blob: 1d7e14119d6fa4722076f3d48b7c022faa28e768 [file] [log] [blame]
/*
* (C) Copyright 2010
* Dirk Eibach, Guntermann & Drunck GmbH, eibach@gdsys.de
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <command.h>
#include <errno.h>
#include <asm/processor.h>
#include <asm/io.h>
#include <asm/ppc4xx-gpio.h>
#include "405ep.h"
#include <gdsys_fpga.h>
#include "../common/osd.h"
#include "../common/mclink.h"
#include <i2c.h>
#include <pca953x.h>
#include <pca9698.h>
#include <miiphy.h>
DECLARE_GLOBAL_DATA_PTR;
#define LATCH0_BASE (CONFIG_SYS_LATCH_BASE)
#define LATCH1_BASE (CONFIG_SYS_LATCH_BASE + 0x100)
#define LATCH2_BASE (CONFIG_SYS_LATCH_BASE + 0x200)
#define MAX_MUX_CHANNELS 2
enum {
UNITTYPE_MAIN_SERVER = 0,
UNITTYPE_MAIN_USER = 1,
UNITTYPE_VIDEO_SERVER = 2,
UNITTYPE_VIDEO_USER = 3,
};
enum {
HWVER_100 = 0,
HWVER_104 = 1,
HWVER_110 = 2,
HWVER_120 = 3,
HWVER_200 = 4,
HWVER_210 = 5,
HWVER_220 = 6,
HWVER_230 = 7,
};
enum {
FPGA_HWVER_200 = 0,
FPGA_HWVER_210 = 1,
};
enum {
COMPRESSION_NONE = 0,
COMPRESSION_TYPE1_DELTA = 1,
COMPRESSION_TYPE1_TYPE2_DELTA = 3,
};
enum {
AUDIO_NONE = 0,
AUDIO_TX = 1,
AUDIO_RX = 2,
AUDIO_RXTX = 3,
};
enum {
SYSCLK_147456 = 0,
};
enum {
RAM_DDR2_32 = 0,
RAM_DDR3_32 = 1,
};
enum {
CARRIER_SPEED_1G = 0,
CARRIER_SPEED_2_5G = 1,
};
enum {
MCFPGA_DONE = 1 << 0,
MCFPGA_INIT_N = 1 << 1,
MCFPGA_PROGRAM_N = 1 << 2,
MCFPGA_UPDATE_ENABLE_N = 1 << 3,
MCFPGA_RESET_N = 1 << 4,
};
enum {
GPIO_MDC = 1 << 14,
GPIO_MDIO = 1 << 15,
};
unsigned int mclink_fpgacount;
struct ihs_fpga *fpga_ptr[] = CONFIG_SYS_FPGA_PTR;
static int setup_88e1518(const char *bus, unsigned char addr);
int fpga_set_reg(u32 fpga, u16 *reg, off_t regoff, u16 data)
{
int res;
switch (fpga) {
case 0:
out_le16(reg, data);
break;
default:
res = mclink_send(fpga - 1, regoff, data);
if (res < 0) {
printf("mclink_send reg %02lx data %04x returned %d\n",
regoff, data, res);
return res;
}
break;
}
return 0;
}
int fpga_get_reg(u32 fpga, u16 *reg, off_t regoff, u16 *data)
{
int res;
switch (fpga) {
case 0:
*data = in_le16(reg);
break;
default:
if (fpga > mclink_fpgacount)
return -EINVAL;
res = mclink_receive(fpga - 1, regoff, data);
if (res < 0) {
printf("mclink_receive reg %02lx returned %d\n",
regoff, res);
return res;
}
}
return 0;
}
/*
* Check Board Identity:
*/
int checkboard(void)
{
char *s = getenv("serial#");
puts("Board: ");
puts("IoCon");
if (s != NULL) {
puts(", serial# ");
puts(s);
}
puts("\n");
return 0;
}
static void print_fpga_info(unsigned int fpga, bool rgmii2_present)
{
u16 versions;
u16 fpga_version;
u16 fpga_features;
unsigned unit_type;
unsigned hardware_version;
unsigned feature_compression;
unsigned feature_osd;
unsigned feature_audio;
unsigned feature_sysclock;
unsigned feature_ramconfig;
unsigned feature_carrier_speed;
unsigned feature_carriers;
unsigned feature_video_channels;
int legacy = get_fpga_state(fpga) & FPGA_STATE_PLATFORM;
FPGA_GET_REG(fpga, versions, &versions);
FPGA_GET_REG(fpga, fpga_version, &fpga_version);
FPGA_GET_REG(fpga, fpga_features, &fpga_features);
unit_type = (versions & 0xf000) >> 12;
feature_compression = (fpga_features & 0xe000) >> 13;
