blob: 1fdd071e3856a2f80667b839c758fe4fcea225ca [file] [log] [blame]
/*
* (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
* (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
* (C) Copyright 2008 Armadeus Systems nc
* (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
* (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <malloc.h>
#include <net.h>
#include <miiphy.h>
#include "fec_mxc.h"
#include <asm/arch/clock.h>
#include <asm/arch/imx-regs.h>
#include <asm/io.h>
#include <asm/errno.h>
DECLARE_GLOBAL_DATA_PTR;
#ifndef CONFIG_MII
#error "CONFIG_MII has to be defined!"
#endif
#ifndef CONFIG_FEC_XCV_TYPE
#define CONFIG_FEC_XCV_TYPE MII100
#endif
/*
* The i.MX28 operates with packets in big endian. We need to swap them before
* sending and after receiving.
*/
#ifdef CONFIG_MX28
#define CONFIG_FEC_MXC_SWAP_PACKET
#endif
#undef DEBUG
struct nbuf {
uint8_t data[1500]; /**< actual data */
int length; /**< actual length */
int used; /**< buffer in use or not */
uint8_t head[16]; /**< MAC header(6 + 6 + 2) + 2(aligned) */
};
#ifdef CONFIG_FEC_MXC_SWAP_PACKET
static void swap_packet(uint32_t *packet, int length)
{
int i;
for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
packet[i] = __swab32(packet[i]);
}
#endif
/*
* MII-interface related functions
*/
static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
uint8_t regAddr)
{
uint32_t reg; /* convenient holder for the PHY register */
uint32_t phy; /* convenient holder for the PHY */
uint32_t start;
int val;
/*
* reading from any PHY's register is done by properly
* programming the FEC's MII data register.
*/
writel(FEC_IEVENT_MII, &eth->ievent);
reg = regAddr << FEC_MII_DATA_RA_SHIFT;
phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
phy | reg, &eth->mii_data);
/*
* wait for the related interrupt
*/
start = get_timer(0);
while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
printf("Read MDIO failed...\n");
return -1;
}
}
/*
* clear mii interrupt bit
*/
writel(FEC_IEVENT_MII, &eth->ievent);
/*
* it's now safe to read the PHY's register
*/
val = (unsigned short)readl(&eth->mii_data);
debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
regAddr, val);
return val;
}
static void fec_mii_setspeed(struct fec_priv *fec)
{
/*
* Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
* and do not drop the Preamble.
*/
writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1,
&fec->eth->mii_speed);
debug("%s: mii_speed %08x\n", __func__, readl(&fec->eth->mii_speed));
}
static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
uint8_t regAddr, uint16_t data)
{
uint32_t reg; /* convenient holder for the PHY register */
uint32_t phy; /* convenient holder for the PHY */
uint32_t start;
reg = regAddr << FEC_MII_DATA_RA_SHIFT;
phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
/*
* wait for the MII interrupt
*/
start = get_timer(0);
while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
printf("Write MDIO failed...\n");
return -1;
}
}
/*
* clear MII interrupt bit
*/
writel(FEC_IEVENT_MII, &eth->ievent);
debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
regAddr, data);
return 0;
}
int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr)
{
return fec_mdio_read(bus->priv, phyAddr, regAddr);
}
int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr,
u16 data)
{
return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
}
#ifndef CONFIG_PHYLIB
static int miiphy_restart_aneg(struct eth_device *dev)
{
struct fec_priv *fec = (struct fec_priv *)dev->priv;
struct ethernet_regs *eth = fec->bus->priv;
int ret = 0;
/*
* Wake up from sleep if necessary
* Reset PHY, then delay 300ns
*/
#ifdef CONFIG_MX27
fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
#endif
fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
udelay(1000);
/*
* Set the auto-negotiation advertisement register bits
*/
fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
LPA_100FULL | LPA_100HALF | LPA_10FULL |
LPA_10HALF | PHY_ANLPAR_PSB_802_3);
fec_mdio_write(eth, fec->phy_id, MII_BMCR,
BMCR_ANENABLE | BMCR_ANRESTART);
if (fec->mii_postcall)
ret = fec->mii_postcall(fec->phy_id);
return ret;
}
static int miiphy_wait_aneg(struct eth_device *dev)
{
uint32_t start;
int status;
struct fec_priv *fec = (struct fec_priv *)dev->priv;
struct ethernet_regs *eth = fec->bus->priv;
/*
* Wait for AN completion
*/
start = get_timer(0);
do {
if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
printf("%s: Autonegotiation timeout\n", dev->name);
return -1;
}
status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
if (status < 0) {
printf("%s: Autonegotiation failed. status: %d\n",
dev->name, status);
return -1;
}
} while (!(status & BMSR_LSTATUS));
return 0;
}
#endif
static int fec_rx_task_enable(struct fec_priv *fec)
{
writel(1 << 24, &fec->eth->r_des_active);
return 0;
}
static int fec_rx_task_disable(struct fec_priv *fec)
{
return 0;
}
static int fec_tx_task_enable(struct fec_priv *fec)
{
writel(1 << 24, &fec->eth->x_des_active);
return 0;
}
static int fec_tx_task_disable(struct fec_priv *fec)
{
return 0;
}
/**
* Initialize receive task's buffer descriptors
* @param[in] fec all we know about the device yet
* @param[in] count receive buffer count to be allocated
* @param[in] size size of each receive buffer
* @return 0 on success
*
* For this task we need additional memory for the data buffers. And each
* data buffer requires some alignment. Thy must be aligned to a specific
* boundary each (DB_DATA_ALIGNMENT).
