blob: f0313b06fbf99a31815fc30874e9c0295aff8a4a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2016 samtec automotive software & electronics gmbh
* Copyright (C) 2017-2019 softing automotive electronics gmbH
*
* Author: Christoph Fritz <chf.fritz@googlemail.com>
*/
#include <asm/arch/clock.h>
#include <asm/arch/crm_regs.h>
#include <asm/arch/iomux.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/mx6-pins.h>
#include <asm/arch/sys_proto.h>
#include <asm/gpio.h>
#include <asm/mach-imx/iomux-v3.h>
#include <asm/io.h>
#include <asm/mach-imx/mxc_i2c.h>
#include <linux/sizes.h>
#include <common.h>
#include <environment.h>
#include <fsl_esdhc.h>
#include <mmc.h>
#include <i2c.h>
#include <miiphy.h>
#include <netdev.h>
#include <power/pmic.h>
#include <power/pfuze100_pmic.h>
#include <usb.h>
#include <usb/ehci-ci.h>
#include <pwm.h>
#include <wait_bit.h>
DECLARE_GLOBAL_DATA_PTR;
#define UART_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_PUS_100K_UP | \
PAD_CTL_PKE | PAD_CTL_SPEED_MED | PAD_CTL_DSE_40ohm | \
PAD_CTL_SRE_FAST)
#define ENET_PAD_CTRL (PAD_CTL_PUS_100K_UP | PAD_CTL_PKE | \
PAD_CTL_SPEED_HIGH | PAD_CTL_DSE_48ohm | \
PAD_CTL_SRE_FAST)
#define ENET_CLK_PAD_CTRL PAD_CTL_DSE_34ohm
#define ENET_RX_PAD_CTRL (PAD_CTL_PKE | \
PAD_CTL_PUS_100K_DOWN | PAD_CTL_SPEED_HIGH | \
PAD_CTL_SRE_FAST)
#define I2C_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_PUS_100K_UP | \
PAD_CTL_PKE | PAD_CTL_ODE | PAD_CTL_SPEED_MED | \
PAD_CTL_DSE_40ohm)
#define USDHC_CLK_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_SPEED_MED | \
PAD_CTL_DSE_80ohm | PAD_CTL_SRE_FAST)
#define USDHC_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_PUS_47K_UP | \
PAD_CTL_PKE | PAD_CTL_SPEED_MED | PAD_CTL_DSE_80ohm | \
PAD_CTL_SRE_FAST)
#define USDHC_RESET_CTRL (PAD_CTL_HYS | PAD_CTL_PUS_47K_UP | \
PAD_CTL_PKE | PAD_CTL_SPEED_MED | PAD_CTL_DSE_80ohm)
#define GPIO_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_PUS_100K_UP | \
PAD_CTL_PKE)
int dram_init(void)
{
gd->ram_size = imx_ddr_size();
return 0;
}
static iomux_v3_cfg_t const uart1_pads[] = {
MX6_PAD_GPIO1_IO04__UART1_TX | MUX_PAD_CTRL(UART_PAD_CTRL),
MX6_PAD_GPIO1_IO05__UART1_RX | MUX_PAD_CTRL(UART_PAD_CTRL),
};
static iomux_v3_cfg_t const usdhc2_pads[] = {
MX6_PAD_SD2_CLK__USDHC2_CLK | MUX_PAD_CTRL(USDHC_CLK_PAD_CTRL),
MX6_PAD_SD2_CMD__USDHC2_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD2_DATA0__USDHC2_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD2_DATA1__USDHC2_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD2_DATA2__USDHC2_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD2_DATA3__USDHC2_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_LCD1_VSYNC__GPIO3_IO_28 | MUX_PAD_CTRL(GPIO_PAD_CTRL),
};
static iomux_v3_cfg_t const usdhc4_pads[] = {
MX6_PAD_SD4_CLK__USDHC4_CLK | MUX_PAD_CTRL(USDHC_CLK_PAD_CTRL),