feature_osd = fpga_features & (1<<11);
feature_audio = (fpga_features & 0x0600) >> 9;
feature_sysclock = (fpga_features & 0x0180) >> 7;
feature_ramconfig = (fpga_features & 0x0060) >> 5;
feature_carrier_speed = fpga_features & (1<<4);
feature_carriers = (fpga_features & 0x000c) >> 2;
feature_video_channels = fpga_features & 0x0003;
if (legacy)
printf("legacy ");
switch (unit_type) {
case UNITTYPE_MAIN_USER:
printf("Mainchannel");
break;
case UNITTYPE_VIDEO_USER:
printf("Videochannel");
break;
default:
printf("UnitType %d(not supported)", unit_type);
break;
}
if (unit_type == UNITTYPE_MAIN_USER) {
if (legacy)
hardware_version =
(in_le16((void *)LATCH2_BASE)>>8) & 0x0f;
else
hardware_version =
(!!pca9698_get_value(0x20, 24) << 0)
| (!!pca9698_get_value(0x20, 25) << 1)
| (!!pca9698_get_value(0x20, 26) << 2)
| (!!pca9698_get_value(0x20, 27) << 3);
switch (hardware_version) {
case HWVER_100:
printf(" HW-Ver 1.00,");
break;
case HWVER_104:
printf(" HW-Ver 1.04,");
break;
case HWVER_110:
printf(" HW-Ver 1.10,");
break;
case HWVER_120:
printf(" HW-Ver 1.20-1.21,");
break;
case HWVER_200:
printf(" HW-Ver 2.00,");
break;
case HWVER_210:
printf(" HW-Ver 2.10,");
break;
case HWVER_220:
printf(" HW-Ver 2.20,");
break;
case HWVER_230:
printf(" HW-Ver 2.30,");
break;
default:
printf(" HW-Ver %d(not supported),",
hardware_version);
break;
}
if (rgmii2_present)
printf(" RGMII2,");
}
if (unit_type == UNITTYPE_VIDEO_USER) {
hardware_version = versions & 0x000f;
switch (hardware_version) {
case FPGA_HWVER_200:
printf(" HW-Ver 2.00,");
break;
case FPGA_HWVER_210:
printf(" HW-Ver 2.10,");
break;
default:
printf(" HW-Ver %d(not supported),",
hardware_version);
break;
}
}
printf(" FPGA V %d.%02d\n features:",
fpga_version / 100, fpga_version % 100);
switch (feature_compression) {
case COMPRESSION_NONE:
printf(" no compression");
break;
case COMPRESSION_TYPE1_DELTA:
printf(" type1-deltacompression");
break;
case COMPRESSION_TYPE1_TYPE2_DELTA:
printf(" type1-deltacompression, type2-inlinecompression");
break;
default:
printf(" compression %d(not supported)", feature_compression);
break;
}
printf(", %sosd", feature_osd ? "" : "no ");
switch (feature_audio) {
case AUDIO_NONE:
printf(", no audio");
break;
case AUDIO_TX:
printf(", audio tx");
break;
case AUDIO_RX:
printf(", audio rx");
break;
case AUDIO_RXTX:
printf(", audio rx+tx");
break;
default:
printf(", audio %d(not supported)", feature_audio);
break;
}
puts(",\n ");
switch (feature_sysclock) {
case SYSCLK_147456:
printf("clock 147.456 MHz");
break;
default:
printf("clock %d(not supported)", feature_sysclock);
break;
}
switch (feature_ramconfig) {
case RAM_DDR2_32:
printf(", RAM 32 bit DDR2");
break;
case RAM_DDR3_32:
printf(", RAM 32 bit DDR3");
break;
default:
printf(", RAM %d(not supported)", feature_ramconfig);
break;
}
printf(", %d carrier(s) %s", feature_carriers,
feature_carrier_speed ? "2.5Gbit/s" : "1Gbit/s");
printf(", %d video channel(s)\n", feature_video_channels);
}
int last_stage_init(void)
{
int slaves;
unsigned int k;
unsigned int mux_ch;
unsigned char mclink_controllers[] = { 0x24, 0x25, 0x26 };
int legacy = get_fpga_state(0) & FPGA_STATE_PLATFORM;