*/
static int fec_rbd_init(struct fec_priv *fec, int count, int size)
{
int ix;
uint32_t p = 0;
/* reserve data memory and consider alignment */
if (fec->rdb_ptr == NULL)
fec->rdb_ptr = malloc(size * count + DB_DATA_ALIGNMENT);
p = (uint32_t)fec->rdb_ptr;
if (!p) {
puts("fec_mxc: not enough malloc memory\n");
return -ENOMEM;
}
memset((void *)p, 0, size * count + DB_DATA_ALIGNMENT);
p += DB_DATA_ALIGNMENT-1;
p &= ~(DB_DATA_ALIGNMENT-1);
for (ix = 0; ix < count; ix++) {
writel(p, &fec->rbd_base[ix].data_pointer);
p += size;
writew(FEC_RBD_EMPTY, &fec->rbd_base[ix].status);
writew(0, &fec->rbd_base[ix].data_length);
}
/*
* mark the last RBD to close the ring
*/
writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[ix - 1].status);
fec->rbd_index = 0;
return 0;
}
/**
* Initialize transmit task's buffer descriptors
* @param[in] fec all we know about the device yet
*
* Transmit buffers are created externally. We only have to init the BDs here.\n
* Note: There is a race condition in the hardware. When only one BD is in
* use it must be marked with the WRAP bit to use it for every transmitt.
* This bit in combination with the READY bit results into double transmit
* of each data buffer. It seems the state machine checks READY earlier then
* resetting it after the first transfer.
* Using two BDs solves this issue.
*/
static void fec_tbd_init(struct fec_priv *fec)
{
writew(0x0000, &fec->tbd_base[0].status);
writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
fec->tbd_index = 0;
}
/**
* Mark the given read buffer descriptor as free
* @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
* @param[in] pRbd buffer descriptor to mark free again
*/
static void fec_rbd_clean(int last, struct fec_bd *pRbd)
{
/*
* Reset buffer descriptor as empty
*/
if (last)
writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &pRbd->status);
else
writew(FEC_RBD_EMPTY, &pRbd->status);
/*
* no data in it
*/
writew(0, &pRbd->data_length);
}
static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
unsigned char *mac)
{
imx_get_mac_from_fuse(dev_id, mac);
return !is_valid_ether_addr(mac);
}
static int fec_set_hwaddr(struct eth_device *dev)
{
uchar *mac = dev->enetaddr;
struct fec_priv *fec = (struct fec_priv *)dev->priv;
writel(0, &fec->eth->iaddr1);
writel(0, &fec->eth->iaddr2);
writel(0, &fec->eth->gaddr1);
writel(0, &fec->eth->gaddr2);
/*
* Set physical address
*/
writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
&fec->eth->paddr1);
writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
return 0;
}
static void fec_eth_phy_config(struct eth_device *dev)
{
#ifdef CONFIG_PHYLIB
struct fec_priv *fec = (struct fec_priv *)dev->priv;
struct phy_device *phydev;
phydev = phy_connect(fec->bus, fec->phy_id, dev,
PHY_INTERFACE_MODE_RGMII);
if (phydev) {
fec->phydev = phydev;
phy_config(phydev);
}
#endif
}
/**
* Start the FEC engine
* @param[in] dev Our device to handle
*/
static int fec_open(struct eth_device *edev)
{
struct fec_priv *fec = (struct fec_priv *)edev->priv;
int speed;
debug("fec_open: fec_open(dev)\n");
/* full-duplex, heartbeat disabled */
writel(1 << 2, &fec->eth->x_cntrl);
fec->rbd_index = 0;
#ifdef FEC_QUIRK_ENET_MAC
/* Enable ENET HW endian SWAP */
writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
&fec->eth->ecntrl);
/* Enable ENET store and forward mode */
writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
&fec->eth->x_wmrk);
#endif
/*
* Enable FEC-Lite controller
*/
writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
&fec->eth->ecntrl);
#if defined(CONFIG_MX25) || defined(CONFIG_MX53)
udelay(100);
/*
* setup the MII gasket for RMII mode
*/
/* disable the gasket */
writew(0, &fec->eth->miigsk_enr);
/* wait for the gasket to be disabled */
while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
udelay(2);
/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
/* re-enable the gasket */
writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
/* wait until MII gasket is ready */
int max_loops = 10;
