_DATA | DDIR_READ);
else
flags |= (DP_DATA | DDIR_WRITE);
#ifdef CONFIG_MMC_OMAP_HS_ADMA
if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) &&
!mmc_is_tuning_cmd(cmd->cmdidx)) {
omap_hsmmc_prepare_data(mmc, data);
flags |= DE_ENABLE;
}
#endif
}
mmc_enable_irq(mmc, cmd);
writel(cmd->cmdarg, &mmc_base->arg);
udelay(20); /* To fix "No status update" error on eMMC */
writel((cmd->cmdidx << 24) | flags, &mmc_base->cmd);
start = get_timer(0);
do {
mmc_stat = readl(&mmc_base->stat);
if (get_timer(start) > MAX_RETRY_MS) {
printf("%s : timeout: No status update\n", __func__);
return -ETIMEDOUT;
}
} while (!mmc_stat);
if ((mmc_stat & IE_CTO) != 0) {
mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
return -ETIMEDOUT;
} else if ((mmc_stat & ERRI_MASK) != 0)
return -1;
if (mmc_stat & CC_MASK) {
writel(CC_MASK, &mmc_base->stat);
if (cmd->resp_type & MMC_RSP_PRESENT) {
if (cmd->resp_type & MMC_RSP_136) {
/* response type 2 */
cmd->response[3] = readl(&mmc_base->rsp10);
cmd->response[2] = readl(&mmc_base->rsp32);
cmd->response[1] = readl(&mmc_base->rsp54);
cmd->response[0] = readl(&mmc_base->rsp76);
} else
/* response types 1, 1b, 3, 4, 5, 6 */
cmd->response[0] = readl(&mmc_base->rsp10);
}
}
#ifdef CONFIG_MMC_OMAP_HS_ADMA
if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) && data &&
!mmc_is_tuning_cmd(cmd->cmdidx)) {
u32 sz_mb, timeout;
if (mmc_stat & IE_ADMAE) {
omap_hsmmc_dma_cleanup(mmc);
return -EIO;
}
sz_mb = DIV_ROUND_UP(data->blocksize * data->blocks, 1 << 20);
timeout = sz_mb * DMA_TIMEOUT_PER_MB;
if (timeout < MAX_RETRY_MS)
timeout = MAX_RETRY_MS;
start = get_timer(0);
do {
mmc_stat = readl(&mmc_base->stat);
if (mmc_stat & TC_MASK) {
writel(readl(&mmc_base->stat) | TC_MASK,
&mmc_base->stat);
break;
}
if (get_timer(start) > timeout) {
printf("%s : DMA timeout: No status update\n",
__func__);
return -ETIMEDOUT;
}
} while (1);
omap_hsmmc_dma_cleanup(mmc);
return 0;
}
#endif
if (data && (data->flags & MMC_DATA_READ)) {
mmc_read_data(mmc_base, data->dest,
data->blocksize * data->blocks);
} else if (data && (data->flags & MMC_DATA_WRITE)) {
mmc_write_data(mmc_base, data->src,
data->blocksize * data->blocks);
}
return 0;
}
static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size)
{
unsigned int *output_buf = (unsigned int *)buf;
unsigned int mmc_stat;
unsigned int count;
/*
* Start Polled Read
*/
count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
count /= 4;
while (size) {
ulong start = get_timer(0);
do {
mmc_stat = readl(&mmc_base->stat);
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for status!\n",
__func__);
return -ETIMEDOUT;
}
} while (mmc_stat == 0);
if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
if ((mmc_stat & ERRI_MASK) != 0)
return 1;
if (mmc_stat & BRR_MASK) {
unsigned int k;
writel(readl(&mmc_base->stat) | BRR_MASK,
&mmc_base->stat);
for (k = 0; k < count; k++) {
*output_buf = readl(&mmc_base->data);
output_buf++;
}
size -= (count*4);
}
if (mmc_stat & BWR_MASK)
