blob: 7f71570a940ab545384f3c145643513b18ec5dd9 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Device manager
*
* Copyright (c) 2013 Google, Inc
*
* (C) Copyright 2012
* Pavel Herrmann <morpheus.ibis@gmail.com>
*/
#include <common.h>
#include <cpu_func.h>
#include <event.h>
#include <log.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <clk.h>
#include <fdtdec.h>
#include <fdt_support.h>
#include <malloc.h>
#include <asm/cache.h>
#include <dm/device.h>
#include <dm/device-internal.h>
#include <dm/lists.h>
#include <dm/of_access.h>
#include <dm/pinctrl.h>
#include <dm/platdata.h>
#include <dm/read.h>
#include <dm/uclass.h>
#include <dm/uclass-internal.h>
#include <dm/util.h>
#include <iommu.h>
#include <linux/err.h>
#include <linux/list.h>
#include <power-domain.h>
DECLARE_GLOBAL_DATA_PTR;
static int device_bind_common(struct udevice *parent, const struct driver *drv,
const char *name, void *plat,
ulong driver_data, ofnode node,
uint of_plat_size, struct udevice **devp)
{
struct udevice *dev;
struct uclass *uc;
int size, ret = 0;
bool auto_seq = true;
void *ptr;
if (CONFIG_IS_ENABLED(OF_PLATDATA_NO_BIND))
return -ENOSYS;
if (devp)
*devp = NULL;
if (!name)
return -EINVAL;
ret = uclass_get(drv->id, &uc);
if (ret) {
debug("Missing uclass for driver %s\n", drv->name);
return ret;
}
dev = calloc(1, sizeof(struct udevice));
if (!dev)
return -ENOMEM;
INIT_LIST_HEAD(&dev->sibling_node);
INIT_LIST_HEAD(&dev->child_head);
INIT_LIST_HEAD(&dev->uclass_node);
#if CONFIG_IS_ENABLED(DEVRES)
INIT_LIST_HEAD(&dev->devres_head);
#endif
dev_set_plat(dev, plat);
dev->driver_data = driver_data;
dev->name = name;
dev_set_ofnode(dev, node);
dev->parent = parent;
dev->driver = drv;
dev->uclass = uc;
dev->seq_ = -1;
if (CONFIG_IS_ENABLED(DM_SEQ_ALIAS) &&
(uc->uc_drv->flags & DM_UC_FLAG_SEQ_ALIAS)) {
/*
* Some devices, such as a SPI bus, I2C bus and serial ports
* are numbered using aliases.
*/
if (CONFIG_IS_ENABLED(OF_CONTROL) &&
!CONFIG_IS_ENABLED(OF_PLATDATA)) {
if (uc->uc_drv->name && ofnode_valid(node)) {
if (!dev_read_alias_seq(dev, &dev->seq_)) {
auto_seq = false;
log_debug(" - seq=%d\n", dev->seq_);
}
}
}
}
if (auto_seq && !(uc->uc_drv->flags & DM_UC_FLAG_NO_AUTO_SEQ))
dev->seq_ = uclass_find_next_free_seq(uc);
/* Check if we need to allocate plat */
if (drv->plat_auto) {
bool alloc = !plat;
/*
* For of-platdata, we try use the existing data, but if
* plat_auto is larger, we must allocate a new space
*/
if (CONFIG_IS_ENABLED(OF_PLATDATA)) {
if (of_plat_size)
dev_or_flags(dev, DM_FLAG_OF_PLATDATA);
if (of_plat_size < drv->plat_auto)
alloc = true;
}
if (alloc) {
dev_or_flags(dev, DM_FLAG_ALLOC_PDATA);
ptr = calloc(1, drv->plat_auto);
if (!ptr) {
ret = -ENOMEM;
goto fail_alloc1;
}
/*
* For of-platdata, copy the old plat into the new
* space
*/
if (CONFIG_IS_ENABLED(OF_PLATDATA) && plat)
memcpy(ptr, plat, of_plat_size);
dev_set_plat(dev, ptr);
}
}
size = uc->uc_drv->per_device_plat_auto;
if (size) {
dev_or_flags(dev, DM_FLAG_ALLOC_UCLASS_PDATA);
ptr = calloc(1, size);
if (!ptr) {
ret = -ENOMEM;
goto fail_alloc2;
}
dev_set_uclass_plat(dev, ptr);
}
if (parent) {
size = parent->driver->per_child_plat_auto;
if (!size)
size = parent->uclass->uc_drv->per_child_plat_auto;
if (size) {
dev_or_flags(dev, DM_FLAG_ALLOC_PARENT_PDATA);
ptr = calloc(1, size);
if (!ptr) {
ret = -ENOMEM;
goto fail_alloc3;
}
dev_set_parent_plat(dev, ptr);
}