while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
if (--max_loops <= 0) {
printf("WAIT for MII Gasket ready timed out\n");
break;
}
}
#endif
#ifdef CONFIG_PHYLIB
if (!fec->phydev)
fec_eth_phy_config(edev);
if (fec->phydev) {
/* Start up the PHY */
phy_startup(fec->phydev);
speed = fec->phydev->speed;
} else {
speed = _100BASET;
}
#else
miiphy_wait_aneg(edev);
speed = miiphy_speed(edev->name, fec->phy_id);
miiphy_duplex(edev->name, fec->phy_id);
#endif
#ifdef FEC_QUIRK_ENET_MAC
{
u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
u32 rcr = (readl(&fec->eth->r_cntrl) &
~(FEC_RCNTRL_RMII | FEC_RCNTRL_RMII_10T)) |
FEC_RCNTRL_RGMII | FEC_RCNTRL_MII_MODE;
if (speed == _1000BASET)
ecr |= FEC_ECNTRL_SPEED;
else if (speed != _100BASET)
rcr |= FEC_RCNTRL_RMII_10T;
writel(ecr, &fec->eth->ecntrl);
writel(rcr, &fec->eth->r_cntrl);
}
#endif
debug("%s:Speed=%i\n", __func__, speed);
/*
* Enable SmartDMA receive task
*/
fec_rx_task_enable(fec);
udelay(100000);
return 0;
}
static int fec_init(struct eth_device *dev, bd_t* bd)
{
uint32_t base;
struct fec_priv *fec = (struct fec_priv *)dev->priv;
uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
uint32_t rcntrl;
int i;
/* Initialize MAC address */
fec_set_hwaddr(dev);
/*
* reserve memory for both buffer descriptor chains at once
* Datasheet forces the startaddress of each chain is 16 byte
* aligned
*/
if (fec->base_ptr == NULL)
fec->base_ptr = malloc((2 + FEC_RBD_NUM) *
sizeof(struct fec_bd) + DB_ALIGNMENT);
base = (uint32_t)fec->base_ptr;
if (!base) {
puts("fec_mxc: not enough malloc memory\n");
return -ENOMEM;
}
memset((void *)base, 0, (2 + FEC_RBD_NUM) *
sizeof(struct fec_bd) + DB_ALIGNMENT);
base += (DB_ALIGNMENT-1);
base &= ~(DB_ALIGNMENT-1);
fec->rbd_base = (struct fec_bd *)base;
base += FEC_RBD_NUM * sizeof(struct fec_bd);
fec->tbd_base = (struct fec_bd *)base;
/*
* Set interrupt mask register
*/
writel(0x00000000, &fec->eth->imask);
/*
* Clear FEC-Lite interrupt event register(IEVENT)
*/
writel(0xffffffff, &fec->eth->ievent);
/*
* Set FEC-Lite receive control register(R_CNTRL):
*/
/* Start with frame length = 1518, common for all modes. */
rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
if (fec->xcv_type == SEVENWIRE)
rcntrl |= FEC_RCNTRL_FCE;
else if (fec->xcv_type == RGMII)
rcntrl |= FEC_RCNTRL_RGMII;
else if (fec->xcv_type == RMII)
rcntrl |= FEC_RCNTRL_RMII;
else /* MII mode */
rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
writel(rcntrl, &fec->eth->r_cntrl);
if (fec->xcv_type == MII10 || fec->xcv_type == MII100)
fec_mii_setspeed(fec);
/*
* Set Opcode/Pause Duration Register
*/
writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
writel(0x2, &fec->eth->x_wmrk);
/*
* Set multicast address filter
*/
writel(0x00000000, &fec->eth->gaddr1);
writel(0x00000000, &fec->eth->gaddr2);
/* clear MIB RAM */
for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
writel(0, i);
/* FIFO receive start register */
writel(0x520, &fec->eth->r_fstart);
/* size and address of each buffer */
writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
/*
* Initialize RxBD/TxBD rings
*/
if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) {
free(fec->base_ptr);
fec->base_ptr = NULL;
return -ENOMEM;
}
fec_tbd_init(fec);
#ifndef CONFIG_PHYLIB
if (fec->xcv_type != SEVENWIRE)
miiphy_restart_aneg(dev);
#endif
fec_open(dev);
return 0;
}
/**
* Halt the FEC engine
* @param[in] dev Our device to handle
*/
static void fec_halt(struct eth_device *dev)
{
struct fec_priv *fec = (struct fec_priv *)dev->priv;
int counter = 0xffff;
/*
* issue graceful stop command to the FEC transmitter if necessary
*/
writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
&fec->eth->x_cntrl);
debug("eth_halt: wait for stop regs\n");
/*
* wait for graceful stop to register
*/
while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
udelay(1);
/*
* Disable SmartDMA tasks
*/
fec_tx_task_disable(fec);
fec_rx_task_disable(fec);
/*
* Disable the Ethernet Controller
* Note: this will also reset the BD index counter!
