| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Freescale i.MX23/i.MX28 clock setup code |
| * |
| * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com> |
| * on behalf of DENX Software Engineering GmbH |
| * |
| * Based on code from LTIB: |
| * Copyright (C) 2010 Freescale Semiconductor, Inc. |
| */ |
| |
| #include <common.h> |
| #include <log.h> |
| #include <linux/errno.h> |
| #include <asm/io.h> |
| #include <asm/arch/clock.h> |
| #include <asm/arch/imx-regs.h> |
| |
| /* |
| * The PLL frequency is 480MHz and XTAL frequency is 24MHz |
| * iMX23: datasheet section 4.2 |
| * iMX28: datasheet section 10.2 |
| */ |
| #define PLL_FREQ_KHZ 480000 |
| #define PLL_FREQ_COEF 18 |
| #define XTAL_FREQ_KHZ 24000 |
| |
| #define PLL_FREQ_MHZ (PLL_FREQ_KHZ / 1000) |
| #define XTAL_FREQ_MHZ (XTAL_FREQ_KHZ / 1000) |
| |
| #if defined(CONFIG_MX23) |
| #define MXC_SSPCLK_MAX MXC_SSPCLK0 |
| #elif defined(CONFIG_MX28) |
| #define MXC_SSPCLK_MAX MXC_SSPCLK3 |
| #endif |
| |
| static uint32_t mxs_get_pclk(void) |
| { |
| struct mxs_clkctrl_regs *clkctrl_regs = |
| (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| |
| uint32_t clkctrl, clkseq, div; |
| uint8_t clkfrac, frac; |
| |
| clkctrl = readl(&clkctrl_regs->hw_clkctrl_cpu); |
| |
| /* No support of fractional divider calculation */ |
| if (clkctrl & |
| (CLKCTRL_CPU_DIV_XTAL_FRAC_EN | CLKCTRL_CPU_DIV_CPU_FRAC_EN)) { |
| return 0; |
| } |
| |
| clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq); |
| |
| /* XTAL Path */ |
| if (clkseq & CLKCTRL_CLKSEQ_BYPASS_CPU) { |
| div = (clkctrl & CLKCTRL_CPU_DIV_XTAL_MASK) >> |
| CLKCTRL_CPU_DIV_XTAL_OFFSET; |
| return XTAL_FREQ_MHZ / div; |
| } |
| |
| /* REF Path */ |
| clkfrac = readb(&clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_CPU]); |
| frac = clkfrac & CLKCTRL_FRAC_FRAC_MASK; |
| div = clkctrl & CLKCTRL_CPU_DIV_CPU_MASK; |
| return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div; |
| } |
| |
| static uint32_t mxs_get_hclk(void) |
| { |
| struct mxs_clkctrl_regs *clkctrl_regs = |
| (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| |
| uint32_t div; |
| uint32_t clkctrl; |
| |
| clkctrl = readl(&clkctrl_regs->hw_clkctrl_hbus); |
| |
| /* No support of fractional divider calculation */ |
| if (clkctrl & CLKCTRL_HBUS_DIV_FRAC_EN) |
| return 0; |
| |
| div = clkctrl & CLKCTRL_HBUS_DIV_MASK; |
| return mxs_get_pclk() / div; |
| } |
| |
| static uint32_t mxs_get_emiclk(void) |
| { |
| struct mxs_clkctrl_regs *clkctrl_regs = |
| (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| |
| uint32_t clkctrl, clkseq, div; |
| uint8_t clkfrac, frac; |
| |
| clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq); |
| clkctrl = readl(&clkctrl_regs->hw_clkctrl_emi); |
| |
| /* XTAL Path */ |
| if (clkseq & CLKCTRL_CLKSEQ_BYPASS_EMI) { |
| div = (clkctrl & CLKCTRL_EMI_DIV_XTAL_MASK) >> |
| CLKCTRL_EMI_DIV_XTAL_OFFSET; |
| return XTAL_FREQ_MHZ / div; |
| } |
| |
| /* REF Path */ |
| clkfrac = readb(&clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_EMI]); |