/* put dev into parent's successor list */
list_add_tail(&dev->sibling_node, &parent->child_head);
}
ret = uclass_bind_device(dev);
if (ret)
goto fail_uclass_bind;
/* if we fail to bind we remove device from successors and free it */
if (drv->bind) {
ret = drv->bind(dev);
if (ret)
goto fail_bind;
}
if (parent && parent->driver->child_post_bind) {
ret = parent->driver->child_post_bind(dev);
if (ret)
goto fail_child_post_bind;
}
if (uc->uc_drv->post_bind) {
ret = uc->uc_drv->post_bind(dev);
if (ret)
goto fail_uclass_post_bind;
}
if (parent)
pr_debug("Bound device %s to %s\n", dev->name, parent->name);
if (devp)
*devp = dev;
dev_or_flags(dev, DM_FLAG_BOUND);
return 0;
fail_uclass_post_bind:
/* There is no child unbind() method, so no clean-up required */
fail_child_post_bind:
if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
if (drv->unbind && drv->unbind(dev)) {
dm_warn("unbind() method failed on dev '%s' on error path\n",
dev->name);
}
}
fail_bind:
if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
if (uclass_unbind_device(dev)) {
dm_warn("Failed to unbind dev '%s' on error path\n",
dev->name);
}
}
fail_uclass_bind:
if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
list_del(&dev->sibling_node);
if (dev_get_flags(dev) & DM_FLAG_ALLOC_PARENT_PDATA) {
free(dev_get_parent_plat(dev));
dev_set_parent_plat(dev, NULL);
}
}
fail_alloc3:
if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
if (dev_get_flags(dev) & DM_FLAG_ALLOC_UCLASS_PDATA) {
free(dev_get_uclass_plat(dev));
dev_set_uclass_plat(dev, NULL);
}
}
fail_alloc2:
if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
if (dev_get_flags(dev) & DM_FLAG_ALLOC_PDATA) {
free(dev_get_plat(dev));
dev_set_plat(dev, NULL);
}
}
fail_alloc1:
devres_release_all(dev);
free(dev);
return ret;
}
int device_bind_with_driver_data(struct udevice *parent,
const struct driver *drv, const char *name,
ulong driver_data, ofnode node,
struct udevice **devp)
{
return device_bind_common(parent, drv, name, NULL, driver_data, node,
0, devp);
}
int device_bind(struct udevice *parent, const struct driver *drv,
const char *name, void *plat, ofnode node,
struct udevice **devp)
{
return device_bind_common(parent, drv, name, plat, 0, node, 0,
devp);
}
int device_bind_by_name(struct udevice *parent, bool pre_reloc_only,
const struct driver_info *info, struct udevice **devp)
{
struct driver *drv;
uint plat_size = 0;
int ret;
drv = lists_driver_lookup_name(info->name);
if (!drv)
return -ENOENT;
if (pre_reloc_only && !(drv->flags & DM_FLAG_PRE_RELOC))
return -EPERM;
#if CONFIG_IS_ENABLED(OF_PLATDATA)
plat_size = info->plat_size;
#endif
ret = device_bind_common(parent, drv, info->name, (void *)info->plat, 0,
ofnode_null(), plat_size, devp);
if (ret)
return ret;
return ret;
}
int device_reparent(struct udevice *dev, struct udevice *new_parent)
{
struct udevice *pos, *n;
assert(dev);
assert(new_parent);
device_foreach_child_safe(pos, n, dev->parent) {
if (pos->driver != dev->driver)
continue;
list_del(&dev->sibling_node);
list_add_tail(&dev->sibling_node, &new_parent->child_head);
dev->parent = new_parent;
break;
}
return 0;
}
static void *alloc_priv(int size, uint flags)
{
void *priv;
if (flags & DM_FLAG_ALLOC_PRIV_DMA) {
size = ROUND(size, ARCH_DMA_MINALIGN);
priv = memalign(ARCH_DMA_MINALIGN, size);
if (priv) {
memset(priv, '\0', size);
/*
* Ensure that the zero bytes are flushed to memory.