*/
writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
&fec->eth->ecntrl);
fec->rbd_index = 0;
fec->tbd_index = 0;
debug("eth_halt: done\n");
}
/**
* Transmit one frame
* @param[in] dev Our ethernet device to handle
* @param[in] packet Pointer to the data to be transmitted
* @param[in] length Data count in bytes
* @return 0 on success
*/
static int fec_send(struct eth_device *dev, volatile void* packet, int length)
{
unsigned int status;
/*
* This routine transmits one frame. This routine only accepts
* 6-byte Ethernet addresses.
*/
struct fec_priv *fec = (struct fec_priv *)dev->priv;
/*
* Check for valid length of data.
*/
if ((length > 1500) || (length <= 0)) {
printf("Payload (%d) too large\n", length);
return -1;
}
/*
* Setup the transmit buffer
* Note: We are always using the first buffer for transmission,
* the second will be empty and only used to stop the DMA engine
*/
#ifdef CONFIG_FEC_MXC_SWAP_PACKET
swap_packet((uint32_t *)packet, length);
#endif
writew(length, &fec->tbd_base[fec->tbd_index].data_length);
writel((uint32_t)packet, &fec->tbd_base[fec->tbd_index].data_pointer);
/*
* update BD's status now
* This block:
* - is always the last in a chain (means no chain)
* - should transmitt the CRC
* - might be the last BD in the list, so the address counter should
* wrap (-> keep the WRAP flag)
*/
status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
writew(status, &fec->tbd_base[fec->tbd_index].status);
/*
* Enable SmartDMA transmit task
*/
fec_tx_task_enable(fec);
/*
* wait until frame is sent .
*/
while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) {
udelay(1);
}
debug("fec_send: status 0x%x index %d\n",
readw(&fec->tbd_base[fec->tbd_index].status),
fec->tbd_index);
/* for next transmission use the other buffer */
if (fec->tbd_index)
fec->tbd_index = 0;
else
fec->tbd_index = 1;
return 0;
}
/**
* Pull one frame from the card
* @param[in] dev Our ethernet device to handle
* @return Length of packet read
*/
static int fec_recv(struct eth_device *dev)
{
struct fec_priv *fec = (struct fec_priv *)dev->priv;
struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
unsigned long ievent;
int frame_length, len = 0;
struct nbuf *frame;
uint16_t bd_status;
uchar buff[FEC_MAX_PKT_SIZE];
/*
* Check if any critical events have happened
*/
ievent = readl(&fec->eth->ievent);
writel(ievent, &fec->eth->ievent);
debug("fec_recv: ievent 0x%lx\n", ievent);
if (ievent & FEC_IEVENT_BABR) {
fec_halt(dev);
fec_init(dev, fec->bd);
printf("some error: 0x%08lx\n", ievent);
return 0;
}
if (ievent & FEC_IEVENT_HBERR) {
/* Heartbeat error */
writel(0x00000001 | readl(&fec->eth->x_cntrl),
&fec->eth->x_cntrl);
}
if (ievent & FEC_IEVENT_GRA) {
/* Graceful stop complete */
if (readl(&fec->eth->x_cntrl) & 0x00000001) {
fec_halt(dev);
writel(~0x00000001 & readl(&fec->eth->x_cntrl),
&fec->eth->x_cntrl);
fec_init(dev, fec->bd);
}
}
/*
* ensure reading the right buffer status
*/
bd_status = readw(&rbd->status);
debug("fec_recv: status 0x%x\n", bd_status);
if (!(bd_status & FEC_RBD_EMPTY)) {
if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
((readw(&rbd->data_length) - 4) > 14)) {
/*
* Get buffer address and size
*/
frame = (struct nbuf *)readl(&rbd->data_pointer);
frame_length = readw(&rbd->data_length) - 4;
/*
* Fill the buffer and pass it to upper layers
*/
#ifdef CONFIG_FEC_MXC_SWAP_PACKET
swap_packet((uint32_t *)frame->data, frame_length);
#endif
memcpy(buff, frame->data, frame_length);
