blob: 9e57c2ecfa4f63c26584320c83842e5c213deede [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016-2022 Intel Corporation <www.intel.com>
*
*/
#include <cpu_func.h>
#include <dm.h>
#include <errno.h>
#include <div64.h>
#include <fdtdec.h>
#include <hang.h>
#include <init.h>
#include <log.h>
#include <ram.h>
#include <reset.h>
#include "sdram_soc64.h"
#include <wait_bit.h>
#include <asm/arch/firewall.h>
#include <asm/arch/system_manager.h>
#include <asm/arch/reset_manager.h>
#include <asm/cache.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <dm/device_compat.h>
#include <linux/sizes.h>
#define PGTABLE_OFF 0x4000
u32 hmc_readl(struct altera_sdram_plat *plat, u32 reg)
{
return readl(plat->iomhc + reg);
}
u32 hmc_ecc_readl(struct altera_sdram_plat *plat, u32 reg)
{
return readl(plat->hmc + reg);
}
u32 hmc_ecc_writel(struct altera_sdram_plat *plat,
u32 data, u32 reg)
{
return writel(data, plat->hmc + reg);
}
u32 ddr_sch_writel(struct altera_sdram_plat *plat, u32 data,
u32 reg)
{
return writel(data, plat->ddr_sch + reg);
}
int emif_clear(struct altera_sdram_plat *plat)
{
hmc_ecc_writel(plat, 0, RSTHANDSHAKECTRL);
return wait_for_bit_le32((const void *)(plat->hmc +
RSTHANDSHAKESTAT),
DDR_HMC_RSTHANDSHAKE_MASK,
false, 1000, false);
}
int emif_reset(struct altera_sdram_plat *plat)
{
u32 c2s, s2c, ret;
c2s = hmc_ecc_readl(plat, RSTHANDSHAKECTRL) & DDR_HMC_RSTHANDSHAKE_MASK;
s2c = hmc_ecc_readl(plat, RSTHANDSHAKESTAT) & DDR_HMC_RSTHANDSHAKE_MASK;
debug("DDR: c2s=%08x s2c=%08x nr0=%08x nr1=%08x nr2=%08x dst=%08x\n",
c2s, s2c, hmc_readl(plat, NIOSRESERVED0),
hmc_readl(plat, NIOSRESERVED1), hmc_readl(plat, NIOSRESERVED2),
hmc_readl(plat, DRAMSTS));
if (s2c && emif_clear(plat)) {
printf("DDR: emif_clear() failed\n");
return -1;
}
debug("DDR: Triggerring emif reset\n");
hmc_ecc_writel(plat, DDR_HMC_CORE2SEQ_INT_REQ, RSTHANDSHAKECTRL);
/* if seq2core[3] = 0, we are good */
ret = wait_for_bit_le32((const void *)(plat->hmc +
RSTHANDSHAKESTAT),
DDR_HMC_SEQ2CORE_INT_RESP_MASK,
false, 1000, false);
if (ret) {
printf("DDR: failed to get ack from EMIF\n");
return ret;
}
ret = emif_clear(plat);
if (ret) {
printf("DDR: emif_clear() failed\n");
return ret;
}
debug("DDR: %s triggered successly\n", __func__);
return 0;
}
#if !IS_ENABLED(CONFIG_TARGET_SOCFPGA_N5X)
int poll_hmc_clock_status(void)
{
return wait_for_bit_le32((const void *)(socfpga_get_sysmgr_addr() +
SYSMGR_SOC64_HMC_CLK),
SYSMGR_HMC_CLK_STATUS_MSK, true, 1000, false);
}
#endif
void sdram_clear_mem(phys_addr_t addr, phys_size_t size)
{
phys_size_t i;
if (addr % CONFIG_SYS_CACHELINE_SIZE) {
printf("DDR: address 0x%llx is not cacheline size aligned.\n",
addr);
hang();
}
if (size % CONFIG_SYS_CACHELINE_SIZE) {
printf("DDR: size 0x%llx is not multiple of cacheline size\n",
size);
hang();
}
/* Use DC ZVA instruction to clear memory to zeros by a cache line */
for (i = 0; i < size; i = i + CONFIG_SYS_CACHELINE_SIZE) {
asm volatile("dc zva, %0"
:
: "r"(addr)
: "memory");
addr += CONFIG_SYS_CACHELINE_SIZE;
}
}
void sdram_init_ecc_bits(struct bd_info *bd)
{
phys_size_t size, size_init;