* This prevents problems if the driver uses this as
* both an input and an output buffer:
*
* 1. Zeroes written to buffer (here) and sit in the
* cache
* 2. Driver issues a read command to DMA
* 3. CPU runs out of cache space and evicts some cache
* data in the buffer, writing zeroes to RAM from
* the memset() above
* 4. DMA completes
* 5. Buffer now has some DMA data and some zeroes
* 6. Data being read is now incorrect
*
* To prevent this, ensure that the cache is clean
* within this range at the start. The driver can then
* use normal flush-after-write, invalidate-before-read
* procedures.
*/
flush_dcache_range((ulong)priv, (ulong)priv + size);
}
} else {
priv = calloc(1, size);
}
return priv;
}
/**
* device_alloc_priv() - Allocate priv/plat data required by the device
*
* @dev: Device to process
* Return: 0 if OK, -ENOMEM if out of memory
*/
static int device_alloc_priv(struct udevice *dev)
{
const struct driver *drv;
void *ptr;
int size;
drv = dev->driver;
assert(drv);
/* Allocate private data if requested and not reentered */
if (drv->priv_auto && !dev_get_priv(dev)) {
ptr = alloc_priv(drv->priv_auto, drv->flags);
if (!ptr)
return -ENOMEM;
dev_set_priv(dev, ptr);
}
/* Allocate private data if requested and not reentered */
size = dev->uclass->uc_drv->per_device_auto;
if (size && !dev_get_uclass_priv(dev)) {
ptr = alloc_priv(size, dev->uclass->uc_drv->flags);
if (!ptr)
return -ENOMEM;
dev_set_uclass_priv(dev, ptr);
}
/* Allocate parent data for this child */
if (dev->parent) {
size = dev->parent->driver->per_child_auto;
if (!size)
size = dev->parent->uclass->uc_drv->per_child_auto;
if (size && !dev_get_parent_priv(dev)) {
ptr = alloc_priv(size, drv->flags);
if (!ptr)
return -ENOMEM;
dev_set_parent_priv(dev, ptr);
}
}
return 0;
}
int device_of_to_plat(struct udevice *dev)
{
const struct driver *drv;
int ret;
if (!dev)
return -EINVAL;
if (dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID)
return 0;
/*
* This is not needed if binding is disabled, since data is allocated
* at build time.
*/
if (!CONFIG_IS_ENABLED(OF_PLATDATA_NO_BIND)) {
/* Ensure all parents have ofdata */
if (dev->parent) {
ret = device_of_to_plat(dev->parent);
if (ret)
goto fail;
/*
* The device might have already been probed during
* the call to device_probe() on its parent device
* (e.g. PCI bridge devices). Test the flags again
* so that we don't mess up the device.
*/
if (dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID)
return 0;
}
ret = device_alloc_priv(dev);
if (ret)
goto fail;
}
drv = dev->driver;
assert(drv);
if (drv->of_to_plat &&
(CONFIG_IS_ENABLED(OF_PLATDATA) || dev_has_ofnode(dev))) {
ret = drv->of_to_plat(dev);
if (ret)
goto fail;
}
dev_or_flags(dev, DM_FLAG_PLATDATA_VALID);
return 0;
fail:
device_free(dev);
return ret;
}
/**
* device_get_dma_constraints() - Populate device's DMA constraints
*
* Gets a device's DMA constraints from firmware. This information is later
* used by drivers to translate physcal addresses to the device's bus address
* space. For now only device-tree is supported.
*
* @dev: Pointer to target device
* Return: 0 if OK or if no DMA constraints were found, error otherwise
*/
static int device_get_dma_constraints(struct udevice *dev)
{
struct udevice *parent = dev->parent;
phys_addr_t cpu = 0;
dma_addr_t bus = 0;
u64 size = 0;
int ret;
if (!CONFIG_IS_ENABLED(DM_DMA) || !parent || !dev_has_ofnode(parent))
return 0;
/*
* We start parsing for dma-ranges from the device's bus node. This is
* specially important on nested buses.
