blob: fe93ff3d3397b49f9ba03e21e1c08e04527970a3 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2016-2017 Google, Inc
*
* Fairchild FUSB302 Type-C Chip Driver
*/
#include <dm.h>
#include <i2c.h>
#include <asm/gpio.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <dm/device_compat.h>
#include <usb/tcpm.h>
#include "fusb302_reg.h"
#define FUSB302_MAX_MSG_LEN 0x1F
enum toggling_mode {
TOGGLING_MODE_OFF,
TOGGLING_MODE_DRP,
TOGGLING_MODE_SNK,
TOGGLING_MODE_SRC,
};
enum src_current_status {
SRC_CURRENT_DEFAULT,
SRC_CURRENT_MEDIUM,
SRC_CURRENT_HIGH,
};
static const u8 ra_mda_value[] = {
[SRC_CURRENT_DEFAULT] = 4, /* 210mV */
[SRC_CURRENT_MEDIUM] = 9, /* 420mV */
[SRC_CURRENT_HIGH] = 18, /* 798mV */
};
static const u8 rd_mda_value[] = {
[SRC_CURRENT_DEFAULT] = 38, /* 1638mV */
[SRC_CURRENT_MEDIUM] = 38, /* 1638mV */
[SRC_CURRENT_HIGH] = 61, /* 2604mV */
};
struct fusb302_chip {
enum toggling_mode toggling_mode;
enum src_current_status src_current_status;
bool intr_togdone;
bool intr_bc_lvl;
bool intr_comp_chng;
/* port status */
bool vconn_on;
bool vbus_present;
enum typec_cc_polarity cc_polarity;
enum typec_cc_status cc1;
enum typec_cc_status cc2;
};
static int fusb302_i2c_write(struct udevice *dev, u8 address, u8 data)
{
int ret;
ret = dm_i2c_write(dev, address, &data, 1);
if (ret)
dev_err(dev, "cannot write 0x%02x to 0x%02x, ret=%d\n",
data, address, ret);
return ret;
}
static int fusb302_i2c_block_write(struct udevice *dev, u8 address,
u8 length, const u8 *data)
{
int ret;
if (!length)
return 0;
ret = dm_i2c_write(dev, address, data, length);
if (ret)
dev_err(dev, "cannot block write 0x%02x, len=%d, ret=%d\n",
address, length, ret);
return ret;
}
static int fusb302_i2c_read(struct udevice *dev, u8 address, u8 *data)
{
int ret, retries;
for (retries = 0; retries < 3; retries++) {
ret = dm_i2c_read(dev, address, data, 1);
if (ret == 0)
return ret;
dev_err(dev, "cannot read %02x, ret=%d\n", address, ret);
}
return ret;
}
static int fusb302_i2c_block_read(struct udevice *dev, u8 address,
u8 length, u8 *data)
{
int ret;
if (!length)
return 0;
ret = dm_i2c_read(dev, address, data, length);
if (ret)
dev_err(dev, "cannot block read 0x%02x, len=%d, ret=%d\n",
address, length, ret);
return ret;
}
static int fusb302_i2c_mask_write(struct udevice *dev, u8 address,
u8 mask, u8 value)
{
int ret;
u8 data;
ret = fusb302_i2c_read(dev, address, &data);
if (ret)
return ret;
data &= ~mask;
data |= value;
ret = fusb302_i2c_write(dev, address, data);
if (ret)
return ret;
return ret;
}
static int fusb302_i2c_set_bits(struct udevice *dev, u8 address, u8 set_bits)
{
return fusb302_i2c_mask_write(dev, address, 0x00, set_bits);
}
static int fusb302_i2c_clear_bits(struct udevice *dev, u8 address, u8 clear_bits)
{
return fusb302_i2c_mask_write(dev, address, clear_bits, 0x00);
}
static int fusb302_sw_reset(struct udevice *dev)
{
int ret = fusb302_i2c_write(dev, FUSB_REG_RESET, FUSB_REG_RESET_SW_RESET);
if (ret)
dev_err(dev, "cannot sw reset the fusb302: %d\n", ret);
return ret;
}
static int fusb302_enable_tx_auto_retries(struct udevice *dev, u8 retry_count)
{
int ret;
ret = fusb302_i2c_set_bits(dev, FUSB_REG_CONTROL3, retry_count |
FUSB_REG_CONTROL3_AUTO_RETRY);
return ret;
}
/*
* mask all interrupt on the chip
*/
static int fusb302_mask_interrupt(struct udevice *dev)
{
int ret;
ret = fusb302_i2c_write(dev, FUSB_REG_MASK, 0xFF);
if (ret)
return ret;
ret = fusb302_i2c_write(dev, FUSB_REG_MASKA, 0xFF);
if (ret)
return ret;
ret = fusb302_i2c_write(dev, FUSB_REG_MASKB, 0xFF);
if (ret)
return ret;
ret = fusb302_i2c_set_bits(dev, FUSB_REG_CONTROL0,
FUSB_REG_CONTROL0_INT_MASK);
return ret;
}
/*
* initialize interrupt on the chip
* - unmasked interrupt: VBUS_OK
*/
static int fusb302_init_interrupt(struct udevice *dev)
{
int ret;
ret = fusb302_i2c_write(dev, FUSB_REG_MASK,
0xFF & ~FUSB_REG_MASK_VBUSOK);
if (ret)
return ret;
ret = fusb302_i2c_write(dev, FUSB_REG_MASKA, 0xFF);
if (ret)
return ret;
ret = fusb302_i2c_write(dev, FUSB_REG_MASKB, 0xFF);
if (ret)
return ret;
ret = fusb302_i2c_clear_bits(dev, FUSB_REG_CONTROL0,
FUSB_REG_CONTROL0_INT_MASK);
return ret;
}
static int fusb302_set_power_mode(struct udevice *dev, u8 power_mode)
{
int ret;
ret = fusb302_i2c_write(dev, FUSB_REG_POWER, power_mode);
return ret;