writel(readl(&mmc_base->stat) | BWR_MASK,
&mmc_base->stat);
if (mmc_stat & TC_MASK) {
writel(readl(&mmc_base->stat) | TC_MASK,
&mmc_base->stat);
break;
}
}
return 0;
}
#if CONFIG_IS_ENABLED(MMC_WRITE)
static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
unsigned int size)
{
unsigned int *input_buf = (unsigned int *)buf;
unsigned int mmc_stat;
unsigned int count;
/*
* Start Polled Write
*/
count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
count /= 4;
while (size) {
ulong start = get_timer(0);
do {
mmc_stat = readl(&mmc_base->stat);
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for status!\n",
__func__);
return -ETIMEDOUT;
}
} while (mmc_stat == 0);
if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
if ((mmc_stat & ERRI_MASK) != 0)
return 1;
if (mmc_stat & BWR_MASK) {
unsigned int k;
writel(readl(&mmc_base->stat) | BWR_MASK,
&mmc_base->stat);
for (k = 0; k < count; k++) {
writel(*input_buf, &mmc_base->data);
input_buf++;
}
size -= (count*4);
}
if (mmc_stat & BRR_MASK)
writel(readl(&mmc_base->stat) | BRR_MASK,
&mmc_base->stat);
if (mmc_stat & TC_MASK) {
writel(readl(&mmc_base->stat) | TC_MASK,
&mmc_base->stat);
break;
}
}
return 0;
}
#else
static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
unsigned int size)
{
return -ENOTSUPP;
}
#endif
static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base)
{
writel(readl(&mmc_base->sysctl) & ~CEN_ENABLE, &mmc_base->sysctl);
}
static void omap_hsmmc_start_clock(struct hsmmc *mmc_base)
{
writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
}
static void omap_hsmmc_set_clock(struct mmc *mmc)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
struct hsmmc *mmc_base;
unsigned int dsor = 0;
ulong start;
mmc_base = priv->base_addr;
omap_hsmmc_stop_clock(mmc_base);
/* TODO: Is setting DTO required here? */
mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK),
(ICE_STOP | DTO_15THDTO));
if (mmc->clock != 0) {
dsor = DIV_ROUND_UP(MMC_CLOCK_REFERENCE * 1000000, mmc->clock);
if (dsor > CLKD_MAX)
dsor = CLKD_MAX;
} else {
dsor = CLKD_MAX;
}
mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
(dsor << CLKD_OFFSET) | ICE_OSCILLATE);
start = get_timer(0);
while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for ics!\n", __func__);
return;
}
}
priv->clock = MMC_CLOCK_REFERENCE * 1000000 / dsor;
mmc->clock = priv->clock;
omap_hsmmc_start_clock(mmc_base);
}
static void omap_hsmmc_set_bus_width(struct mmc *mmc)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
struct hsmmc *mmc_base;
mmc_base = priv->base_addr;
/* configue bus width */
switch (mmc->bus_width) {
case 8:
writel(readl(&mmc_base->con) | DTW_8_BITMODE,
&mmc_base->con);
break;
case 4:
writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
&mmc_base->con);
writel(readl(&mmc_base->hctl) | DTW_4_BITMODE,
&mmc_base->hctl);
break;
case 1:
default:
writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
&mmc_base->con);
writel(readl(&mmc_base->hctl) & ~DTW_4_BITMODE,
