blob: 065e446e15459ab861f7062a33a6c2bdda21a1d2 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2024 PHYTEC Messtechnik GmbH
* Author: Wadim Egorov <w.egorov@phytec.de>
*/
#include <efi_loader.h>
#include <env_internal.h>
#include <fdt_support.h>
#include <dm/ofnode.h>
#include <mtd.h>
#include <spl.h>
#include <malloc.h>
#include <asm/arch/hardware.h>
#include "../am6_som_detection.h"
#if IS_ENABLED(CONFIG_EFI_HAVE_CAPSULE_SUPPORT)
struct efi_fw_image fw_images[] = {
{
.fw_name = PHYCORE_AM6XX_FW_NAME_TIBOOT3,
.image_index = 1,
},
{
.fw_name = PHYCORE_AM6XX_FW_NAME_SPL,
.image_index = 2,
},
{
.fw_name = PHYCORE_AM6XX_FW_NAME_UBOOT,
.image_index = 3,
}
};
struct efi_capsule_update_info update_info = {
.dfu_string = NULL,
.num_images = ARRAY_SIZE(fw_images),
.images = fw_images,
};
/**
* configure_capsule_updates() - Set up the DFU string for capsule updates
*
* Configures all three bootloader binaries for updates on the current
* booted flash device, which may be eMMC, OSPI NOR, or a uSD card. If
* booting from USB or Serial, capsule updates will be performed on the
* eMMC device.
*
* Note: Currently, eMMC hardware partitions are not differentiated; Updates
* are always applied to the first boot partition.
*/
void configure_capsule_updates(void)
{
static char dfu_string[128] = { 0 };
const char *dfu_raw = "tiboot3.bin raw 0x0 0x400 mmcpart 1;"
"tispl.bin raw 0x400 0x1000 mmcpart 1;"
"u-boot.img.raw raw 0x1400 0x2000 mmcpart 1";
const char *dfu_fat = "tiboot3.bin fat 1 1;"
"tispl.bin fat 1 1;"
"u-boot.img fat 1 1";
const char *dfu_spi = "tiboot3.bin part 1;"
"tispl.bin part 2;"
"u-boot.img part 3";
u32 boot_device = get_boot_device();
switch (boot_device) {
case BOOT_DEVICE_MMC1:
snprintf(dfu_string, 128, "mmc 0=%s", dfu_raw);
break;
case BOOT_DEVICE_MMC2:
snprintf(dfu_string, 128, "mmc 1=%s", dfu_fat);
break;
case BOOT_DEVICE_SPI:
mtd_probe_devices();
snprintf(dfu_string, 128, "mtd nor0=%s", dfu_spi);
break;
default:
snprintf(dfu_string, 128, "mmc 0=%s", dfu_raw);
break;
};
update_info.dfu_string = dfu_string;
}
#endif
#if IS_ENABLED(CONFIG_SET_DFU_ALT_INFO)
void set_dfu_alt_info(char *interface, char *devstr)
{
if (IS_ENABLED(CONFIG_EFI_HAVE_CAPSULE_SUPPORT))
env_set("dfu_alt_info", update_info.dfu_string);
}
#endif
#if IS_ENABLED(CONFIG_ENV_IS_IN_FAT) || IS_ENABLED(CONFIG_ENV_IS_IN_MMC)
int mmc_get_env_dev(void)
{
u32 boot_device = get_boot_device();
switch (boot_device) {
case BOOT_DEVICE_MMC1:
return 0;
case BOOT_DEVICE_MMC2:
return 1;
};
return CONFIG_SYS_MMC_ENV_DEV;
}
#endif
enum env_location env_get_location(enum env_operation op, int prio)
{
u32 boot_device = get_boot_device();
if (prio)
return ENVL_UNKNOWN;
switch (boot_device) {
case BOOT_DEVICE_MMC1:
case BOOT_DEVICE_MMC2:
if (CONFIG_IS_ENABLED(ENV_IS_IN_FAT))