}
static int fusb302_init(struct udevice *dev)
{
struct fusb302_chip *chip = dev_get_priv(dev);
int ret;
u8 data;
ret = fusb302_sw_reset(dev);
if (ret)
return ret;
ret = fusb302_enable_tx_auto_retries(dev, FUSB_REG_CONTROL3_N_RETRIES_3);
if (ret)
return ret;
ret = fusb302_init_interrupt(dev);
if (ret)
return ret;
ret = fusb302_set_power_mode(dev, FUSB_REG_POWER_PWR_ALL);
if (ret)
return ret;
ret = fusb302_i2c_read(dev, FUSB_REG_STATUS0, &data);
if (ret)
return ret;
chip->vbus_present = !!(data & FUSB_REG_STATUS0_VBUSOK);
ret = fusb302_i2c_read(dev, FUSB_REG_DEVICE_ID, &data);
if (ret)
return ret;
dev_info(dev, "fusb302 device ID: 0x%02x\n", data);
return ret;
}
static int fusb302_get_vbus(struct udevice *dev)
{
struct fusb302_chip *chip = dev_get_priv(dev);
return chip->vbus_present ? 1 : 0;
}
static int fusb302_set_src_current(struct udevice *dev,
enum src_current_status status)
{
struct fusb302_chip *chip = dev_get_priv(dev);
int ret;
chip->src_current_status = status;
switch (status) {
case SRC_CURRENT_DEFAULT:
ret = fusb302_i2c_mask_write(dev, FUSB_REG_CONTROL0,
FUSB_REG_CONTROL0_HOST_CUR_MASK,
FUSB_REG_CONTROL0_HOST_CUR_DEF);
break;
case SRC_CURRENT_MEDIUM:
ret = fusb302_i2c_mask_write(dev, FUSB_REG_CONTROL0,
FUSB_REG_CONTROL0_HOST_CUR_MASK,
FUSB_REG_CONTROL0_HOST_CUR_MED);
break;
case SRC_CURRENT_HIGH:
ret = fusb302_i2c_mask_write(dev, FUSB_REG_CONTROL0,
FUSB_REG_CONTROL0_HOST_CUR_MASK,
FUSB_REG_CONTROL0_HOST_CUR_HIGH);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int fusb302_set_toggling(struct udevice *dev,
enum toggling_mode mode)
{
struct fusb302_chip *chip = dev_get_priv(dev);
int ret;
/* first disable toggling */
ret = fusb302_i2c_clear_bits(dev, FUSB_REG_CONTROL2,
FUSB_REG_CONTROL2_TOGGLE);
if (ret)
return ret;
/* mask interrupts for SRC or SNK */
ret = fusb302_i2c_set_bits(dev, FUSB_REG_MASK,
FUSB_REG_MASK_BC_LVL |
FUSB_REG_MASK_COMP_CHNG);
if (ret)
return ret;
chip->intr_bc_lvl = false;
chip->intr_comp_chng = false;
/* configure toggling mode: none/snk/src/drp */
switch (mode) {
case TOGGLING_MODE_OFF:
ret = fusb302_i2c_mask_write(dev, FUSB_REG_CONTROL2,
FUSB_REG_CONTROL2_MODE_MASK,
FUSB_REG_CONTROL2_MODE_NONE);
break;
case TOGGLING_MODE_SNK:
ret = fusb302_i2c_mask_write(dev, FUSB_REG_CONTROL2,
FUSB_REG_CONTROL2_MODE_MASK,
FUSB_REG_CONTROL2_MODE_UFP);
break;
case TOGGLING_MODE_SRC:
ret = fusb302_i2c_mask_write(dev, FUSB_REG_CONTROL2,
FUSB_REG_CONTROL2_MODE_MASK,
FUSB_REG_CONTROL2_MODE_DFP);
break;
case TOGGLING_MODE_DRP:
ret = fusb302_i2c_mask_write(dev, FUSB_REG_CONTROL2,
FUSB_REG_CONTROL2_MODE_MASK,
FUSB_REG_CONTROL2_MODE_DRP);
break;
default:
break;
}
if (ret)
return ret;
if (mode == TOGGLING_MODE_OFF) {
/* mask TOGDONE interrupt */
ret = fusb302_i2c_set_bits(dev, FUSB_REG_MASKA,
FUSB_REG_MASKA_TOGDONE);
if (ret)
return ret;
chip->intr_togdone = false;
} else {
/* Datasheet says vconn MUST be off when toggling */
if (chip->vconn_on)
dev_warn(dev, "Vconn is on during toggle start\n");
/* unmask TOGDONE interrupt */
ret = fusb302_i2c_clear_bits(dev, FUSB_REG_MASKA,
FUSB_REG_MASKA_TOGDONE);
if (ret)
return ret;
chip->intr_togdone = true;
/* start toggling */
ret = fusb302_i2c_set_bits(dev, FUSB_REG_CONTROL2,
FUSB_REG_CONTROL2_TOGGLE);
if (ret)
return ret;
/* during toggling, consider cc as Open */
chip->cc1 = TYPEC_CC_OPEN;
chip->cc2 = TYPEC_CC_OPEN;
}
chip->toggling_mode = mode;
return ret;
}
static const enum src_current_status cc_src_current[] = {
[TYPEC_CC_OPEN] = SRC_CURRENT_DEFAULT,
[TYPEC_CC_RA] = SRC_CURRENT_DEFAULT,
[TYPEC_CC_RD] = SRC_CURRENT_DEFAULT,
[TYPEC_CC_RP_DEF] = SRC_CURRENT_DEFAULT,
[TYPEC_CC_RP_1_5] = SRC_CURRENT_MEDIUM,
[TYPEC_CC_RP_3_0] = SRC_CURRENT_HIGH,
};
static int fusb302_set_cc(struct udevice *dev, enum typec_cc_status cc)
{
struct fusb302_chip *chip = dev_get_priv(dev);
const u8 switches0_mask = FUSB_REG_SWITCHES0_CC1_PU_EN |
FUSB_REG_SWITCHES0_CC2_PU_EN |
FUSB_REG_SWITCHES0_CC1_PD_EN |
FUSB_REG_SWITCHES0_CC2_PD_EN;
u8 rd_mda, switches0_data = 0x00;
int ret;
switch (cc) {
case TYPEC_CC_OPEN:
break;
case TYPEC_CC_RD:
switches0_data |= FUSB_REG_SWITCHES0_CC1_PD_EN |
FUSB_REG_SWITCHES0_CC2_PD_EN;
break;
case TYPEC_CC_RP_DEF:
case TYPEC_CC_RP_1_5:
case TYPEC_CC_RP_3_0:
switches0_data |= (chip->cc_polarity == TYPEC_POLARITY_CC1) ?