&mmc_base->hctl);
break;
}
priv->bus_width = mmc->bus_width;
}
#if !CONFIG_IS_ENABLED(DM_MMC)
static int omap_hsmmc_set_ios(struct mmc *mmc)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
#else
static int omap_hsmmc_set_ios(struct udevice *dev)
{
struct omap_hsmmc_data *priv = dev_get_priv(dev);
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct mmc *mmc = upriv->mmc;
#endif
struct hsmmc *mmc_base = priv->base_addr;
int ret = 0;
if (priv->bus_width != mmc->bus_width)
omap_hsmmc_set_bus_width(mmc);
if (priv->clock != mmc->clock)
omap_hsmmc_set_clock(mmc);
if (mmc->clk_disable)
omap_hsmmc_stop_clock(mmc_base);
else
omap_hsmmc_start_clock(mmc_base);
#if CONFIG_IS_ENABLED(DM_MMC)
if (priv->mode != mmc->selected_mode)
omap_hsmmc_set_timing(mmc);
#if CONFIG_IS_ENABLED(MMC_IO_VOLTAGE)
if (priv->signal_voltage != mmc->signal_voltage)
ret = omap_hsmmc_set_signal_voltage(mmc);
#endif
#endif
return ret;
}
#ifdef OMAP_HSMMC_USE_GPIO
#if CONFIG_IS_ENABLED(DM_MMC)
static int omap_hsmmc_getcd(struct udevice *dev)
{
int value = -1;
#if CONFIG_IS_ENABLED(DM_GPIO)
struct omap_hsmmc_data *priv = dev_get_priv(dev);
value = dm_gpio_get_value(&priv->cd_gpio);
#endif
/* if no CD return as 1 */
if (value < 0)
return 1;
return value;
}
static int omap_hsmmc_getwp(struct udevice *dev)
{
int value = 0;
#if CONFIG_IS_ENABLED(DM_GPIO)
struct omap_hsmmc_data *priv = dev_get_priv(dev);
value = dm_gpio_get_value(&priv->wp_gpio);
#endif
/* if no WP return as 0 */
if (value < 0)
return 0;
return value;
}
#else
static int omap_hsmmc_getcd(struct mmc *mmc)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
int cd_gpio;
/* if no CD return as 1 */
cd_gpio = priv->cd_gpio;
if (cd_gpio < 0)
return 1;
/* NOTE: assumes card detect signal is active-low */
return !gpio_get_value(cd_gpio);
}
static int omap_hsmmc_getwp(struct mmc *mmc)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
int wp_gpio;
/* if no WP return as 0 */
wp_gpio = priv->wp_gpio;
if (wp_gpio < 0)
return 0;
/* NOTE: assumes write protect signal is active-high */
return gpio_get_value(wp_gpio);
}
#endif
#endif
#if CONFIG_IS_ENABLED(DM_MMC)
static const struct dm_mmc_ops omap_hsmmc_ops = {
.send_cmd = omap_hsmmc_send_cmd,
.set_ios = omap_hsmmc_set_ios,
#ifdef OMAP_HSMMC_USE_GPIO
.get_cd = omap_hsmmc_getcd,
.get_wp = omap_hsmmc_getwp,
#endif
#if CONFIG_IS_ENABLED(MMC_SUPPORTS_TUNING)
.execute_tuning = omap_hsmmc_execute_tuning,
#endif
.wait_dat0 = omap_hsmmc_wait_dat0,
};
#else
static const struct mmc_ops omap_hsmmc_ops = {
.send_cmd = omap_hsmmc_send_cmd,
.set_ios = omap_hsmmc_set_ios,
.init = omap_hsmmc_init_setup,
#ifdef OMAP_HSMMC_USE_GPIO
.getcd = omap_hsmmc_getcd,
.getwp = omap_hsmmc_getwp,
#endif
};
#endif
#if !CONFIG_IS_ENABLED(DM_MMC)
int omap_mmc_init(int dev_index, uint host_caps_mask, uint f_max, int cd_gpio,
int wp_gpio)
{
struct mmc *mmc;
struct omap_hsmmc_data *priv;
struct mmc_config *cfg;
uint host_caps_val;
priv = calloc(1, sizeof(*priv));