*/
ret = dev_get_dma_range(parent, &cpu, &bus, &size);
/* Don't return an error if no 'dma-ranges' were found */
if (ret && ret != -ENOENT) {
dm_warn("%s: failed to get DMA range, %d\n", dev->name, ret);
return ret;
}
dev_set_dma_offset(dev, cpu - bus);
return 0;
}
int device_probe(struct udevice *dev)
{
const struct driver *drv;
int ret;
if (!dev)
return -EINVAL;
if (dev_get_flags(dev) & DM_FLAG_ACTIVATED)
return 0;
ret = device_notify(dev, EVT_DM_PRE_PROBE);
if (ret)
return ret;
drv = dev->driver;
assert(drv);
ret = device_of_to_plat(dev);
if (ret)
goto fail;
/* Ensure all parents are probed */
if (dev->parent) {
ret = device_probe(dev->parent);
if (ret)
goto fail;
/*
* The device might have already been probed during
* the call to device_probe() on its parent device
* (e.g. PCI bridge devices). Test the flags again
* so that we don't mess up the device.
*/
if (dev_get_flags(dev) & DM_FLAG_ACTIVATED)
return 0;
}
dev_or_flags(dev, DM_FLAG_ACTIVATED);
if (CONFIG_IS_ENABLED(POWER_DOMAIN) && dev->parent &&
(device_get_uclass_id(dev) != UCLASS_POWER_DOMAIN) &&
!(drv->flags & DM_FLAG_DEFAULT_PD_CTRL_OFF)) {
ret = dev_power_domain_on(dev);
if (ret)
goto fail;
}
/*
* Process pinctrl for everything except the root device, and
* continue regardless of the result of pinctrl. Don't process pinctrl
* settings for pinctrl devices since the device may not yet be
* probed.
*
* This call can produce some non-intuitive results. For example, on an
* x86 device where dev is the main PCI bus, the pinctrl device may be
* child or grandchild of that bus, meaning that the child will be
* probed here. If the child happens to be the P2SB and the pinctrl
* device is a child of that, then both the pinctrl and P2SB will be
* probed by this call. This works because the DM_FLAG_ACTIVATED flag
* is set just above. However, the PCI bus' probe() method and
* associated uclass methods have not yet been called.
*/
if (dev->parent && device_get_uclass_id(dev) != UCLASS_PINCTRL) {
ret = pinctrl_select_state(dev, "default");
if (ret && ret != -ENOSYS)
log_debug("Device '%s' failed to configure default pinctrl: %d (%s)\n",
dev->name, ret, errno_str(ret));
}
if (CONFIG_IS_ENABLED(IOMMU) && dev->parent &&
(device_get_uclass_id(dev) != UCLASS_IOMMU)) {
ret = dev_iommu_enable(dev);
if (ret)
goto fail;
}
ret = device_get_dma_constraints(dev);
if (ret)
goto fail;
ret = uclass_pre_probe_device(dev);
if (ret)
goto fail;
if (dev->parent && dev->parent->driver->child_pre_probe) {
ret = dev->parent->driver->child_pre_probe(dev);
if (ret)
goto fail;
}
/* Only handle devices that have a valid ofnode */
if (dev_has_ofnode(dev)) {
/*
* Process 'assigned-{clocks/clock-parents/clock-rates}'
* properties
*/
ret = clk_set_defaults(dev, CLK_DEFAULTS_PRE);
if (ret)
goto fail;
}
if (drv->probe) {
ret = drv->probe(dev);
if (ret)
goto fail;
}
ret = uclass_post_probe_device(dev);
if (ret)
goto fail_uclass;
if (dev->parent && device_get_uclass_id(dev) == UCLASS_PINCTRL) {
ret = pinctrl_select_state(dev, "default");
if (ret && ret != -ENOSYS)
log_debug("Device '%s' failed to configure default pinctrl: %d (%s)\n",
dev->name, ret, errno_str(ret));
}
ret = device_notify(dev, EVT_DM_POST_PROBE);
if (ret)
return ret;
return 0;
fail_uclass:
if (device_remove(dev, DM_REMOVE_NORMAL)) {
dm_warn("%s: Device '%s' failed to remove on error path\n",
__func__, dev->name);
}
fail:
dev_bic_flags(dev, DM_FLAG_ACTIVATED);
device_free(dev);
return ret;
}
void *dev_get_plat(const struct udevice *dev)
{
if (!dev) {