FUSB_REG_SWITCHES0_CC1_PU_EN :
FUSB_REG_SWITCHES0_CC2_PU_EN;
break;
default:
dev_err(dev, "unsupported CC value: %s\n",
typec_cc_status_name[cc]);
ret = -EINVAL;
goto done;
}
ret = fusb302_set_toggling(dev, TOGGLING_MODE_OFF);
if (ret) {
dev_err(dev, "cannot set toggling mode: %d\n", ret);
goto done;
}
ret = fusb302_i2c_mask_write(dev, FUSB_REG_SWITCHES0,
switches0_mask, switches0_data);
if (ret) {
dev_err(dev, "cannot set pull-up/-down: %d\n", ret);
goto done;
}
/* reset the cc status */
chip->cc1 = TYPEC_CC_OPEN;
chip->cc2 = TYPEC_CC_OPEN;
/* adjust current for SRC */
ret = fusb302_set_src_current(dev, cc_src_current[cc]);
if (ret) {
dev_err(dev, "cannot set src current %s: %d\n",
typec_cc_status_name[cc], ret);
goto done;
}
/* enable/disable interrupts, BC_LVL for SNK and COMP_CHNG for SRC */
switch (cc) {
case TYPEC_CC_RP_DEF:
case TYPEC_CC_RP_1_5:
case TYPEC_CC_RP_3_0:
rd_mda = rd_mda_value[cc_src_current[cc]];
ret = fusb302_i2c_write(dev, FUSB_REG_MEASURE, rd_mda);
if (ret) {
dev_err(dev, "cannot set SRC measure value: %d\n", ret);
goto done;
}
ret = fusb302_i2c_mask_write(dev, FUSB_REG_MASK,
FUSB_REG_MASK_BC_LVL |
FUSB_REG_MASK_COMP_CHNG,
FUSB_REG_MASK_BC_LVL);
if (ret) {
dev_err(dev, "cannot set SRC irq: %d\n", ret);
goto done;
}
chip->intr_comp_chng = true;
break;
case TYPEC_CC_RD:
ret = fusb302_i2c_mask_write(dev, FUSB_REG_MASK,
FUSB_REG_MASK_BC_LVL |
FUSB_REG_MASK_COMP_CHNG,
FUSB_REG_MASK_COMP_CHNG);
if (ret) {
dev_err(dev, "cannot set SRC irq: %d\n", ret);
goto done;
}
chip->intr_bc_lvl = true;
break;
default:
break;
}
done:
return ret;
}
static int fusb302_get_cc(struct udevice *dev, enum typec_cc_status *cc1,
enum typec_cc_status *cc2)
{
struct fusb302_chip *chip = dev_get_priv(dev);
*cc1 = chip->cc1;
*cc2 = chip->cc2;
dev_dbg(dev, "get cc1 = %s, cc2 = %s\n", typec_cc_status_name[*cc1],
typec_cc_status_name[*cc2]);
return 0;
}
static int fusb302_set_vconn(struct udevice *dev, bool on)
{
struct fusb302_chip *chip = dev_get_priv(dev);
int ret;
u8 switches0_data = 0x00;
u8 switches0_mask = FUSB_REG_SWITCHES0_VCONN_CC1 |
FUSB_REG_SWITCHES0_VCONN_CC2;
if (chip->vconn_on == on) {
ret = 0;
dev_dbg(dev, "vconn is already %s\n", on ? "on" : "off");
goto done;
}
if (on) {
switches0_data = (chip->cc_polarity == TYPEC_POLARITY_CC1) ?
FUSB_REG_SWITCHES0_VCONN_CC2 :
FUSB_REG_SWITCHES0_VCONN_CC1;
}
ret = fusb302_i2c_mask_write(dev, FUSB_REG_SWITCHES0,
switches0_mask, switches0_data);
if (ret)
goto done;
dev_dbg(dev, "set vconn = %s\n", on ? "on" : "off");
done:
return ret;
}
static int fusb302_set_vbus(struct udevice *dev, bool on, bool charge)
{
return 0;
}
static int fusb302_pd_tx_flush(struct udevice *dev)
{
return fusb302_i2c_set_bits(dev, FUSB_REG_CONTROL0,
FUSB_REG_CONTROL0_TX_FLUSH);
}
static int fusb302_pd_rx_flush(struct udevice *dev)
{
return fusb302_i2c_set_bits(dev, FUSB_REG_CONTROL1,
FUSB_REG_CONTROL1_RX_FLUSH);
}
static int fusb302_pd_set_auto_goodcrc(struct udevice *dev, bool on)
{
if (on)
return fusb302_i2c_set_bits(dev, FUSB_REG_SWITCHES1,
FUSB_REG_SWITCHES1_AUTO_GCRC);
return fusb302_i2c_clear_bits(dev, FUSB_REG_SWITCHES1,
FUSB_REG_SWITCHES1_AUTO_GCRC);
}
static int fusb302_pd_set_interrupts(struct udevice *dev, bool on)
{
int ret;
u8 mask_interrupts = FUSB_REG_MASK_COLLISION;
u8 maska_interrupts = FUSB_REG_MASKA_RETRYFAIL |
FUSB_REG_MASKA_HARDSENT |
FUSB_REG_MASKA_TX_SUCCESS |
FUSB_REG_MASKA_HARDRESET;
u8 maskb_interrupts = FUSB_REG_MASKB_GCRCSENT;
ret = on ?