MX6_PAD_SD4_CMD__USDHC4_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DATA0__USDHC4_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DATA1__USDHC4_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DATA2__USDHC4_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DATA3__USDHC4_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DATA4__USDHC4_DATA4 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DATA5__USDHC4_DATA5 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DATA6__USDHC4_DATA6 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DATA7__USDHC4_DATA7 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_RESET_B__USDHC4_RESET_B | MUX_PAD_CTRL(USDHC_RESET_CTRL),
};
static iomux_v3_cfg_t const fec1_pads[] = {
MX6_PAD_ENET1_MDC__ENET1_MDC | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET1_MDIO__ENET1_MDIO | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_RGMII1_RD0__ENET1_RX_DATA_0 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL),
MX6_PAD_RGMII1_RD1__ENET1_RX_DATA_1 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL),
MX6_PAD_RGMII1_TD0__ENET1_TX_DATA_0 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_RGMII1_TD1__ENET1_TX_DATA_1 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_RGMII1_RX_CTL__ENET1_RX_EN | MUX_PAD_CTRL(ENET_RX_PAD_CTRL),
MX6_PAD_RGMII1_TX_CTL__ENET1_TX_EN | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET1_TX_CLK__ENET1_REF_CLK1 | MUX_PAD_CTRL(ENET_CLK_PAD_CTRL) |
MUX_MODE_SION,
/* LAN8720 PHY Reset */
MX6_PAD_RGMII1_TD3__GPIO5_IO_9 | MUX_PAD_CTRL(NO_PAD_CTRL),
};
static iomux_v3_cfg_t const pwm_led_pads[] = {
MX6_PAD_RGMII2_RD2__PWM2_OUT | MUX_PAD_CTRL(NO_PAD_CTRL), /* green */
MX6_PAD_RGMII2_TD2__PWM6_OUT | MUX_PAD_CTRL(NO_PAD_CTRL), /* red */
MX6_PAD_RGMII2_RD3__PWM1_OUT | MUX_PAD_CTRL(NO_PAD_CTRL), /* blue */
};
static void setup_iomux_uart(void)
{
imx_iomux_v3_setup_multiple_pads(uart1_pads, ARRAY_SIZE(uart1_pads));
}
#define PHY_RESET IMX_GPIO_NR(5, 9)
int board_eth_init(bd_t *bis)
{
struct iomuxc *iomuxc_regs = (struct iomuxc *)IOMUXC_BASE_ADDR;
int ret;
unsigned char eth1addr[6];
/* just to get secound mac address */
imx_get_mac_from_fuse(1, eth1addr);
if (!env_get("eth1addr") && is_valid_ethaddr(eth1addr))
eth_env_set_enetaddr("eth1addr", eth1addr);
imx_iomux_v3_setup_multiple_pads(fec1_pads, ARRAY_SIZE(fec1_pads));
/*
* Generate phy reference clock via pin IOMUX ENET_REF_CLK1/2 by erasing
* ENET1/2_TX_CLK_DIR gpr1[14:13], so that reference clock is driven by
* ref_enetpll0/1 and enable ENET1/2_TX_CLK output driver.
*/
clrsetbits_le32(&iomuxc_regs->gpr[1],
IOMUX_GPR1_FEC1_CLOCK_MUX2_SEL_MASK |
IOMUX_GPR1_FEC2_CLOCK_MUX2_SEL_MASK,
IOMUX_GPR1_FEC1_CLOCK_MUX1_SEL_MASK |
IOMUX_GPR1_FEC2_CLOCK_MUX1_SEL_MASK);
ret = enable_fec_anatop_clock(0, ENET_50MHZ);
if (ret)
goto eth_fail;
/* reset phy */
gpio_direction_output(PHY_RESET, 0);
mdelay(16);
gpio_set_value(PHY_RESET, 1);
mdelay(1);
ret = fecmxc_initialize_multi(bis, 0, CONFIG_FEC_MXC_PHYADDR,
IMX_FEC_BASE);
if (ret)
goto eth_fail;
return ret;
eth_fail:
printf("FEC MXC: %s:failed (%i)\n", __func__, ret);
gpio_set_value(PHY_RESET, 0);
return ret;
}
#define PC MUX_PAD_CTRL(I2C_PAD_CTRL)
/* I2C1 for PMIC */
static struct i2c_pads_info i2c_pad_info1 = {
.scl = {
.i2c_mode = MX6_PAD_GPIO1_IO00__I2C1_SCL | PC,
.gpio_mode = MX6_PAD_GPIO1_IO00__GPIO1_IO_0 | PC,
.gp = IMX_GPIO_NR(1, 0),