u16 fpga_features;
int feature_carrier_speed;
bool ch0_rgmii2_present = false;
FPGA_GET_REG(0, fpga_features, &fpga_features);
feature_carrier_speed = fpga_features & (1<<4);
if (!legacy) {
/* Turn on Parade DP501 */
pca9698_direction_output(0x20, 9, 1);
ch0_rgmii2_present = !pca9698_get_value(0x20, 30);
}
/* wait for FPGA done */
for (k = 0; k < ARRAY_SIZE(mclink_controllers); ++k) {
unsigned int ctr = 0;
if (i2c_probe(mclink_controllers[k]))
continue;
while (!(pca953x_get_val(mclink_controllers[k])
& MCFPGA_DONE)) {
udelay(100000);
if (ctr++ > 5) {
printf("no done for mclink_controller %d\n", k);
break;
}
}
}
if (!legacy && (feature_carrier_speed == CARRIER_SPEED_1G)) {
miiphy_register(bb_miiphy_buses[0].name, bb_miiphy_read,
bb_miiphy_write);
for (mux_ch = 0; mux_ch < MAX_MUX_CHANNELS; ++mux_ch) {
if ((mux_ch == 1) && !ch0_rgmii2_present)
continue;
setup_88e1518(bb_miiphy_buses[0].name, mux_ch);
}
}
/* give slave-PLLs and Parade DP501 some time to be up and running */
udelay(500000);
mclink_fpgacount = CONFIG_SYS_MCLINK_MAX;
slaves = mclink_probe();
mclink_fpgacount = 0;
print_fpga_info(0, ch0_rgmii2_present);
osd_probe(0);
if (slaves <= 0)
return 0;
mclink_fpgacount = slaves;
for (k = 1; k <= slaves; ++k) {
FPGA_GET_REG(k, fpga_features, &fpga_features);
feature_carrier_speed = fpga_features & (1<<4);
print_fpga_info(k, false);
osd_probe(k);
if (feature_carrier_speed == CARRIER_SPEED_1G) {
miiphy_register(bb_miiphy_buses[k].name,
bb_miiphy_read, bb_miiphy_write);
setup_88e1518(bb_miiphy_buses[k].name, 0);
}
}
return 0;
}
/*
* provide access to fpga gpios (for I2C bitbang)
* (these may look all too simple but make iocon.h much more readable)
*/
void fpga_gpio_set(unsigned int bus, int pin)
{
FPGA_SET_REG(bus, gpio.set, pin);
}
void fpga_gpio_clear(unsigned int bus, int pin)
{
FPGA_SET_REG(bus, gpio.clear, pin);
}
int fpga_gpio_get(unsigned int bus, int pin)
{
u16 val;
FPGA_GET_REG(bus, gpio.read, &val);
return val & pin;
}
void gd405ep_init(void)
{
unsigned int k;
if (i2c_probe(0x20)) { /* i2c_probe returns 0 on success */
for (k = 0; k < CONFIG_SYS_FPGA_COUNT; ++k)
gd->arch.fpga_state[k] |= FPGA_STATE_PLATFORM;
} else {
pca9698_direction_output(0x20, 4, 1);
}
}
void gd405ep_set_fpga_reset(unsigned state)
{
int legacy = get_fpga_state(0) & FPGA_STATE_PLATFORM;
if (legacy) {
if (state) {
out_le16((void *)LATCH0_BASE, CONFIG_SYS_LATCH0_RESET);
out_le16((void *)LATCH1_BASE, CONFIG_SYS_LATCH1_RESET);
} else {
out_le16((void *)LATCH0_BASE, CONFIG_SYS_LATCH0_BOOT);
out_le16((void *)LATCH1_BASE, CONFIG_SYS_LATCH1_BOOT);
}
} else {
pca9698_set_value(0x20, 4, state ? 0 : 1);
}
}
void gd405ep_setup_hw(void)
{
/*
* set "startup-finished"-gpios
*/
gpio_write_bit(21, 0);
gpio_write_bit(22, 1);
}
int gd405ep_get_fpga_done(unsigned fpga)
{
int legacy = get_fpga_state(0) & FPGA_STATE_PLATFORM;
if (legacy)
return in_le16((void *)LATCH2_BASE)
& CONFIG_SYS_FPGA_DONE(fpga);
else
return pca9698_get_value(0x20, 20);
}
/*
* FPGA MII bitbang implementation
*/
struct fpga_mii {
unsigned fpga;
int mdio;
} fpga_mii[] = {
{ 0, 1},
{ 1, 1},
{ 2, 1},
{ 3, 1},
};
static int mii_dummy_init(struct bb_miiphy_bus *bus)