if (priv == NULL)
return -1;
host_caps_val = MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS;
switch (dev_index) {
case 0:
priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
break;
#ifdef OMAP_HSMMC2_BASE
case 1:
priv->base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE;
#if (defined(CONFIG_OMAP54XX) || \
defined(CONFIG_DRA7XX) || defined(CONFIG_AM33XX) || \
defined(CONFIG_AM43XX) || defined(CONFIG_ARCH_KEYSTONE)) && \
defined(CONFIG_HSMMC2_8BIT)
/* Enable 8-bit interface for eMMC on OMAP4/5 or DRA7XX */
host_caps_val |= MMC_MODE_8BIT;
#endif
break;
#endif
#ifdef OMAP_HSMMC3_BASE
case 2:
priv->base_addr = (struct hsmmc *)OMAP_HSMMC3_BASE;
#if defined(CONFIG_DRA7XX) && defined(CONFIG_HSMMC3_8BIT)
/* Enable 8-bit interface for eMMC on DRA7XX */
host_caps_val |= MMC_MODE_8BIT;
#endif
break;
#endif
default:
priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
return 1;
}
#ifdef OMAP_HSMMC_USE_GPIO
/* on error gpio values are set to -1, which is what we want */
priv->cd_gpio = omap_mmc_setup_gpio_in(cd_gpio, "mmc_cd");
priv->wp_gpio = omap_mmc_setup_gpio_in(wp_gpio, "mmc_wp");
#endif
cfg = &priv->cfg;
cfg->name = "OMAP SD/MMC";
cfg->ops = &omap_hsmmc_ops;
cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
cfg->host_caps = host_caps_val & ~host_caps_mask;
cfg->f_min = 400000;
if (f_max != 0)
cfg->f_max = f_max;
else {
if (cfg->host_caps & MMC_MODE_HS) {
if (cfg->host_caps & MMC_MODE_HS_52MHz)
cfg->f_max = 52000000;
else
cfg->f_max = 26000000;
} else
cfg->f_max = 20000000;
}
cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
#if defined(CONFIG_OMAP34XX)
/*
* Silicon revs 2.1 and older do not support multiblock transfers.
*/
if ((get_cpu_family() == CPU_OMAP34XX) && (get_cpu_rev() <= CPU_3XX_ES21))
cfg->b_max = 1;
#endif
mmc = mmc_create(cfg, priv);
if (mmc == NULL)
return -1;
return 0;
}
#else
#ifdef CONFIG_IODELAY_RECALIBRATION
static struct pad_conf_entry *
omap_hsmmc_get_pad_conf_entry(const fdt32_t *pinctrl, int count)
{
int index = 0;
struct pad_conf_entry *padconf;
padconf = (struct pad_conf_entry *)malloc(sizeof(*padconf) * count);
if (!padconf) {
debug("failed to allocate memory\n");
return 0;
}
while (index < count) {
padconf[index].offset = fdt32_to_cpu(pinctrl[2 * index]);
padconf[index].val = fdt32_to_cpu(pinctrl[2 * index + 1]);
index++;
}
return padconf;
}
static struct iodelay_cfg_entry *
omap_hsmmc_get_iodelay_cfg_entry(const fdt32_t *pinctrl, int count)
{
int index = 0;
struct iodelay_cfg_entry *iodelay;
iodelay = (struct iodelay_cfg_entry *)malloc(sizeof(*iodelay) * count);
if (!iodelay) {
debug("failed to allocate memory\n");
return 0;
}
while (index < count) {
iodelay[index].offset = fdt32_to_cpu(pinctrl[3 * index]);
iodelay[index].a_delay = fdt32_to_cpu(pinctrl[3 * index + 1]);
iodelay[index].g_delay = fdt32_to_cpu(pinctrl[3 * index + 2]);
index++;
}
return iodelay;
}
static const fdt32_t *omap_hsmmc_get_pinctrl_entry(u32 phandle,
const char *name, int *len)
{