| frac = clkfrac & CLKCTRL_FRAC_FRAC_MASK; |
| div = clkctrl & CLKCTRL_EMI_DIV_EMI_MASK; |
| return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div; |
| } |
| |
| static uint32_t mxs_get_gpmiclk(void) |
| { |
| struct mxs_clkctrl_regs *clkctrl_regs = |
| (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| #if defined(CONFIG_MX23) |
| uint8_t *reg = |
| &clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_CPU]; |
| #elif defined(CONFIG_MX28) |
| uint8_t *reg = |
| &clkctrl_regs->hw_clkctrl_frac1[CLKCTRL_FRAC1_GPMI]; |
| #endif |
| uint32_t clkctrl, clkseq, div; |
| uint8_t clkfrac, frac; |
| |
| clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq); |
| clkctrl = readl(&clkctrl_regs->hw_clkctrl_gpmi); |
| |
| /* XTAL Path */ |
| if (clkseq & CLKCTRL_CLKSEQ_BYPASS_GPMI) { |
| div = clkctrl & CLKCTRL_GPMI_DIV_MASK; |
| return XTAL_FREQ_MHZ / div; |
| } |
| |
| /* REF Path */ |
| clkfrac = readb(reg); |
| frac = clkfrac & CLKCTRL_FRAC_FRAC_MASK; |
| div = clkctrl & CLKCTRL_GPMI_DIV_MASK; |
| return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div; |
| } |
| |
| /* |
| * Set IO clock frequency, in kHz |
| */ |
| void mxs_set_ioclk(enum mxs_ioclock io, uint32_t freq) |
| { |
| struct mxs_clkctrl_regs *clkctrl_regs = |
| (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| uint32_t div; |
| int io_reg; |
| |
| if (freq == 0) |
| return; |
| |
| if ((io < MXC_IOCLK0) || (io > MXC_IOCLK1)) |
| return; |
| |
| div = (PLL_FREQ_KHZ * PLL_FREQ_COEF) / freq; |
| |
| if (div < 18) |
| div = 18; |
| |
| if (div > 35) |
| div = 35; |
| |
| io_reg = CLKCTRL_FRAC0_IO0 - io; /* Register order is reversed */ |
| writeb(CLKCTRL_FRAC_CLKGATE, |
| &clkctrl_regs->hw_clkctrl_frac0_set[io_reg]); |
| writeb(CLKCTRL_FRAC_CLKGATE | (div & CLKCTRL_FRAC_FRAC_MASK), |
| &clkctrl_regs->hw_clkctrl_frac0[io_reg]); |
| writeb(CLKCTRL_FRAC_CLKGATE, |
| &clkctrl_regs->hw_clkctrl_frac0_clr[io_reg]); |
| } |
| |
| /* |
| * Get IO clock, returns IO clock in kHz |
| */ |
| static uint32_t mxs_get_ioclk(enum mxs_ioclock io) |
| { |
| struct mxs_clkctrl_regs *clkctrl_regs = |
| (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| uint8_t ret; |
| int io_reg; |
| |
| if ((io < MXC_IOCLK0) || (io > MXC_IOCLK1)) |
| return 0; |
| |
| io_reg = CLKCTRL_FRAC0_IO0 - io; /* Register order is reversed */ |
| |
| ret = readb(&clkctrl_regs->hw_clkctrl_frac0[io_reg]) & |
| CLKCTRL_FRAC_FRAC_MASK; |
| |
| return (PLL_FREQ_KHZ * PLL_FREQ_COEF) / ret; |
| } |
| |
| /* |
| * Configure SSP clock frequency, in kHz |
| */ |
| void mxs_set_sspclk(enum mxs_sspclock ssp, uint32_t freq, int xtal) |
| { |
| struct mxs_clkctrl_regs *clkctrl_regs = |
| (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| uint32_t clk, clkreg; |
| |
| if (ssp > MXC_SSPCLK_MAX) |
| return; |
| |
| clkreg = (uint32_t)(&clkctrl_regs->hw_clkctrl_ssp0) + |
| (ssp * sizeof(struct mxs_register_32)); |
| |
| clrbits_le32(clkreg, CLKCTRL_SSP_CLKGATE); |
| while (readl(clkreg) & CLKCTRL_SSP_CLKGATE) |
| ; |
| |