phys_addr_t start_addr;
int bank = 0;
unsigned int start = get_timer(0);
icache_enable();
start_addr = bd->bi_dram[0].start;
size = bd->bi_dram[0].size;
/* Initialize small block for page table */
memset((void *)start_addr, 0, PGTABLE_SIZE + PGTABLE_OFF);
gd->arch.tlb_addr = start_addr + PGTABLE_OFF;
gd->arch.tlb_size = PGTABLE_SIZE;
start_addr += PGTABLE_SIZE + PGTABLE_OFF;
size -= (PGTABLE_OFF + PGTABLE_SIZE);
dcache_enable();
while (1) {
while (size) {
size_init = min((phys_addr_t)SZ_1G, (phys_addr_t)size);
sdram_clear_mem(start_addr, size_init);
size -= size_init;
start_addr += size_init;
schedule();
}
bank++;
if (bank >= CONFIG_NR_DRAM_BANKS)
break;
start_addr = bd->bi_dram[bank].start;
size = bd->bi_dram[bank].size;
}
dcache_disable();
icache_disable();
printf("SDRAM-ECC: Initialized success with %d ms\n",
(unsigned int)get_timer(start));
}
void sdram_size_check(struct bd_info *bd)
{
phys_size_t total_ram_check = 0;
phys_size_t ram_check = 0;
phys_addr_t start = 0;
phys_size_t size, remaining_size;
int bank;
/* Sanity check ensure correct SDRAM size specified */
debug("DDR: Running SDRAM size sanity check\n");
for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
start = bd->bi_dram[bank].start;
remaining_size = bd->bi_dram[bank].size;
while (ram_check < bd->bi_dram[bank].size) {
size = min((phys_addr_t)SZ_1G,
(phys_addr_t)remaining_size);
/*
* Ensure the size is power of two, this is requirement
* to run get_ram_size() / memory test
*/
if (size != 0 && ((size & (size - 1)) == 0)) {
ram_check += get_ram_size((void *)
(start + ram_check), size);
remaining_size = bd->bi_dram[bank].size -
ram_check;
} else {
puts("DDR: Memory test requires SDRAM size ");
puts("in power of two!\n");
hang();
}
}
total_ram_check += ram_check;
ram_check = 0;
}
/* If the ram_size is 2GB smaller, we can assume the IO space is
* not mapped in. gd->ram_size is the actual size of the dram
* not the accessible size.
*/
if (total_ram_check != gd->ram_size) {
puts("DDR: SDRAM size check failed!\n");
hang();
}
debug("DDR: SDRAM size check passed!\n");
}
/**
* sdram_calculate_size() - Calculate SDRAM size
*
* Calculate SDRAM device size based on SDRAM controller parameters.
* Size is specified in bytes.
*/
phys_size_t sdram_calculate_size(struct altera_sdram_plat *plat)
{
u32 dramaddrw = hmc_readl(plat, DRAMADDRW);
phys_size_t size = (phys_size_t)1 <<
(DRAMADDRW_CFG_CS_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_BANK_GRP_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_BANK_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_ROW_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_COL_ADDR_WIDTH(dramaddrw));
size *= (2 << (hmc_ecc_readl(plat, DDRIOCTRL) &
DDR_HMC_DDRIOCTRL_IOSIZE_MSK));
return size;
}
void sdram_set_firewall(struct bd_info *bd)
{
u32 i;
phys_size_t value;
u32 lower, upper;
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
if (!bd->bi_dram[i].size)
continue;
value = bd->bi_dram[i].start;
/* Keep first 1MB of SDRAM memory region as secure region when
* using ATF flow, where the ATF code is located.