const void *fdt = gd->fdt_blob;
int offset;
const fdt32_t *pinctrl;
offset = fdt_node_offset_by_phandle(fdt, phandle);
if (offset < 0) {
debug("failed to get pinctrl node %s.\n",
fdt_strerror(offset));
return 0;
}
pinctrl = fdt_getprop(fdt, offset, name, len);
if (!pinctrl) {
debug("failed to get property %s\n", name);
return 0;
}
return pinctrl;
}
static uint32_t omap_hsmmc_get_pad_conf_phandle(struct mmc *mmc,
char *prop_name)
{
const void *fdt = gd->fdt_blob;
const __be32 *phandle;
int node = dev_of_offset(mmc->dev);
phandle = fdt_getprop(fdt, node, prop_name, NULL);
if (!phandle) {
debug("failed to get property %s\n", prop_name);
return 0;
}
return fdt32_to_cpu(*phandle);
}
static uint32_t omap_hsmmc_get_iodelay_phandle(struct mmc *mmc,
char *prop_name)
{
const void *fdt = gd->fdt_blob;
const __be32 *phandle;
int len;
int count;
int node = dev_of_offset(mmc->dev);
phandle = fdt_getprop(fdt, node, prop_name, &len);
if (!phandle) {
debug("failed to get property %s\n", prop_name);
return 0;
}
/* No manual mode iodelay values if count < 2 */
count = len / sizeof(*phandle);
if (count < 2)
return 0;
return fdt32_to_cpu(*(phandle + 1));
}
static struct pad_conf_entry *
omap_hsmmc_get_pad_conf(struct mmc *mmc, char *prop_name, int *npads)
{
int len;
int count;
struct pad_conf_entry *padconf;
u32 phandle;
const fdt32_t *pinctrl;
phandle = omap_hsmmc_get_pad_conf_phandle(mmc, prop_name);
if (!phandle)
return ERR_PTR(-EINVAL);
pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-single,pins",
&len);
if (!pinctrl)
return ERR_PTR(-EINVAL);
count = (len / sizeof(*pinctrl)) / 2;
padconf = omap_hsmmc_get_pad_conf_entry(pinctrl, count);
if (!padconf)
return ERR_PTR(-EINVAL);
*npads = count;
return padconf;
}
static struct iodelay_cfg_entry *
omap_hsmmc_get_iodelay(struct mmc *mmc, char *prop_name, int *niodelay)
{
int len;
int count;
struct iodelay_cfg_entry *iodelay;
u32 phandle;
const fdt32_t *pinctrl;
phandle = omap_hsmmc_get_iodelay_phandle(mmc, prop_name);
/* Not all modes have manual mode iodelay values. So its not fatal */
if (!phandle)
return 0;
pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-pin-array",
&len);
if (!pinctrl)
return ERR_PTR(-EINVAL);
count = (len / sizeof(*pinctrl)) / 3;
iodelay = omap_hsmmc_get_iodelay_cfg_entry(pinctrl, count);
if (!iodelay)
return ERR_PTR(-EINVAL);
*niodelay = count;
return iodelay;
}
static struct omap_hsmmc_pinctrl_state *
omap_hsmmc_get_pinctrl_by_mode(struct mmc *mmc, char *mode)
{
int index;
int npads = 0;
int niodelays = 0;
const void *fdt = gd->fdt_blob;
int node = dev_of_offset(mmc->dev);
char prop_name[11];
struct omap_hsmmc_pinctrl_state *pinctrl_state;
pinctrl_state = (struct omap_hsmmc_pinctrl_state *)
malloc(sizeof(*pinctrl_state));
if (!pinctrl_state) {
debug("failed to allocate memory\n");
return 0;
}
index = fdt_stringlist_search(fdt, node, "pinctrl-names", mode);
if (index < 0) {
debug("fail to find %s mode %s\n", mode, fdt_strerror(index));