| if (xtal) |
| clk = XTAL_FREQ_KHZ; |
| else |
| clk = mxs_get_ioclk(ssp >> 1); |
| |
| if (freq > clk) |
| return; |
| |
| /* Calculate the divider and cap it if necessary */ |
| clk /= freq; |
| if (clk > CLKCTRL_SSP_DIV_MASK) |
| clk = CLKCTRL_SSP_DIV_MASK; |
| |
| clrsetbits_le32(clkreg, CLKCTRL_SSP_DIV_MASK, clk); |
| while (readl(clkreg) & CLKCTRL_SSP_BUSY) |
| ; |
| |
| if (xtal) |
| writel(CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp, |
| &clkctrl_regs->hw_clkctrl_clkseq_set); |
| else |
| writel(CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp, |
| &clkctrl_regs->hw_clkctrl_clkseq_clr); |
| } |
| |
| /* |
| * Return SSP frequency, in kHz |
| */ |
| static uint32_t mxs_get_sspclk(enum mxs_sspclock ssp) |
| { |
| struct mxs_clkctrl_regs *clkctrl_regs = |
| (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| uint32_t clkreg; |
| uint32_t clk, tmp; |
| |
| if (ssp > MXC_SSPCLK_MAX) |
| return 0; |
| |
| tmp = readl(&clkctrl_regs->hw_clkctrl_clkseq); |
| if (tmp & (CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp)) |
| return XTAL_FREQ_KHZ; |
| |
| clkreg = (uint32_t)(&clkctrl_regs->hw_clkctrl_ssp0) + |
| (ssp * sizeof(struct mxs_register_32)); |
| |
| tmp = readl(clkreg) & CLKCTRL_SSP_DIV_MASK; |
| |
| if (tmp == 0) |
| return 0; |
| |
| clk = mxs_get_ioclk(ssp >> 1); |
| |
| return clk / tmp; |
| } |
| |
| /* |
| * Set SSP/MMC bus frequency, in kHz) |
| */ |
| void mxs_set_ssp_busclock(unsigned int bus, uint32_t freq) |
| { |
| struct mxs_ssp_regs *ssp_regs; |
| const enum mxs_sspclock clk = mxs_ssp_clock_by_bus(bus); |
| const uint32_t sspclk = mxs_get_sspclk(clk); |
| uint32_t reg; |
| uint32_t divide, rate, tgtclk; |
| |
| ssp_regs = mxs_ssp_regs_by_bus(bus); |
| |
| /* |
| * SSP bit rate = SSPCLK / (CLOCK_DIVIDE * (1 + CLOCK_RATE)), |
| * CLOCK_DIVIDE has to be an even value from 2 to 254, and |
| * CLOCK_RATE could be any integer from 0 to 255. |
| */ |
| for (divide = 2; divide < 254; divide += 2) { |
| rate = sspclk / freq / divide; |
| if (rate <= 256) |
| break; |
| } |
| |
| tgtclk = sspclk / divide / rate; |
| while (tgtclk > freq) { |
| rate++; |
| tgtclk = sspclk / divide / rate; |
| } |
| if (rate > 256) |
| rate = 256; |
| |
| /* Always set timeout the maximum */ |
| reg = SSP_TIMING_TIMEOUT_MASK | |
| (divide << SSP_TIMING_CLOCK_DIVIDE_OFFSET) | |
| ((rate - 1) << SSP_TIMING_CLOCK_RATE_OFFSET); |
| writel(reg, &ssp_regs->hw_ssp_timing); |
| |
| debug("SPI%d: Set freq rate to %d KHz (requested %d KHz)\n", |
| bus, tgtclk, freq); |
| } |
| |
| void mxs_set_lcdclk(uint32_t __maybe_unused lcd_base, uint32_t freq) |
| { |
| struct mxs_clkctrl_regs *clkctrl_regs = |
| (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| uint32_t fp, x, k_rest, k_best, x_best, tk; |
| int32_t k_best_l = 999, k_best_t = 0, x_best_l = 0xff, x_best_t = 0xff; |
| |
| if (freq == 0) |
| return; |
| |
| #if defined(CONFIG_MX23) |
| writel(CLKCTRL_CLKSEQ_BYPASS_PIX, &clkctrl_regs->hw_clkctrl_clkseq_clr); |
| #elif defined(CONFIG_MX28) |