dm_warn("%s: null device\n", __func__);
return NULL;
}
return dm_priv_to_rw(dev->plat_);
}
void *dev_get_parent_plat(const struct udevice *dev)
{
if (!dev) {
dm_warn("%s: null device\n", __func__);
return NULL;
}
return dm_priv_to_rw(dev->parent_plat_);
}
void *dev_get_uclass_plat(const struct udevice *dev)
{
if (!dev) {
dm_warn("%s: null device\n", __func__);
return NULL;
}
return dm_priv_to_rw(dev->uclass_plat_);
}
void *dev_get_priv(const struct udevice *dev)
{
if (!dev) {
dm_warn("%s: null device\n", __func__);
return NULL;
}
return dm_priv_to_rw(dev->priv_);
}
void *dev_get_uclass_priv(const struct udevice *dev)
{
if (!dev) {
dm_warn("%s: null device\n", __func__);
return NULL;
}
return dm_priv_to_rw(dev->uclass_priv_);
}
void *dev_get_parent_priv(const struct udevice *dev)
{
if (!dev) {
dm_warn("%s: null device\n", __func__);
return NULL;
}
return dm_priv_to_rw(dev->parent_priv_);
}
static int device_get_device_tail(struct udevice *dev, int ret,
struct udevice **devp)
{
if (ret)
return ret;
ret = device_probe(dev);
if (ret)
return ret;
*devp = dev;
return 0;
}
#if CONFIG_IS_ENABLED(OF_REAL)
/**
* device_find_by_ofnode() - Return device associated with given ofnode
*
* The returned device is *not* activated.
*
* @node: The ofnode for which a associated device should be looked up
* @devp: Pointer to structure to hold the found device
* Return: 0 if OK, -ve on error
*/
static int device_find_by_ofnode(ofnode node, struct udevice **devp)
{
struct uclass *uc;
struct udevice *dev;
int ret;
list_for_each_entry(uc, gd->uclass_root, sibling_node) {
ret = uclass_find_device_by_ofnode(uc->uc_drv->id, node,
&dev);
if (!ret || dev) {
*devp = dev;
return 0;
}
}
return -ENODEV;
}
#endif
int device_get_child(const struct udevice *parent, int index,
struct udevice **devp)
{
struct udevice *dev;
device_foreach_child(dev, parent) {
if (!index--)
return device_get_device_tail(dev, 0, devp);
}
return -ENODEV;
}
int device_get_child_count(const struct udevice *parent)
{
struct udevice *dev;
int count = 0;
device_foreach_child(dev, parent)
count++;
return count;
}
int device_get_decendent_count(const struct udevice *parent)
{
const struct udevice *dev;
int count = 1;
device_foreach_child(dev, parent)
count += device_get_decendent_count(dev);
return count;
}
int device_find_child_by_seq(const struct udevice *parent, int seq,
struct udevice **devp)
{
struct udevice *dev;
*devp = NULL;
device_foreach_child(dev, parent) {
if (dev->seq_ == seq) {
*devp = dev;
return 0;
}
}
return -ENODEV;
}
int device_get_child_by_seq(const struct udevice *parent, int seq,
struct udevice **devp)
{
struct udevice *dev;
int ret;
*devp = NULL;
ret = device_find_child_by_seq(parent, seq, &dev);
return device_get_device_tail(dev, ret, devp);
}
int device_find_child_by_of_offset(const struct udevice *parent, int of_offset,
struct udevice **devp)
{
struct udevice *dev;
*devp = NULL;
device_foreach_child(dev, parent) {
if (dev_of_offset(dev) == of_offset) {
*devp = dev;
return 0;
}
}
return -ENODEV;
}
int device_get_child_by_of_offset(const struct udevice *parent, int node,
struct udevice **devp)
{
struct udevice *dev;
int ret;
*devp = NULL;
ret = device_find_child_by_of_offset(parent, node, &dev);
return device_get_device_tail(dev, ret, devp);
}
static struct udevice *_device_find_global_by_ofnode(struct udevice *parent,
ofnode ofnode)
{
struct udevice *dev, *found;
if (ofnode_equal(dev_ofnode(parent), ofnode))
return parent;
device_foreach_child(dev, parent) {
found = _device_find_global_by_ofnode(dev, ofnode);