goto err_pinctrl_state;
}
sprintf(prop_name, "pinctrl-%d", index);
pinctrl_state->padconf = omap_hsmmc_get_pad_conf(mmc, prop_name,
&npads);
if (IS_ERR(pinctrl_state->padconf))
goto err_pinctrl_state;
pinctrl_state->npads = npads;
pinctrl_state->iodelay = omap_hsmmc_get_iodelay(mmc, prop_name,
&niodelays);
if (IS_ERR(pinctrl_state->iodelay))
goto err_padconf;
pinctrl_state->niodelays = niodelays;
return pinctrl_state;
err_padconf:
kfree(pinctrl_state->padconf);
err_pinctrl_state:
kfree(pinctrl_state);
return 0;
}
#define OMAP_HSMMC_SETUP_PINCTRL(capmask, mode, optional) \
do { \
struct omap_hsmmc_pinctrl_state *s = NULL; \
char str[20]; \
if (!(cfg->host_caps & capmask)) \
break; \
\
if (priv->hw_rev) { \
sprintf(str, "%s-%s", #mode, priv->hw_rev); \
s = omap_hsmmc_get_pinctrl_by_mode(mmc, str); \
} \
\
if (!s) \
s = omap_hsmmc_get_pinctrl_by_mode(mmc, #mode); \
\
if (!s && !optional) { \
debug("%s: no pinctrl for %s\n", \
mmc->dev->name, #mode); \
cfg->host_caps &= ~(capmask); \
} else { \
priv->mode##_pinctrl_state = s; \
} \
} while (0)
static int omap_hsmmc_get_pinctrl_state(struct mmc *mmc)
{
struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
struct omap_hsmmc_pinctrl_state *default_pinctrl;
if (!(priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY))
return 0;
default_pinctrl = omap_hsmmc_get_pinctrl_by_mode(mmc, "default");
if (!default_pinctrl) {
printf("no pinctrl state for default mode\n");
return -EINVAL;
}
priv->default_pinctrl_state = default_pinctrl;
OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR104), sdr104, false);
OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR50), sdr50, false);
OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_DDR50), ddr50, false);
OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR25), sdr25, false);
OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR12), sdr12, false);
OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(MMC_HS_200), hs200_1_8v, false);
OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(MMC_DDR_52), ddr_1_8v, false);
OMAP_HSMMC_SETUP_PINCTRL(MMC_MODE_HS, hs, true);
return 0;
}
#endif
#if CONFIG_IS_ENABLED(OF_REAL)
#ifdef CONFIG_OMAP54XX
__weak const struct mmc_platform_fixups *platform_fixups_mmc(uint32_t addr)
{
return NULL;
}
#endif
static int omap_hsmmc_of_to_plat(struct udevice *dev)
{
struct omap_hsmmc_plat *plat = dev_get_plat(dev);
struct omap_mmc_of_data *of_data = (void *)dev_get_driver_data(dev);
struct mmc_config *cfg = &plat->cfg;
#ifdef CONFIG_OMAP54XX
const struct mmc_platform_fixups *fixups;
#endif
const void *fdt = gd->fdt_blob;
int node = dev_of_offset(dev);
int ret;
plat->base_addr = map_physmem(dev_read_addr(dev),
sizeof(struct hsmmc *),
MAP_NOCACHE);
ret = mmc_of_parse(dev, cfg);
if (ret < 0)
return ret;
if (!cfg->f_max)
cfg->f_max = 52000000;
cfg->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
cfg->f_min = 400000;
cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