*/
if (IS_ENABLED(CONFIG_SPL_ATF) && i == 0)
value += SZ_1M;
/* Setting non-secure MPU region base and base extended */
lower = lower_32_bits(value);
upper = upper_32_bits(value);
FW_MPU_DDR_SCR_WRITEL(lower,
FW_MPU_DDR_SCR_MPUREGION0ADDR_BASE +
(i * 4 * sizeof(u32)));
FW_MPU_DDR_SCR_WRITEL(upper & 0xff,
FW_MPU_DDR_SCR_MPUREGION0ADDR_BASEEXT +
(i * 4 * sizeof(u32)));
/* Setting non-secure Non-MPU region base and base extended */
FW_MPU_DDR_SCR_WRITEL(lower,
FW_MPU_DDR_SCR_NONMPUREGION0ADDR_BASE +
(i * 4 * sizeof(u32)));
FW_MPU_DDR_SCR_WRITEL(upper & 0xff,
FW_MPU_DDR_SCR_NONMPUREGION0ADDR_BASEEXT +
(i * 4 * sizeof(u32)));
/* Setting non-secure MPU limit and limit extexded */
value = bd->bi_dram[i].start + bd->bi_dram[i].size - 1;
lower = lower_32_bits(value);
upper = upper_32_bits(value);
FW_MPU_DDR_SCR_WRITEL(lower,
FW_MPU_DDR_SCR_MPUREGION0ADDR_LIMIT +
(i * 4 * sizeof(u32)));
FW_MPU_DDR_SCR_WRITEL(upper & 0xff,
FW_MPU_DDR_SCR_MPUREGION0ADDR_LIMITEXT +
(i * 4 * sizeof(u32)));
/* Setting non-secure Non-MPU limit and limit extexded */
FW_MPU_DDR_SCR_WRITEL(lower,
FW_MPU_DDR_SCR_NONMPUREGION0ADDR_LIMIT +
(i * 4 * sizeof(u32)));
FW_MPU_DDR_SCR_WRITEL(upper & 0xff,
FW_MPU_DDR_SCR_NONMPUREGION0ADDR_LIMITEXT +
(i * 4 * sizeof(u32)));
FW_MPU_DDR_SCR_WRITEL(BIT(i) | BIT(i + 8),
FW_MPU_DDR_SCR_EN_SET);
}
}
static int altera_sdram_of_to_plat(struct udevice *dev)
{
struct altera_sdram_plat *plat = dev_get_plat(dev);
fdt_addr_t addr;
/* These regs info are part of DDR handoff in bitstream */
#if IS_ENABLED(CONFIG_TARGET_SOCFPGA_N5X)
return 0;
#endif
addr = dev_read_addr_index(dev, 0);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->ddr_sch = (void __iomem *)addr;
addr = dev_read_addr_index(dev, 1);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->iomhc = (void __iomem *)addr;
addr = dev_read_addr_index(dev, 2);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->hmc = (void __iomem *)addr;
return 0;
}
static int altera_sdram_probe(struct udevice *dev)
{
int ret;
struct altera_sdram_priv *priv = dev_get_priv(dev);
ret = reset_get_bulk(dev, &priv->resets);
if (ret) {
dev_err(dev, "Can't get reset: %d\n", ret);
return -ENODEV;
}
reset_deassert_bulk(&priv->resets);
if (sdram_mmr_init_full(dev) != 0) {
puts("SDRAM init failed.\n");
goto failed;
}
return 0;
failed:
reset_release_bulk(&priv->resets);
return -ENODEV;
}
static int altera_sdram_get_info(struct udevice *dev,
struct ram_info *info)
{
struct altera_sdram_priv *priv = dev_get_priv(dev);
info->base = priv->info.base;
info->size = priv->info.size;
return 0;
}
static struct ram_ops altera_sdram_ops = {
.get_info = altera_sdram_get_info,
};
static const struct udevice_id altera_sdram_ids[] = {
{ .compatible = "altr,sdr-ctl-s10" },
{ .compatible = "intel,sdr-ctl-agilex" },
{ .compatible = "intel,sdr-ctl-n5x" },
{ /* sentinel */ }
};
U_BOOT_DRIVER(altera_sdram) = {
.name = "altr_sdr_ctl",
.id = UCLASS_RAM,
.of_match = altera_sdram_ids,
.ops = &altera_sdram_ops,
.of_to_plat = altera_sdram_of_to_plat,
.plat_auto = sizeof(struct altera_sdram_plat),
.probe = altera_sdram_probe,
.priv_auto = sizeof(struct altera_sdram_priv),
};