{
return 0;
}
static int mii_mdio_active(struct bb_miiphy_bus *bus)
{
struct fpga_mii *fpga_mii = bus->priv;
if (fpga_mii->mdio)
FPGA_SET_REG(fpga_mii->fpga, gpio.set, GPIO_MDIO);
else
FPGA_SET_REG(fpga_mii->fpga, gpio.clear, GPIO_MDIO);
return 0;
}
static int mii_mdio_tristate(struct bb_miiphy_bus *bus)
{
struct fpga_mii *fpga_mii = bus->priv;
FPGA_SET_REG(fpga_mii->fpga, gpio.set, GPIO_MDIO);
return 0;
}
static int mii_set_mdio(struct bb_miiphy_bus *bus, int v)
{
struct fpga_mii *fpga_mii = bus->priv;
if (v)
FPGA_SET_REG(fpga_mii->fpga, gpio.set, GPIO_MDIO);
else
FPGA_SET_REG(fpga_mii->fpga, gpio.clear, GPIO_MDIO);
fpga_mii->mdio = v;
return 0;
}
static int mii_get_mdio(struct bb_miiphy_bus *bus, int *v)
{
u16 gpio;
struct fpga_mii *fpga_mii = bus->priv;
FPGA_GET_REG(fpga_mii->fpga, gpio.read, &gpio);
*v = ((gpio & GPIO_MDIO) != 0);
return 0;
}
static int mii_set_mdc(struct bb_miiphy_bus *bus, int v)
{
struct fpga_mii *fpga_mii = bus->priv;
if (v)
FPGA_SET_REG(fpga_mii->fpga, gpio.set, GPIO_MDC);
else
FPGA_SET_REG(fpga_mii->fpga, gpio.clear, GPIO_MDC);
return 0;
}
static int mii_delay(struct bb_miiphy_bus *bus)
{
udelay(1);
return 0;
}
struct bb_miiphy_bus bb_miiphy_buses[] = {
{
.name = "board0",
.init = mii_dummy_init,
.mdio_active = mii_mdio_active,
.mdio_tristate = mii_mdio_tristate,
.set_mdio = mii_set_mdio,
.get_mdio = mii_get_mdio,
.set_mdc = mii_set_mdc,
.delay = mii_delay,
.priv = &fpga_mii[0],
},
{
.name = "board1",
.init = mii_dummy_init,
.mdio_active = mii_mdio_active,
.mdio_tristate = mii_mdio_tristate,
.set_mdio = mii_set_mdio,
.get_mdio = mii_get_mdio,
.set_mdc = mii_set_mdc,
.delay = mii_delay,
.priv = &fpga_mii[1],
},
{
.name = "board2",
.init = mii_dummy_init,
.mdio_active = mii_mdio_active,
.mdio_tristate = mii_mdio_tristate,
.set_mdio = mii_set_mdio,
.get_mdio = mii_get_mdio,
.set_mdc = mii_set_mdc,
.delay = mii_delay,
.priv = &fpga_mii[2],
},
{
.name = "board3",
.init = mii_dummy_init,
.mdio_active = mii_mdio_active,
.mdio_tristate = mii_mdio_tristate,
.set_mdio = mii_set_mdio,
.get_mdio = mii_get_mdio,
.set_mdc = mii_set_mdc,
.delay = mii_delay,
.priv = &fpga_mii[3],
},
};
int bb_miiphy_buses_num = sizeof(bb_miiphy_buses) /
sizeof(bb_miiphy_buses[0]);
enum {
MIICMD_SET,
MIICMD_MODIFY,
MIICMD_VERIFY_VALUE,
MIICMD_WAIT_FOR_VALUE,
};
struct mii_setupcmd {
u8 token;
u8 reg;
u16 data;
u16 mask;
u32 timeout;
};
/*
* verify we are talking to a 88e1518
*/
struct mii_setupcmd verify_88e1518[] = {
{ MIICMD_SET, 22, 0x0000 },
{ MIICMD_VERIFY_VALUE, 2, 0x0141, 0xffff },
{ MIICMD_VERIFY_VALUE, 3, 0x0dd0, 0xfff0 },
};
/*
* workaround for erratum mentioned in 88E1518 release notes
*/
struct mii_setupcmd fixup_88e1518[] = {
{ MIICMD_SET, 22, 0x00ff },
{ MIICMD_SET, 17, 0x214b },
{ MIICMD_SET, 16, 0x2144 },
{ MIICMD_SET, 17, 0x0c28 },
{ MIICMD_SET, 16, 0x2146 },
{ MIICMD_SET, 17, 0xb233 },
{ MIICMD_SET, 16, 0x214d },
{ MIICMD_SET, 17, 0xcc0c },
{ MIICMD_SET, 16, 0x2159 },
{ MIICMD_SET, 22, 0x00fb },
{ MIICMD_SET, 7, 0xc00d },
{ MIICMD_SET, 22, 0x0000 },
};
/*
* default initialization:
* - set RGMII receive timing to "receive clock transition when data stable"