fusb302_i2c_clear_bits(dev, FUSB_REG_MASK, mask_interrupts) :
fusb302_i2c_set_bits(dev, FUSB_REG_MASK, mask_interrupts);
if (ret)
return ret;
ret = on ?
fusb302_i2c_clear_bits(dev, FUSB_REG_MASKA, maska_interrupts) :
fusb302_i2c_set_bits(dev, FUSB_REG_MASKA, maska_interrupts);
if (ret)
return ret;
ret = on ?
fusb302_i2c_clear_bits(dev, FUSB_REG_MASKB, maskb_interrupts) :
fusb302_i2c_set_bits(dev, FUSB_REG_MASKB, maskb_interrupts);
return ret;
}
static int fusb302_set_pd_rx(struct udevice *dev, bool on)
{
int ret;
ret = fusb302_pd_rx_flush(dev);
if (ret) {
dev_err(dev, "cannot flush pd rx buffer: %d\n", ret);
goto done;
}
ret = fusb302_pd_tx_flush(dev);
if (ret) {
dev_err(dev, "cannot flush pd tx buffer: %d\n", ret);
goto done;
}
ret = fusb302_pd_set_auto_goodcrc(dev, on);
if (ret) {
dev_err(dev, "cannot turn %s auto GoodCRC: %d\n",
on ? "on" : "off", ret);
goto done;
}
ret = fusb302_pd_set_interrupts(dev, on);
if (ret) {
dev_err(dev, "cannot turn %s pd interrupts: %d\n",
on ? "on" : "off", ret);
goto done;
}
dev_dbg(dev, "set pd RX %s\n", on ? "on" : "off");
done:
return ret;
}
static int fusb302_set_roles(struct udevice *dev, bool attached,
enum typec_role pwr, enum typec_data_role data)
{
int ret;
u8 switches1_mask = FUSB_REG_SWITCHES1_POWERROLE |
FUSB_REG_SWITCHES1_DATAROLE;
u8 switches1_data = 0x00;
if (pwr == TYPEC_SOURCE)
switches1_data |= FUSB_REG_SWITCHES1_POWERROLE;
if (data == TYPEC_HOST)
switches1_data |= FUSB_REG_SWITCHES1_DATAROLE;
ret = fusb302_i2c_mask_write(dev, FUSB_REG_SWITCHES1,
switches1_mask, switches1_data);
if (ret) {
dev_err(dev, "unable to set pd header %s, %s, ret=%d\n",
typec_role_name[pwr], typec_data_role_name[data], ret);
goto done;
}
dev_dbg(dev, "pd header : %s, %s\n", typec_role_name[pwr],
typec_data_role_name[data]);
done:
return ret;
}
static int fusb302_start_toggling(struct udevice *dev,
enum typec_port_type port_type,
enum typec_cc_status cc)
{
enum toggling_mode mode = TOGGLING_MODE_OFF;
int ret;
switch (port_type) {
case TYPEC_PORT_SRC:
mode = TOGGLING_MODE_SRC;
break;
case TYPEC_PORT_SNK:
mode = TOGGLING_MODE_SNK;
break;
case TYPEC_PORT_DRP:
mode = TOGGLING_MODE_DRP;
break;
}
ret = fusb302_set_src_current(dev, cc_src_current[cc]);
if (ret) {
dev_err(dev, "unable to set src current %s, ret=%d",
typec_cc_status_name[cc], ret);
goto done;
}
ret = fusb302_set_toggling(dev, mode);
if (ret) {
dev_err(dev, "unable to start drp toggling: %d\n", ret);
goto done;
}
dev_info(dev, "fusb302 start drp toggling\n");
done:
return ret;
}
static int fusb302_pd_send_message(struct udevice *dev,
const struct pd_message *msg)
{
int ret;
/* SOP tokens */
u8 buf[40] = {FUSB302_TKN_SYNC1, FUSB302_TKN_SYNC1, FUSB302_TKN_SYNC1,
FUSB302_TKN_SYNC2};
u8 pos = 4;
int len;
len = pd_header_cnt_le(msg->header) * 4;
/* plug 2 for header */
len += 2;
if (len > FUSB302_MAX_MSG_LEN) {
dev_err(dev, "PD message too long %d (incl. header)", len);
return -EINVAL;
}
/* packsym tells the FUSB302 chip that the next X bytes are payload */
buf[pos++] = FUSB302_TKN_PACKSYM | (len & FUSB302_MAX_MSG_LEN);
memcpy(&buf[pos], &msg->header, sizeof(msg->header));
pos += sizeof(msg->header);
len -= 2;
memcpy(&buf[pos], msg->payload, len);
pos += len;
/* CRC */
buf[pos++] = FUSB302_TKN_JAMCRC;
/* EOP */
buf[pos++] = FUSB302_TKN_EOP;
/* turn tx off after sending message */
buf[pos++] = FUSB302_TKN_TXOFF;
/* start transmission */
buf[pos++] = FUSB302_TKN_TXON;
ret = fusb302_i2c_block_write(dev, FUSB_REG_FIFOS, pos, buf);
if (ret)
return ret;
dev_dbg(dev, "Send PD message (header=0x%x len=%d)\n", msg->header, len);
return ret;
}
static int fusb302_pd_send_hardreset(struct udevice *dev)
{
return fusb302_i2c_set_bits(dev, FUSB_REG_CONTROL3,
FUSB_REG_CONTROL3_SEND_HARDRESET);
}
static const char * const transmit_type_name[] = {
[TCPC_TX_SOP] = "SOP",
[TCPC_TX_SOP_PRIME] = "SOP'",
[TCPC_TX_SOP_PRIME_PRIME] = "SOP''",
[TCPC_TX_SOP_DEBUG_PRIME] = "DEBUG'",
[TCPC_TX_SOP_DEBUG_PRIME_PRIME] = "DEBUG''",
[TCPC_TX_HARD_RESET] = "HARD_RESET",
[TCPC_TX_CABLE_RESET] = "CABLE_RESET",
[TCPC_TX_BIST_MODE_2] = "BIST_MODE_2",
};
static int fusb302_pd_transmit(struct udevice *dev, enum tcpm_transmit_type type,
const struct pd_message *msg, unsigned int negotiated_rev)
{
int ret;
switch (type) {
case TCPC_TX_SOP:
/* nRetryCount 3 in P2.0 spec, whereas 2 in PD3.0 spec */
ret = fusb302_enable_tx_auto_retries(dev, negotiated_rev > PD_REV20 ?