if (found)
return found;
}
return NULL;
}
int device_find_global_by_ofnode(ofnode ofnode, struct udevice **devp)
{
*devp = _device_find_global_by_ofnode(gd->dm_root, ofnode);
return *devp ? 0 : -ENOENT;
}
int device_get_global_by_ofnode(ofnode ofnode, struct udevice **devp)
{
struct udevice *dev;
dev = _device_find_global_by_ofnode(gd->dm_root, ofnode);
return device_get_device_tail(dev, dev ? 0 : -ENOENT, devp);
}
#if CONFIG_IS_ENABLED(OF_PLATDATA)
int device_get_by_ofplat_idx(uint idx, struct udevice **devp)
{
struct udevice *dev;
if (CONFIG_IS_ENABLED(OF_PLATDATA_INST)) {
struct udevice *base = ll_entry_start(struct udevice, udevice);
dev = base + idx;
} else {
struct driver_rt *drt = gd_dm_driver_rt() + idx;
dev = drt->dev;
}
*devp = NULL;
return device_get_device_tail(dev, dev ? 0 : -ENOENT, devp);
}
#endif
int device_find_first_child(const struct udevice *parent, struct udevice **devp)
{
if (list_empty(&parent->child_head)) {
*devp = NULL;
} else {
*devp = list_first_entry(&parent->child_head, struct udevice,
sibling_node);
}
return 0;
}
int device_find_next_child(struct udevice **devp)
{
struct udevice *dev = *devp;
struct udevice *parent = dev->parent;
if (list_is_last(&dev->sibling_node, &parent->child_head)) {
*devp = NULL;
} else {
*devp = list_entry(dev->sibling_node.next, struct udevice,
sibling_node);
}
return 0;
}
int device_find_first_inactive_child(const struct udevice *parent,
enum uclass_id uclass_id,
struct udevice **devp)
{
struct udevice *dev;
*devp = NULL;
device_foreach_child(dev, parent) {
if (!device_active(dev) &&
device_get_uclass_id(dev) == uclass_id) {
*devp = dev;
return 0;
}
}
return -ENODEV;
}
int device_find_first_child_by_uclass(const struct udevice *parent,
enum uclass_id uclass_id,
struct udevice **devp)
{
struct udevice *dev;
*devp = NULL;
device_foreach_child(dev, parent) {
if (device_get_uclass_id(dev) == uclass_id) {
*devp = dev;
return 0;
}
}
return -ENODEV;
}
int device_find_child_by_namelen(const struct udevice *parent, const char *name,
int len, struct udevice **devp)
{
struct udevice *dev;
*devp = NULL;
device_foreach_child(dev, parent) {
if (!strncmp(dev->name, name, len) &&
strlen(dev->name) == len) {
*devp = dev;
return 0;
}
}
return -ENODEV;
}
int device_find_child_by_name(const struct udevice *parent, const char *name,
struct udevice **devp)
{
return device_find_child_by_namelen(parent, name, strlen(name), devp);
}
int device_first_child_err(struct udevice *parent, struct udevice **devp)
{
struct udevice *dev;
device_find_first_child(parent, &dev);
if (!dev)
return -ENODEV;
return device_get_device_tail(dev, 0, devp);
}
int device_next_child_err(struct udevice **devp)
{
struct udevice *dev = *devp;
device_find_next_child(&dev);
if (!dev)
return -ENODEV;
return device_get_device_tail(dev, 0, devp);
}
int device_first_child_ofdata_err(struct udevice *parent, struct udevice **devp)
{
struct udevice *dev;
int ret;
device_find_first_child(parent, &dev);
if (!dev)
return -ENODEV;
ret = device_of_to_plat(dev);
if (ret)
return ret;
*devp = dev;
return 0;
}
int device_next_child_ofdata_err(struct udevice **devp)
{
struct udevice *dev = *devp;
int ret;
device_find_next_child(&dev);
if (!dev)
return -ENODEV;
ret = device_of_to_plat(dev);
if (ret)
return ret;
*devp = dev;
return 0;
}
struct udevice *dev_get_parent(const struct udevice *child)
{
return child->parent;
}
ulong dev_get_driver_data(const struct udevice *dev)
{
return dev->driver_data;
}