NetReceive(buff, frame_length);
len = frame_length;
} else {
if (bd_status & FEC_RBD_ERR)
printf("error frame: 0x%08lx 0x%08x\n",
(ulong)rbd->data_pointer,
bd_status);
}
/*
* free the current buffer, restart the engine
* and move forward to the next buffer
*/
fec_rbd_clean(fec->rbd_index == (FEC_RBD_NUM - 1) ? 1 : 0, rbd);
fec_rx_task_enable(fec);
fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
}
debug("fec_recv: stop\n");
return len;
}
static int fec_probe(bd_t *bd, int dev_id, int phy_id, uint32_t base_addr)
{
struct eth_device *edev;
struct fec_priv *fec;
struct mii_dev *bus;
unsigned char ethaddr[6];
uint32_t start;
int ret = 0;
/* create and fill edev struct */
edev = (struct eth_device *)malloc(sizeof(struct eth_device));
if (!edev) {
puts("fec_mxc: not enough malloc memory for eth_device\n");
ret = -ENOMEM;
goto err1;
}
fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
if (!fec) {
puts("fec_mxc: not enough malloc memory for fec_priv\n");
ret = -ENOMEM;
goto err2;
}
memset(edev, 0, sizeof(*edev));
memset(fec, 0, sizeof(*fec));
edev->priv = fec;
edev->init = fec_init;
edev->send = fec_send;
edev->recv = fec_recv;
edev->halt = fec_halt;
edev->write_hwaddr = fec_set_hwaddr;
fec->eth = (struct ethernet_regs *)base_addr;
fec->bd = bd;
fec->xcv_type = CONFIG_FEC_XCV_TYPE;
/* Reset chip. */
writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
start = get_timer(0);
while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
printf("FEC MXC: Timeout reseting chip\n");
goto err3;
}
udelay(10);
}
/*
* Set interrupt mask register
*/
writel(0x00000000, &fec->eth->imask);
/*
* Clear FEC-Lite interrupt event register(IEVENT)
*/
writel(0xffffffff, &fec->eth->ievent);
/*
* Set FEC-Lite receive control register(R_CNTRL):
*/
/*
* Frame length=1518; MII mode;
*/
writel((PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT) | FEC_RCNTRL_FCE |
FEC_RCNTRL_MII_MODE, &fec->eth->r_cntrl);
fec_mii_setspeed(fec);
if (dev_id == -1) {
sprintf(edev->name, "FEC");
fec->dev_id = 0;
} else {
sprintf(edev->name, "FEC%i", dev_id);
fec->dev_id = dev_id;
}
fec->phy_id = phy_id;
bus = mdio_alloc();
if (!bus) {
printf("mdio_alloc failed\n");
ret = -ENOMEM;
goto err3;
}
bus->read = fec_phy_read;
bus->write = fec_phy_write;
sprintf(bus->name, edev->name);
#ifdef CONFIG_MX28
/*
* The i.MX28 has two ethernet interfaces, but they are not equal.
* Only the first one can access the MDIO bus.
*/
bus->priv = (struct ethernet_regs *)MXS_ENET0_BASE;
#else
bus->priv = fec->eth;
#endif
ret = mdio_register(bus);
if (ret) {
printf("mdio_register failed\n");
free(bus);
ret = -ENOMEM;
goto err3;
}
fec->bus = bus;
eth_register(edev);
if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
memcpy(edev->enetaddr, ethaddr, 6);
}
/* Configure phy */
fec_eth_phy_config(edev);
return ret;
err3:
free(fec);
err2:
free(edev);
err1:
return ret;
}
#ifndef CONFIG_FEC_MXC_MULTI
int fecmxc_initialize(bd_t *bd)
{
int lout = 1;
debug("eth_init: fec_probe(bd)\n");
lout = fec_probe(bd, -1, CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE);
return lout;
}
#endif
int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
{
int lout = 1;
debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
lout = fec_probe(bd, dev_id, phy_id, addr);
return lout;
}
#ifndef CONFIG_PHYLIB
int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
{
struct fec_priv *fec = (struct fec_priv *)dev->priv;
fec->mii_postcall = cb;
return 0;
}
#endif