FUSB_REG_CONTROL3_N_RETRIES_2 :
FUSB_REG_CONTROL3_N_RETRIES_3);
if (ret)
dev_err(dev, "cannot update retry count: %d\n", ret);
ret = fusb302_pd_send_message(dev, msg);
if (ret)
dev_err(dev, "cannot send PD message: %d\n", ret);
break;
case TCPC_TX_HARD_RESET:
ret = fusb302_pd_send_hardreset(dev);
if (ret)
dev_err(dev, "cannot send hardreset: %d\n", ret);
break;
default:
dev_err(dev, "type %s not supported", transmit_type_name[type]);
ret = -EINVAL;
}
return ret;
}
static enum typec_cc_status fusb302_bc_lvl_to_cc(u8 bc_lvl)
{
if (bc_lvl == FUSB_REG_STATUS0_BC_LVL_1230_MAX)
return TYPEC_CC_RP_3_0;
if (bc_lvl == FUSB_REG_STATUS0_BC_LVL_600_1230)
return TYPEC_CC_RP_1_5;
if (bc_lvl == FUSB_REG_STATUS0_BC_LVL_200_600)
return TYPEC_CC_RP_DEF;
return TYPEC_CC_OPEN;
}
static void fusb302_bc_lvl_handler(struct udevice *dev)
{
struct fusb302_chip *chip = dev_get_priv(dev);
enum typec_cc_status cc_status;
u8 status0, bc_lvl;
int ret;
if (!chip->intr_bc_lvl) {
dev_err(dev, "BC_LVL interrupt is turned off, abort\n");
goto done;
}
ret = fusb302_i2c_read(dev, FUSB_REG_STATUS0, &status0);
if (ret)
goto done;
dev_dbg(dev, "BC_LVL handler, status0 = 0x%02x\n", status0);
if (status0 & FUSB_REG_STATUS0_ACTIVITY)
dev_info(dev, "CC activities detected, delay handling\n");
bc_lvl = status0 & FUSB_REG_STATUS0_BC_LVL_MASK;
cc_status = fusb302_bc_lvl_to_cc(bc_lvl);
if (chip->cc_polarity == TYPEC_POLARITY_CC1) {
if (chip->cc1 != cc_status) {
dev_dbg(dev, "cc1: %s -> %s\n",
typec_cc_status_name[chip->cc1],
typec_cc_status_name[cc_status]);
chip->cc1 = cc_status;
tcpm_cc_change(dev);
}
} else {
if (chip->cc2 != cc_status) {
dev_dbg(dev, "cc2: %s -> %s\n",
typec_cc_status_name[chip->cc2],
typec_cc_status_name[cc_status]);
chip->cc2 = cc_status;
tcpm_cc_change(dev);
}
}
done:
return;
}
static int fusb302_enter_low_power_mode(struct udevice *dev,
bool attached, bool pd_capable)
{
unsigned int reg;
int ret;
ret = fusb302_mask_interrupt(dev);
if (ret)
return ret;
if (attached && pd_capable)
reg = FUSB_REG_POWER_PWR_MEDIUM;
else if (attached)
reg = FUSB_REG_POWER_PWR_LOW;
else
reg = 0;
return fusb302_set_power_mode(dev, reg);
}
static const char * const cc_polarity_name[] = {
[TYPEC_POLARITY_CC1] = "Polarity_CC1",
[TYPEC_POLARITY_CC2] = "Polarity_CC2",
};
static int fusb302_set_cc_polarity_and_pull(struct udevice *dev,
enum typec_cc_polarity cc_polarity,
bool pull_up, bool pull_down)
{
struct fusb302_chip *chip = dev_get_priv(dev);
int ret;
u8 switches0_data = 0x00;
u8 switches1_mask = FUSB_REG_SWITCHES1_TXCC1_EN |
FUSB_REG_SWITCHES1_TXCC2_EN;
u8 switches1_data = 0x00;
if (pull_down)
switches0_data |= FUSB_REG_SWITCHES0_CC1_PD_EN |
FUSB_REG_SWITCHES0_CC2_PD_EN;
if (cc_polarity == TYPEC_POLARITY_CC1) {
switches0_data |= FUSB_REG_SWITCHES0_MEAS_CC1;
if (chip->vconn_on)
switches0_data |= FUSB_REG_SWITCHES0_VCONN_CC2;
if (pull_up)
switches0_data |= FUSB_REG_SWITCHES0_CC1_PU_EN;
switches1_data = FUSB_REG_SWITCHES1_TXCC1_EN;
} else {
switches0_data |= FUSB_REG_SWITCHES0_MEAS_CC2;
if (chip->vconn_on)
switches0_data |= FUSB_REG_SWITCHES0_VCONN_CC1;
if (pull_up)
switches0_data |= FUSB_REG_SWITCHES0_CC2_PU_EN;
switches1_data = FUSB_REG_SWITCHES1_TXCC2_EN;
}
ret = fusb302_i2c_write(dev, FUSB_REG_SWITCHES0, switches0_data);
if (ret)
return ret;
ret = fusb302_i2c_mask_write(dev, FUSB_REG_SWITCHES1,
switches1_mask, switches1_data);
if (ret)
return ret;
chip->cc_polarity = cc_polarity;
return ret;
}
static int fusb302_handle_togdone_snk(struct udevice *dev,
u8 togdone_result)
{
struct fusb302_chip *chip = dev_get_priv(dev);
int ret;
u8 status0;
u8 bc_lvl;
enum typec_cc_polarity cc_polarity;
enum typec_cc_status cc_status_active, cc1, cc2;
/* set polarity and pull_up, pull_down */
cc_polarity = (togdone_result == FUSB_REG_STATUS1A_TOGSS_SNK1) ?