},
.sda = {
.i2c_mode = MX6_PAD_GPIO1_IO01__I2C1_SDA | PC,
.gpio_mode = MX6_PAD_GPIO1_IO01__GPIO1_IO_1 | PC,
.gp = IMX_GPIO_NR(1, 1),
},
};
static struct pmic *pfuze_init(unsigned char i2cbus)
{
struct pmic *p;
int ret;
u32 reg;
ret = power_pfuze100_init(i2cbus);
if (ret)
return NULL;
p = pmic_get("PFUZE100");
ret = pmic_probe(p);
if (ret)
return NULL;
pmic_reg_read(p, PFUZE100_DEVICEID, &reg);
printf("PMIC: PFUZE100 ID=0x%02x\n", reg);
/* Set SW1AB stanby volage to 0.975V */
pmic_reg_read(p, PFUZE100_SW1ABSTBY, &reg);
reg &= ~SW1x_STBY_MASK;
reg |= SW1x_0_975V;
pmic_reg_write(p, PFUZE100_SW1ABSTBY, reg);
/* Set SW1AB/VDDARM step ramp up time from 16us to 4us/25mV */
pmic_reg_read(p, PFUZE100_SW1ABCONF, &reg);
reg &= ~SW1xCONF_DVSSPEED_MASK;
reg |= SW1xCONF_DVSSPEED_4US;
pmic_reg_write(p, PFUZE100_SW1ABCONF, reg);
/* Set SW1C standby voltage to 0.975V */
pmic_reg_read(p, PFUZE100_SW1CSTBY, &reg);
reg &= ~SW1x_STBY_MASK;
reg |= SW1x_0_975V;
pmic_reg_write(p, PFUZE100_SW1CSTBY, reg);
/* Set SW1C/VDDSOC step ramp up time from 16us to 4us/25mV */
pmic_reg_read(p, PFUZE100_SW1CCONF, &reg);
reg &= ~SW1xCONF_DVSSPEED_MASK;
reg |= SW1xCONF_DVSSPEED_4US;
pmic_reg_write(p, PFUZE100_SW1CCONF, reg);
return p;
}
static int pfuze_mode_init(struct pmic *p, u32 mode)
{
unsigned char offset, i, switch_num;
u32 id;
int ret;
pmic_reg_read(p, PFUZE100_DEVICEID, &id);
id = id & 0xf;
if (id == 0) {
switch_num = 6;
offset = PFUZE100_SW1CMODE;
} else if (id == 1) {
switch_num = 4;
offset = PFUZE100_SW2MODE;
} else {
printf("Not supported, id=%d\n", id);
return -EINVAL;
}
ret = pmic_reg_write(p, PFUZE100_SW1ABMODE, mode);
if (ret < 0) {
printf("Set SW1AB mode error!\n");
return ret;
}
for (i = 0; i < switch_num - 1; i++) {
ret = pmic_reg_write(p, offset + i * SWITCH_SIZE, mode);
if (ret < 0) {
printf("Set switch 0x%x mode error!\n",
offset + i * SWITCH_SIZE);
return ret;
}
}
return ret;
}
int power_init_board(void)
{
struct pmic *p;
int ret;
p = pfuze_init(I2C_PMIC);
if (!p)
return -ENODEV;
ret = pfuze_mode_init(p, APS_PFM);
if (ret < 0)
return ret;
return 0;
}
#ifdef CONFIG_USB_EHCI_MX6
static iomux_v3_cfg_t const usb_otg_pads[] = {
/* OGT1 */
MX6_PAD_GPIO1_IO09__USB_OTG1_PWR | MUX_PAD_CTRL(NO_PAD_CTRL),
MX6_PAD_GPIO1_IO10__ANATOP_OTG1_ID | MUX_PAD_CTRL(NO_PAD_CTRL),
/* OTG2 */
MX6_PAD_GPIO1_IO12__USB_OTG2_PWR | MUX_PAD_CTRL(NO_PAD_CTRL)
};
static void setup_iomux_usb(void)
{
imx_iomux_v3_setup_multiple_pads(usb_otg_pads,
ARRAY_SIZE(usb_otg_pads));
}
int board_usb_phy_mode(int port)
{
if (port == 1)
return USB_INIT_HOST;
else
return usb_phy_mode(port);
}
#endif
#ifdef CONFIG_PWM_IMX
static int set_pwm_leds(void)
{
int ret;
imx_iomux_v3_setup_multiple_pads(pwm_led_pads,
ARRAY_SIZE(pwm_led_pads));
/* enable backlight PWM 2, green LED */
ret = pwm_init(1, 0, 0);
if (ret)
goto error;
/* duty cycle 200ns, period: 8000ns */
ret = pwm_config(1, 200, 8000);
if (ret)
goto error;
ret = pwm_enable(1);
if (ret)
goto error;
/* enable backlight PWM 1, blue LED */
ret = pwm_init(0, 0, 0);
if (ret)
goto error;
/* duty cycle 200ns, period: 8000ns */
ret = pwm_config(0, 200, 8000);