| writel(CLKCTRL_CLKSEQ_BYPASS_DIS_LCDIF, &clkctrl_regs->hw_clkctrl_clkseq_clr); |
| #endif |
| |
| /* |
| * / 18 \ 1 1 |
| * freq kHz = | 480000000 Hz * -- | * --- * ------ |
| * \ x / k 1000 |
| * |
| * 480000000 Hz 18 |
| * ------------ * -- |
| * freq kHz x |
| * k = ------------------- |
| * 1000 |
| */ |
| |
| fp = ((PLL_FREQ_KHZ * 1000) / freq) * 18; |
| |
| for (x = 18; x <= 35; x++) { |
| tk = fp / x; |
| if ((tk / 1000 == 0) || (tk / 1000 > 255)) |
| continue; |
| |
| k_rest = tk % 1000; |
| |
| if (k_rest < (k_best_l % 1000)) { |
| k_best_l = tk; |
| x_best_l = x; |
| } |
| |
| if (k_rest > (k_best_t % 1000)) { |
| k_best_t = tk; |
| x_best_t = x; |
| } |
| } |
| |
| if (1000 - (k_best_t % 1000) > (k_best_l % 1000)) { |
| k_best = k_best_l; |
| x_best = x_best_l; |
| } else { |
| k_best = k_best_t; |
| x_best = x_best_t; |
| } |
| |
| k_best /= 1000; |
| |
| #if defined(CONFIG_MX23) |
| writeb(CLKCTRL_FRAC_CLKGATE, |
| &clkctrl_regs->hw_clkctrl_frac0_set[CLKCTRL_FRAC0_PIX]); |
| writeb(CLKCTRL_FRAC_CLKGATE | (x_best & CLKCTRL_FRAC_FRAC_MASK), |
| &clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_PIX]); |
| writeb(CLKCTRL_FRAC_CLKGATE, |
| &clkctrl_regs->hw_clkctrl_frac0_clr[CLKCTRL_FRAC0_PIX]); |
| |
| writel(CLKCTRL_PIX_CLKGATE, |
| &clkctrl_regs->hw_clkctrl_pix_set); |
| clrsetbits_le32(&clkctrl_regs->hw_clkctrl_pix, |
| CLKCTRL_PIX_DIV_MASK | CLKCTRL_PIX_CLKGATE, |
| k_best << CLKCTRL_PIX_DIV_OFFSET); |
| |
| while (readl(&clkctrl_regs->hw_clkctrl_pix) & CLKCTRL_PIX_BUSY) |
| ; |
| #elif defined(CONFIG_MX28) |
| writeb(CLKCTRL_FRAC_CLKGATE, |
| &clkctrl_regs->hw_clkctrl_frac1_set[CLKCTRL_FRAC1_PIX]); |
| writeb(CLKCTRL_FRAC_CLKGATE | (x_best & CLKCTRL_FRAC_FRAC_MASK), |
| &clkctrl_regs->hw_clkctrl_frac1[CLKCTRL_FRAC1_PIX]); |
| writeb(CLKCTRL_FRAC_CLKGATE, |
| &clkctrl_regs->hw_clkctrl_frac1_clr[CLKCTRL_FRAC1_PIX]); |
| |
| writel(CLKCTRL_DIS_LCDIF_CLKGATE, |
| &clkctrl_regs->hw_clkctrl_lcdif_set); |
| clrsetbits_le32(&clkctrl_regs->hw_clkctrl_lcdif, |
| CLKCTRL_DIS_LCDIF_DIV_MASK | CLKCTRL_DIS_LCDIF_CLKGATE, |
| k_best << CLKCTRL_DIS_LCDIF_DIV_OFFSET); |
| |
| while (readl(&clkctrl_regs->hw_clkctrl_lcdif) & CLKCTRL_DIS_LCDIF_BUSY) |
| ; |
| #endif |
| } |
| |
| uint32_t mxc_get_clock(enum mxc_clock clk) |
| { |
| switch (clk) { |
| case MXC_ARM_CLK: |
| return mxs_get_pclk() * 1000000; |
| case MXC_GPMI_CLK: |
| return mxs_get_gpmiclk() * 1000000; |
| case MXC_AHB_CLK: |
| case MXC_IPG_CLK: |
| return mxs_get_hclk() * 1000000; |
| case MXC_EMI_CLK: |
| return mxs_get_emiclk(); |
| case MXC_IO0_CLK: |
| return mxs_get_ioclk(MXC_IOCLK0); |
| case MXC_IO1_CLK: |
| return mxs_get_ioclk(MXC_IOCLK1); |
| case MXC_XTAL_CLK: |
| return XTAL_FREQ_KHZ * 1000; |
| case MXC_SSP0_CLK: |
| return mxs_get_sspclk(MXC_SSPCLK0); |
| #ifdef CONFIG_MX28 |
| case MXC_SSP1_CLK: |
| return mxs_get_sspclk(MXC_SSPCLK1); |
| case MXC_SSP2_CLK: |
| return mxs_get_sspclk(MXC_SSPCLK2); |
| case MXC_SSP3_CLK: |
| return mxs_get_sspclk(MXC_SSPCLK3); |
| #endif |
| } |
| |
| return 0; |
| } |