TYPEC_POLARITY_CC1 : TYPEC_POLARITY_CC2;
ret = fusb302_set_cc_polarity_and_pull(dev, cc_polarity, false, true);
if (ret) {
dev_err(dev, "cannot set cc polarity %s, ret = %d\n",
cc_polarity_name[cc_polarity], ret);
return ret;
}
/* fusb302_set_cc_polarity() has set the correct measure block */
ret = fusb302_i2c_read(dev, FUSB_REG_STATUS0, &status0);
if (ret < 0)
return ret;
bc_lvl = status0 & FUSB_REG_STATUS0_BC_LVL_MASK;
cc_status_active = fusb302_bc_lvl_to_cc(bc_lvl);
/* restart toggling if the cc status on the active line is OPEN */
if (cc_status_active == TYPEC_CC_OPEN) {
dev_info(dev, "restart toggling as CC_OPEN detected\n");
ret = fusb302_set_toggling(dev, chip->toggling_mode);
return ret;
}
/* update tcpm with the new cc value */
cc1 = (cc_polarity == TYPEC_POLARITY_CC1) ?
cc_status_active : TYPEC_CC_OPEN;
cc2 = (cc_polarity == TYPEC_POLARITY_CC2) ?
cc_status_active : TYPEC_CC_OPEN;
if (chip->cc1 != cc1 || chip->cc2 != cc2) {
chip->cc1 = cc1;
chip->cc2 = cc2;
tcpm_cc_change(dev);
}
/* turn off toggling */
ret = fusb302_set_toggling(dev, TOGGLING_MODE_OFF);
if (ret) {
dev_err(dev, "cannot set toggling mode off, ret=%d\n", ret);
return ret;
}
/* unmask bc_lvl interrupt */
ret = fusb302_i2c_clear_bits(dev, FUSB_REG_MASK, FUSB_REG_MASK_BC_LVL);
if (ret) {
dev_err(dev, "cannot unmask bc_lcl irq, ret=%d\n", ret);
return ret;
}
chip->intr_bc_lvl = true;
dev_dbg(dev, "detected cc1=%s, cc2=%s\n",
typec_cc_status_name[cc1],
typec_cc_status_name[cc2]);
return ret;
}
/* On error returns < 0, otherwise a typec_cc_status value */
static int fusb302_get_src_cc_status(struct udevice *dev,
enum typec_cc_polarity cc_polarity,
enum typec_cc_status *cc)
{
struct fusb302_chip *chip = dev_get_priv(dev);
u8 ra_mda = ra_mda_value[chip->src_current_status];
u8 rd_mda = rd_mda_value[chip->src_current_status];
u8 switches0_data, status0;
int ret;
/* Step 1: Set switches so that we measure the right CC pin */
switches0_data = (cc_polarity == TYPEC_POLARITY_CC1) ?
FUSB_REG_SWITCHES0_CC1_PU_EN | FUSB_REG_SWITCHES0_MEAS_CC1 :
FUSB_REG_SWITCHES0_CC2_PU_EN | FUSB_REG_SWITCHES0_MEAS_CC2;
ret = fusb302_i2c_write(dev, FUSB_REG_SWITCHES0, switches0_data);
if (ret < 0)
return ret;
fusb302_i2c_read(dev, FUSB_REG_SWITCHES0, &status0);
dev_dbg(dev, "get_src_cc_status switches: 0x%0x", status0);
/* Step 2: Set compararator volt to differentiate between Open and Rd */
ret = fusb302_i2c_write(dev, FUSB_REG_MEASURE, rd_mda);
if (ret)
return ret;
udelay(100);
ret = fusb302_i2c_read(dev, FUSB_REG_STATUS0, &status0);
if (ret)
return ret;
dev_dbg(dev, "get_src_cc_status rd_mda status0: 0x%0x", status0);
if (status0 & FUSB_REG_STATUS0_COMP) {
*cc = TYPEC_CC_OPEN;
return 0;
}
/* Step 3: Set compararator input to differentiate between Rd and Ra. */
ret = fusb302_i2c_write(dev, FUSB_REG_MEASURE, ra_mda);
if (ret)
return ret;
udelay(100);
ret = fusb302_i2c_read(dev, FUSB_REG_STATUS0, &status0);
if (ret)
return ret;
dev_dbg(dev, "get_src_cc_status ra_mda status0: 0x%0x", status0);
if (status0 & FUSB_REG_STATUS0_COMP)
*cc = TYPEC_CC_RD;
else
*cc = TYPEC_CC_RA;
return 0;
}
static int fusb302_handle_togdone_src(struct udevice *dev,
u8 togdone_result)
{
/*
* - set polarity (measure cc, vconn, tx)
* - set pull_up, pull_down
* - set cc1, cc2, and update to tcpm state machine
* - set I_COMP interrupt on
*/
struct fusb302_chip *chip = dev_get_priv(dev);
u8 rd_mda = rd_mda_value[chip->src_current_status];
enum toggling_mode toggling_mode = chip->toggling_mode;
enum typec_cc_polarity cc_polarity;
enum typec_cc_status cc1, cc2;
int ret;
/*
* The toggle-engine will stop in a src state if it sees either Ra or
* Rd. Determine the status for both CC pins, starting with the one
* where toggling stopped, as that is where the switches point now.