if (ret)
goto error;
ret = pwm_enable(0);
if (ret)
goto error;
/* enable backlight PWM 6, red LED */
ret = pwm_init(5, 0, 0);
if (ret)
goto error;
/* duty cycle 200ns, period: 8000ns */
ret = pwm_config(5, 200, 8000);
if (ret)
goto error;
ret = pwm_enable(5);
error:
return ret;
}
#else
static int set_pwm_leds(void)
{
return 0;
}
#endif
#define ADCx_HC0 0x00
#define ADCx_HS 0x08
#define ADCx_HS_C0 BIT(0)
#define ADCx_R0 0x0c
#define ADCx_CFG 0x14
#define ADCx_CFG_SWMODE 0x308
#define ADCx_GC 0x18
#define ADCx_GC_CAL BIT(7)
static int read_adc(u32 *val)
{
int ret;
void __iomem *b = map_physmem(ADC1_BASE_ADDR, 0x100, MAP_NOCACHE);
/* use software mode */
writel(ADCx_CFG_SWMODE, b + ADCx_CFG);
/* start auto calibration */
setbits_le32(b + ADCx_GC, ADCx_GC_CAL);
ret = wait_for_bit_le32(b + ADCx_GC, ADCx_GC_CAL, ADCx_GC_CAL, 10, 0);
if (ret)
goto adc_exit;
/* start conversion */
writel(0, b + ADCx_HC0);
/* wait for conversion */
ret = wait_for_bit_le32(b + ADCx_HS, ADCx_HS_C0, ADCx_HS_C0, 10, 0);
if (ret)
goto adc_exit;
/* read result */
*val = readl(b + ADCx_R0);
adc_exit:
if (ret)
printf("ADC failure (ret=%i)\n", ret);
unmap_physmem(b, MAP_NOCACHE);
return ret;
}
#define VAL_UPPER 2498
#define VAL_LOWER 1550
static int set_pin_state(void)
{
u32 val;
int ret;
ret = read_adc(&val);
if (ret)
return ret;
if (val >= VAL_UPPER)
env_set("pin_state", "connected");
else if (val < VAL_UPPER && val > VAL_LOWER)
env_set("pin_state", "open");
else
env_set("pin_state", "button");
return ret;
}
int board_late_init(void)
{
int ret;
ret = set_pwm_leds();
if (ret)
return ret;
ret = set_pin_state();
return ret;
}
int board_early_init_f(void)
{
setup_iomux_uart();
setup_iomux_usb();
return 0;
}
static struct fsl_esdhc_cfg usdhc_cfg[2] = {
{USDHC4_BASE_ADDR, 0, 8},
{USDHC2_BASE_ADDR, 0, 4},
};
#define USDHC2_CD_GPIO IMX_GPIO_NR(3, 28)
int board_mmc_getcd(struct mmc *mmc)
{
struct fsl_esdhc_cfg *cfg = (struct fsl_esdhc_cfg *)mmc->priv;
if (cfg->esdhc_base == USDHC4_BASE_ADDR)
return 1;
if (cfg->esdhc_base == USDHC2_BASE_ADDR)
return !gpio_get_value(USDHC2_CD_GPIO);
return -EINVAL;
}
int board_mmc_init(bd_t *bis)
{
int ret;
/*
* According to the board_mmc_init() the following map is done:
* (U-Boot device node) (Physical Port)
* mmc0 USDHC4
* mmc1 USDHC2
*/
imx_iomux_v3_setup_multiple_pads(
usdhc4_pads, ARRAY_SIZE(usdhc4_pads));
usdhc_cfg[0].sdhc_clk = mxc_get_clock(MXC_ESDHC4_CLK);
imx_iomux_v3_setup_multiple_pads(
usdhc2_pads, ARRAY_SIZE(usdhc2_pads));
gpio_direction_input(USDHC2_CD_GPIO);
usdhc_cfg[1].sdhc_clk = mxc_get_clock(MXC_ESDHC2_CLK);
ret = fsl_esdhc_initialize(bis, &usdhc_cfg[0]);
if (ret) {
printf("Warning: failed to initialize USDHC4\n");
return ret;
}
ret = fsl_esdhc_initialize(bis, &usdhc_cfg[1]);
if (ret) {
printf("Warning: failed to initialize USDHC2\n");
return ret;
}
return 0;
}
int board_init(void)
{
/* Address of boot parameters */
gd->bd->bi_boot_params = PHYS_SDRAM + 0x100;
#ifdef CONFIG_SYS_I2C_MXC
setup_i2c(0, CONFIG_SYS_I2C_SPEED, 0x7f, &i2c_pad_info1);
#endif
return 0;
}
int checkboard(void)
{
puts("Board: VIN|ING 2000\n");
return 0;
}