if (fdtdec_get_bool(fdt, node, "ti,dual-volt"))
plat->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
if (fdtdec_get_bool(fdt, node, "no-1-8-v"))
plat->controller_flags |= OMAP_HSMMC_NO_1_8_V;
if (of_data)
plat->controller_flags |= of_data->controller_flags;
#ifdef CONFIG_OMAP54XX
fixups = platform_fixups_mmc(dev_read_addr(dev));
if (fixups) {
plat->hw_rev = fixups->hw_rev;
cfg->host_caps &= ~fixups->unsupported_caps;
cfg->f_max = fixups->max_freq;
}
#endif
return 0;
}
#endif
#ifdef CONFIG_BLK
static int omap_hsmmc_bind(struct udevice *dev)
{
struct omap_hsmmc_plat *plat = dev_get_plat(dev);
plat->mmc = calloc(1, sizeof(struct mmc));
return mmc_bind(dev, plat->mmc, &plat->cfg);
}
#endif
static int omap_hsmmc_probe(struct udevice *dev)
{
struct omap_hsmmc_plat *plat = dev_get_plat(dev);
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct omap_hsmmc_data *priv = dev_get_priv(dev);
struct mmc_config *cfg = &plat->cfg;
struct mmc *mmc;
#ifdef CONFIG_IODELAY_RECALIBRATION
int ret;
#endif
cfg->name = "OMAP SD/MMC";
priv->base_addr = plat->base_addr;
priv->controller_flags = plat->controller_flags;
priv->hw_rev = plat->hw_rev;
#ifdef CONFIG_BLK
mmc = plat->mmc;
#else
mmc = mmc_create(cfg, priv);
if (mmc == NULL)
return -1;
#endif
#if CONFIG_IS_ENABLED(DM_REGULATOR)
device_get_supply_regulator(dev, "pbias-supply",
&priv->pbias_supply);
#endif
#if defined(OMAP_HSMMC_USE_GPIO)
#if CONFIG_IS_ENABLED(OF_CONTROL) && CONFIG_IS_ENABLED(DM_GPIO)
gpio_request_by_name(dev, "cd-gpios", 0, &priv->cd_gpio, GPIOD_IS_IN);
gpio_request_by_name(dev, "wp-gpios", 0, &priv->wp_gpio, GPIOD_IS_IN);
#endif
#endif
mmc->dev = dev;
upriv->mmc = mmc;
#ifdef CONFIG_IODELAY_RECALIBRATION
ret = omap_hsmmc_get_pinctrl_state(mmc);
/*
* disable high speed modes for the platforms that require IO delay
* and for which we don't have this information
*/
if ((ret < 0) &&
(priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY)) {
priv->controller_flags &= ~OMAP_HSMMC_REQUIRE_IODELAY;
cfg->host_caps &= ~(MMC_CAP(MMC_HS_200) | MMC_CAP(MMC_DDR_52) |
UHS_CAPS);
}
#endif
return omap_hsmmc_init_setup(mmc);
}
#if CONFIG_IS_ENABLED(OF_REAL)
static const struct omap_mmc_of_data dra7_mmc_of_data = {
.controller_flags = OMAP_HSMMC_REQUIRE_IODELAY,
};
static const struct udevice_id omap_hsmmc_ids[] = {
{ .compatible = "ti,omap3-hsmmc" },
{ .compatible = "ti,omap4-hsmmc" },
{ .compatible = "ti,am33xx-hsmmc" },
{ .compatible = "ti,am335-sdhci" },
{ .compatible = "ti,dra7-hsmmc", .data = (ulong)&dra7_mmc_of_data },
{ }
};
#endif
U_BOOT_DRIVER(omap_hsmmc) = {
.name = "omap_hsmmc",
.id = UCLASS_MMC,
#if CONFIG_IS_ENABLED(OF_REAL)
.of_match = omap_hsmmc_ids,
.of_to_plat = omap_hsmmc_of_to_plat,
.plat_auto = sizeof(struct omap_hsmmc_plat),
#endif
#ifdef CONFIG_BLK
.bind = omap_hsmmc_bind,
#endif
.ops = &omap_hsmmc_ops,
.probe = omap_hsmmc_probe,
.priv_auto = sizeof(struct omap_hsmmc_data),
#if !CONFIG_IS_ENABLED(OF_CONTROL)
.flags = DM_FLAG_PRE_RELOC,
#endif
};
#endif