*/
if (togdone_result == FUSB_REG_STATUS1A_TOGSS_SRC1)
ret = fusb302_get_src_cc_status(dev, TYPEC_POLARITY_CC1, &cc1);
else
ret = fusb302_get_src_cc_status(dev, TYPEC_POLARITY_CC2, &cc2);
if (ret)
return ret;
/* we must turn off toggling before we can measure the other pin */
ret = fusb302_set_toggling(dev, TOGGLING_MODE_OFF);
if (ret) {
dev_err(dev, "cannot set toggling mode off, ret=%d\n", ret);
return ret;
}
/* get the status of the other pin */
if (togdone_result == FUSB_REG_STATUS1A_TOGSS_SRC1)
ret = fusb302_get_src_cc_status(dev, TYPEC_POLARITY_CC2, &cc2);
else
ret = fusb302_get_src_cc_status(dev, TYPEC_POLARITY_CC1, &cc1);
if (ret)
return ret;
/* determine polarity based on the status of both pins */
if (cc1 == TYPEC_CC_RD && (cc2 == TYPEC_CC_OPEN || cc2 == TYPEC_CC_RA)) {
cc_polarity = TYPEC_POLARITY_CC1;
} else if (cc2 == TYPEC_CC_RD &&
(cc1 == TYPEC_CC_OPEN || cc1 == TYPEC_CC_RA)) {
cc_polarity = TYPEC_POLARITY_CC2;
} else {
dev_err(dev, "unexpected CC status cc1=%s, cc2=%s, restarting toggling\n",
typec_cc_status_name[cc1],
typec_cc_status_name[cc2]);
return fusb302_set_toggling(dev, toggling_mode);
}
/* set polarity and pull_up, pull_down */
ret = fusb302_set_cc_polarity_and_pull(dev, cc_polarity, true, false);
if (ret < 0) {
dev_err(dev, "cannot set cc polarity %s, ret=%d\n",
cc_polarity_name[cc_polarity], ret);
return ret;
}
/* update tcpm with the new cc value */
if (chip->cc1 != cc1 || chip->cc2 != cc2) {
chip->cc1 = cc1;
chip->cc2 = cc2;
tcpm_cc_change(dev);
}
/* set MDAC to Rd threshold, and unmask I_COMP for unplug detection */
ret = fusb302_i2c_write(dev, FUSB_REG_MEASURE, rd_mda);
if (ret)
return ret;
/* unmask comp_chng interrupt */
ret = fusb302_i2c_clear_bits(dev, FUSB_REG_MASK,
FUSB_REG_MASK_COMP_CHNG);
if (ret) {
dev_err(dev, "cannot unmask comp_chng irq, ret=%d\n", ret);
return ret;
}
chip->intr_comp_chng = true;
dev_dbg(dev, "detected cc1=%s, cc2=%s\n",
typec_cc_status_name[cc1],
typec_cc_status_name[cc2]);
return ret;
}
static int fusb302_handle_togdone(struct udevice *dev)
{
struct fusb302_chip *chip = dev_get_priv(dev);
u8 togdone_result, status1a;
int ret;
ret = fusb302_i2c_read(dev, FUSB_REG_STATUS1A, &status1a);
if (ret < 0)
return ret;
togdone_result = (status1a >> FUSB_REG_STATUS1A_TOGSS_POS) &
FUSB_REG_STATUS1A_TOGSS_MASK;
switch (togdone_result) {
case FUSB_REG_STATUS1A_TOGSS_SNK1:
case FUSB_REG_STATUS1A_TOGSS_SNK2:
return fusb302_handle_togdone_snk(dev, togdone_result);
case FUSB_REG_STATUS1A_TOGSS_SRC1:
case FUSB_REG_STATUS1A_TOGSS_SRC2:
return fusb302_handle_togdone_src(dev, togdone_result);
case FUSB_REG_STATUS1A_TOGSS_AA:
/* doesn't support */
dev_err(dev, "AudioAccessory not supported\n");
fusb302_set_toggling(dev, chip->toggling_mode);
break;
default:
dev_err(dev, "TOGDONE with an invalid state: %d\n",
togdone_result);
fusb302_set_toggling(dev, chip->toggling_mode);
break;
}
return ret;
}
static int fusb302_pd_reset(struct udevice *dev)
{
return fusb302_i2c_set_bits(dev, FUSB_REG_RESET,
FUSB_REG_RESET_PD_RESET);
}
static int fusb302_pd_read_message(struct udevice *dev,
struct pd_message *msg)
{
int len, ret;
u8 crc[4];
u8 token;
/* first SOP token */
ret = fusb302_i2c_read(dev, FUSB_REG_FIFOS, &token);
if (ret)
return ret;
ret = fusb302_i2c_block_read(dev, FUSB_REG_FIFOS, 2,
(u8 *)&msg->header);
if (ret)
return ret;
len = pd_header_cnt_le(msg->header) * 4;
/* add 4 to length to include the CRC */
if (len > PD_MAX_PAYLOAD * 4) {
dev_err(dev, "PD message too long %d\n", len);
return -EINVAL;
}
if (len > 0) {
ret = fusb302_i2c_block_read(dev, FUSB_REG_FIFOS, len,
(u8 *)msg->payload);
if (ret)
return ret;
}
/* another 4 bytes to read CRC out */
ret = fusb302_i2c_block_read(dev, FUSB_REG_FIFOS, 4, crc);
if (ret)
return ret;
dev_dbg(dev, "Received PD message (header=0x%x len=%d)\n", msg->header, len);
/*
* Check if we've read off a GoodCRC message. If so then indicate to
* TCPM that the previous transmission has completed. Otherwise we pass
* the received message over to TCPM for processing.
*
* We make this check here instead of basing the reporting decision on
* the IRQ event type, as it's possible for the chip to report the
* TX_SUCCESS and GCRCSENT events out of order on occasion, so we need
* to check the message type to ensure correct reporting to TCPM.