* - set RGMII transmit timing to "transmit clock internally delayed"
* - set RGMII output impedance target to 78,8 Ohm
* - run output impedance calibration
* - set autonegotiation advertise to 1000FD only
*/
struct mii_setupcmd default_88e1518[] = {
{ MIICMD_SET, 22, 0x0002 },
{ MIICMD_MODIFY, 21, 0x0030, 0x0030 },
{ MIICMD_MODIFY, 25, 0x0000, 0x0003 },
{ MIICMD_MODIFY, 24, 0x8000, 0x8000 },
{ MIICMD_WAIT_FOR_VALUE, 24, 0x4000, 0x4000, 2000 },
{ MIICMD_SET, 22, 0x0000 },
{ MIICMD_MODIFY, 4, 0x0000, 0x01e0 },
{ MIICMD_MODIFY, 9, 0x0200, 0x0300 },
};
/*
* turn off CLK125 for PHY daughterboard
*/
struct mii_setupcmd ch1fix_88e1518[] = {
{ MIICMD_SET, 22, 0x0002 },
{ MIICMD_MODIFY, 16, 0x0006, 0x0006 },
{ MIICMD_SET, 22, 0x0000 },
};
/*
* perform copper software reset
*/
struct mii_setupcmd swreset_88e1518[] = {
{ MIICMD_SET, 22, 0x0000 },
{ MIICMD_MODIFY, 0, 0x8000, 0x8000 },
{ MIICMD_WAIT_FOR_VALUE, 0, 0x0000, 0x8000, 2000 },
};
static int process_setupcmd(const char *bus, unsigned char addr,
struct mii_setupcmd *setupcmd)
{
int res;
u8 reg = setupcmd->reg;
u16 data = setupcmd->data;
u16 mask = setupcmd->mask;
u32 timeout = setupcmd->timeout;
u16 orig_data;
unsigned long start;
debug("mii %s:%u reg %2u ", bus, addr, reg);
switch (setupcmd->token) {
case MIICMD_MODIFY:
res = miiphy_read(bus, addr, reg, &orig_data);
if (res)
break;
debug("is %04x. (value %04x mask %04x) ", orig_data, data,
mask);
data = (orig_data & ~mask) | (data & mask);
case MIICMD_SET:
debug("=> %04x\n", data);
res = miiphy_write(bus, addr, reg, data);
break;
case MIICMD_VERIFY_VALUE:
res = miiphy_read(bus, addr, reg, &orig_data);
if (res)
break;
if ((orig_data & mask) != (data & mask))
res = -1;
debug("(value %04x mask %04x) == %04x? %s\n", data, mask,
orig_data, res ? "FAIL" : "PASS");
break;
case MIICMD_WAIT_FOR_VALUE:
res = -1;
start = get_timer(0);
while ((res != 0) && (get_timer(start) < timeout)) {
res = miiphy_read(bus, addr, reg, &orig_data);
if (res)
continue;
if ((orig_data & mask) != (data & mask))
res = -1;
}
debug("(value %04x mask %04x) == %04x? %s after %lu ms\n", data,
mask, orig_data, res ? "FAIL" : "PASS",
get_timer(start));
break;
default:
res = -1;
break;
}
return res;
}
static int process_setup(const char *bus, unsigned char addr,
struct mii_setupcmd *setupcmd, unsigned int count)
{
int res = 0;
unsigned int k;
for (k = 0; k < count; ++k) {
res = process_setupcmd(bus, addr, &setupcmd[k]);
if (res) {
printf("mii cmd %u on bus %s addr %u failed, aborting setup",
setupcmd[k].token, bus, addr);
break;
}
}
return res;
}
static int setup_88e1518(const char *bus, unsigned char addr)
{
int res;
res = process_setup(bus, addr,
verify_88e1518, ARRAY_SIZE(verify_88e1518));
if (res)
return res;
res = process_setup(bus, addr,
fixup_88e1518, ARRAY_SIZE(fixup_88e1518));
if (res)
return res;
res = process_setup(bus, addr,
default_88e1518, ARRAY_SIZE(default_88e1518));
if (res)
return res;
if (addr) {
res = process_setup(bus, addr,
ch1fix_88e1518, ARRAY_SIZE(ch1fix_88e1518));
if (res)
return res;
}
res = process_setup(bus, addr,
swreset_88e1518, ARRAY_SIZE(swreset_88e1518));
if (res)
return res;
return 0;
}