return ENVL_FAT;
if (CONFIG_IS_ENABLED(ENV_IS_IN_MMC))
return ENVL_MMC;
case BOOT_DEVICE_SPI:
if (CONFIG_IS_ENABLED(ENV_IS_IN_SPI_FLASH))
return ENVL_SPI_FLASH;
default:
return ENVL_NOWHERE;
};
}
#if IS_ENABLED(CONFIG_BOARD_LATE_INIT)
int board_late_init(void)
{
u32 boot_device = get_boot_device();
switch (boot_device) {
case BOOT_DEVICE_MMC1:
env_set_ulong("mmcdev", 0);
env_set("boot", "mmc");
break;
case BOOT_DEVICE_MMC2:
env_set_ulong("mmcdev", 1);
env_set("boot", "mmc");
break;
case BOOT_DEVICE_SPI:
env_set("boot", "spi");
break;
case BOOT_DEVICE_ETHERNET:
env_set("boot", "net");
break;
};
if (IS_ENABLED(CONFIG_PHYTEC_SOM_DETECTION_BLOCKS)) {
struct phytec_api3_element *block_element;
struct phytec_eeprom_data data;
int ret;
ret = phytec_eeprom_data_setup(&data, 0, EEPROM_ADDR);
if (ret || !data.valid)
return 0;
PHYTEC_API3_FOREACH_BLOCK(block_element, &data) {
switch (block_element->block_type) {
case PHYTEC_API3_BLOCK_MAC:
phytec_blocks_add_mac_to_env(block_element);
break;
default:
debug("%s: Unknown block type %i\n", __func__,
block_element->block_type);
}
}
}
if (IS_ENABLED(CONFIG_EFI_HAVE_CAPSULE_SUPPORT))
configure_capsule_updates();
return 0;
}
#endif
#if IS_ENABLED(CONFIG_OF_LIBFDT) && IS_ENABLED(CONFIG_OF_BOARD_SETUP)
static int fdt_apply_overlay_from_fit(const char *overlay_path, void *fdt)
{
u64 loadaddr;
ofnode node;
int ret;
node = ofnode_path(overlay_path);
if (!ofnode_valid(node))
return -FDT_ERR_NOTFOUND;
ret = ofnode_read_u64(node, "load", &loadaddr);
if (ret)
return ret;
return fdt_overlay_apply_verbose(fdt, (void *)loadaddr);
}
static void fdt_apply_som_overlays(void *blob)
{
void *fdt_copy;
u32 fdt_size;
struct phytec_eeprom_data data;
int err;
fdt_size = fdt_totalsize(blob);
fdt_copy = malloc(fdt_size);
if (!fdt_copy)
goto fixup_error;
memcpy(fdt_copy, blob, fdt_size);
err = phytec_eeprom_data_setup(&data, 0, EEPROM_ADDR);
if (err)
goto fixup_error;
if (phytec_get_am6_rtc(&data) == 0) {
err = fdt_apply_overlay_from_fit("/fit-images/som-no-rtc", fdt_copy);
if (err)
goto fixup_error;
}
if (phytec_get_am6_spi(&data) == PHYTEC_EEPROM_VALUE_X) {
err = fdt_apply_overlay_from_fit("/fit-images/som-no-spi", fdt_copy);
if (err)
goto fixup_error;
}
if (phytec_get_am6_eth(&data) == 0) {
err = fdt_apply_overlay_from_fit("/fit-images/som-no-eth", fdt_copy);
if (err)
goto fixup_error;
}
if (phytec_am6_is_qspi(&data)) {
err = fdt_apply_overlay_from_fit("/fit-images/som-qspi-nor", fdt_copy);
if (err)
goto fixup_error;
}
memcpy(blob, fdt_copy, fdt_size);
cleanup:
free(fdt_copy);
return;
fixup_error:
pr_err("Failed to apply SoM overlays\n");
goto cleanup;
}
int ft_board_setup(void *blob, struct bd_info *bd)
{
fdt_apply_som_overlays(blob);
fdt_copy_fixed_partitions(blob);
return 0;
}
#endif