const void *dev_get_driver_ops(const struct udevice *dev)
{
if (!dev || !dev->driver->ops)
return NULL;
return dev->driver->ops;
}
enum uclass_id device_get_uclass_id(const struct udevice *dev)
{
return dev->uclass->uc_drv->id;
}
const char *dev_get_uclass_name(const struct udevice *dev)
{
if (!dev)
return NULL;
return dev->uclass->uc_drv->name;
}
bool device_has_children(const struct udevice *dev)
{
return !list_empty(&dev->child_head);
}
bool device_has_active_children(const struct udevice *dev)
{
struct udevice *child;
for (device_find_first_child(dev, &child);
child;
device_find_next_child(&child)) {
if (device_active(child))
return true;
}
return false;
}
bool device_is_last_sibling(const struct udevice *dev)
{
struct udevice *parent = dev->parent;
if (!parent)
return false;
return list_is_last(&dev->sibling_node, &parent->child_head);
}
void device_set_name_alloced(struct udevice *dev)
{
dev_or_flags(dev, DM_FLAG_NAME_ALLOCED);
}
int device_set_name(struct udevice *dev, const char *name)
{
name = strdup(name);
if (!name)
return -ENOMEM;
dev->name = name;
device_set_name_alloced(dev);
return 0;
}
void dev_set_priv(struct udevice *dev, void *priv)
{
dev->priv_ = priv;
}
void dev_set_parent_priv(struct udevice *dev, void *parent_priv)
{
dev->parent_priv_ = parent_priv;
}
void dev_set_uclass_priv(struct udevice *dev, void *uclass_priv)
{
dev->uclass_priv_ = uclass_priv;
}
void dev_set_plat(struct udevice *dev, void *plat)
{
dev->plat_ = plat;
}
void dev_set_parent_plat(struct udevice *dev, void *parent_plat)
{
dev->parent_plat_ = parent_plat;
}
void dev_set_uclass_plat(struct udevice *dev, void *uclass_plat)
{
dev->uclass_plat_ = uclass_plat;
}
#if CONFIG_IS_ENABLED(OF_REAL)
bool device_is_compatible(const struct udevice *dev, const char *compat)
{
return ofnode_device_is_compatible(dev_ofnode(dev), compat);
}
bool of_machine_is_compatible(const char *compat)
{
return ofnode_device_is_compatible(ofnode_root(), compat);
}
int dev_disable_by_path(const char *path)
{
struct uclass *uc;
ofnode node = ofnode_path(path);
struct udevice *dev;
int ret = 1;
if (!of_live_active())
return -ENOSYS;
list_for_each_entry(uc, gd->uclass_root, sibling_node) {
ret = uclass_find_device_by_ofnode(uc->uc_drv->id, node, &dev);
if (!ret)
break;
}
if (ret)
return ret;
ret = device_remove(dev, DM_REMOVE_NORMAL);
if (ret)
return ret;
ret = device_unbind(dev);
if (ret)
return ret;
return ofnode_set_enabled(node, false);
}
int dev_enable_by_path(const char *path)
{
ofnode node = ofnode_path(path);
ofnode pnode = ofnode_get_parent(node);
struct udevice *parent;
int ret = 1;
if (!of_live_active())
return -ENOSYS;
ret = device_find_by_ofnode(pnode, &parent);
if (ret)
return ret;
ret = ofnode_set_enabled(node, true);
if (ret)
return ret;
return lists_bind_fdt(parent, node, NULL, NULL, false);
}
#endif
#if CONFIG_IS_ENABLED(OF_PLATDATA_RT)
static struct udevice_rt *dev_get_rt(const struct udevice *dev)
{
struct udevice *base = ll_entry_start(struct udevice, udevice);
uint each_size = dm_udevice_size();
int idx = ((void *)dev - (void *)base) / each_size;
struct udevice_rt *urt = gd_dm_udevice_rt() + idx;
return urt;
}
u32 dev_get_flags(const struct udevice *dev)
{
const struct udevice_rt *urt = dev_get_rt(dev);
return urt->flags_;
}
void dev_or_flags(const struct udevice *dev, u32 or)
{
struct udevice_rt *urt = dev_get_rt(dev);
urt->flags_ |= or;
}
void dev_bic_flags(const struct udevice *dev, u32 bic)
{
struct udevice_rt *urt = dev_get_rt(dev);
urt->flags_ &= ~bic;
}
#endif /* OF_PLATDATA_RT */