*/
if (!len && (pd_header_type_le(msg->header) == PD_CTRL_GOOD_CRC))
tcpm_pd_transmit_complete(dev, TCPC_TX_SUCCESS);
else
tcpm_pd_receive(dev, msg);
return ret;
}
static void fusb302_interrupt_handle(struct udevice *dev)
{
struct fusb302_chip *chip = dev_get_priv(dev);
u8 interrupt;
u8 interrupta;
u8 interruptb;
u8 status0;
bool vbus_present;
bool comp_result;
bool intr_togdone;
bool intr_bc_lvl;
bool intr_comp_chng;
struct pd_message pd_msg;
int ret;
/* grab a snapshot of intr flags */
intr_togdone = chip->intr_togdone;
intr_bc_lvl = chip->intr_bc_lvl;
intr_comp_chng = chip->intr_comp_chng;
ret = fusb302_i2c_read(dev, FUSB_REG_INTERRUPT, &interrupt);
if (ret)
return;
ret = fusb302_i2c_read(dev, FUSB_REG_INTERRUPTA, &interrupta);
if (ret)
return;
ret = fusb302_i2c_read(dev, FUSB_REG_INTERRUPTB, &interruptb);
if (ret)
return;
ret = fusb302_i2c_read(dev, FUSB_REG_STATUS0, &status0);
if (ret)
return;
/*
* Since we are polling the IRQs, avoid printing messages when there
* no interrupts at all to avoid spamming the log.
*/
if (interrupt != 0 || interrupta != 0 || interruptb != 0)
dev_dbg(dev, "IRQ: 0x%02x, a: 0x%02x, b: 0x%02x, status0: 0x%02x\n",
interrupt, interrupta, interruptb, status0);
if (interrupt & FUSB_REG_INTERRUPT_VBUSOK) {
vbus_present = !!(status0 & FUSB_REG_STATUS0_VBUSOK);
dev_dbg(dev, "IRQ: VBUS_OK, vbus=%s\n",
vbus_present ? "On" : "Off");
if (vbus_present != chip->vbus_present) {
chip->vbus_present = vbus_present;
tcpm_vbus_change(dev);
}
}
if ((interrupta & FUSB_REG_INTERRUPTA_TOGDONE) && intr_togdone) {
dev_dbg(dev, "IRQ: TOGDONE\n");
ret = fusb302_handle_togdone(dev);
if (ret) {
dev_err(dev, "handle togdone error: %d\n", ret);
return;
}
}
if ((interrupt & FUSB_REG_INTERRUPT_BC_LVL) && intr_bc_lvl) {
dev_dbg(dev, "IRQ: BC_LVL, handler pending\n");
fusb302_bc_lvl_handler(dev);
}
if ((interrupt & FUSB_REG_INTERRUPT_COMP_CHNG) && intr_comp_chng) {
comp_result = !!(status0 & FUSB_REG_STATUS0_COMP);
dev_dbg(dev, "IRQ: COMP_CHNG, comp=%s\n",
comp_result ? "true" : "false");
if (comp_result) {
/* cc level > Rd_threshold, detach */
chip->cc1 = TYPEC_CC_OPEN;
chip->cc2 = TYPEC_CC_OPEN;
tcpm_cc_change(dev);
}
}
if (interrupt & FUSB_REG_INTERRUPT_COLLISION) {
dev_dbg(dev, "IRQ: PD collision\n");
tcpm_pd_transmit_complete(dev, TCPC_TX_FAILED);
}
if (interrupta & FUSB_REG_INTERRUPTA_RETRYFAIL) {
dev_dbg(dev, "IRQ: PD retry failed\n");
tcpm_pd_transmit_complete(dev, TCPC_TX_FAILED);
}
if (interrupta & FUSB_REG_INTERRUPTA_HARDSENT) {
dev_dbg(dev, "IRQ: PD hardreset sent\n");
ret = fusb302_pd_reset(dev);
if (ret) {
dev_err(dev, "cannot PD reset, ret=%d\n", ret);
return;
}
tcpm_pd_transmit_complete(dev, TCPC_TX_SUCCESS);
}
if (interrupta & FUSB_REG_INTERRUPTA_TX_SUCCESS) {
dev_dbg(dev, "IRQ: PD tx success\n");
ret = fusb302_pd_read_message(dev, &pd_msg);
if (ret) {
dev_err(dev, "cannot read in PD message, ret=%d\n", ret);
return;
}
}
if (interrupta & FUSB_REG_INTERRUPTA_HARDRESET) {
dev_dbg(dev, "IRQ: PD received hardreset\n");
ret = fusb302_pd_reset(dev);
if (ret) {
dev_err(dev, "cannot PD reset, ret=%d\n", ret);
return;
}
tcpm_pd_hard_reset(dev);
}
if (interruptb & FUSB_REG_INTERRUPTB_GCRCSENT) {
dev_dbg(dev, "IRQ: PD sent good CRC\n");
ret = fusb302_pd_read_message(dev, &pd_msg);
if (ret) {
dev_err(dev, "cannot read in PD message, ret=%d\n", ret);
return;
}
}
}
static void fusb302_poll_event(struct udevice *dev)
{
fusb302_interrupt_handle(dev);
}
static int fusb302_get_connector_node(struct udevice *dev, ofnode *connector_node)
{
*connector_node = dev_read_subnode(dev, "connector");
if (!ofnode_valid(*connector_node)) {
dev_err(dev, "'connector' node is not found\n");
return -ENODEV;
}
return 0;
}
static struct dm_tcpm_ops fusb302_ops = {
.get_connector_node = fusb302_get_connector_node,
.init = fusb302_init,
.get_vbus = fusb302_get_vbus,
.set_cc = fusb302_set_cc,
.get_cc = fusb302_get_cc,
.set_vconn = fusb302_set_vconn,
.set_vbus = fusb302_set_vbus,
.set_pd_rx = fusb302_set_pd_rx,
.set_roles = fusb302_set_roles,
.start_toggling = fusb302_start_toggling,
.pd_transmit = fusb302_pd_transmit,
.poll_event = fusb302_poll_event,
.enter_low_power_mode = fusb302_enter_low_power_mode,
};
static const struct udevice_id fusb302_ids[] = {
{ .compatible = "fcs,fusb302" },
{ }
};
U_BOOT_DRIVER(fusb302) = {
.name = "fusb302",
.id = UCLASS_TCPM,
.of_match = fusb302_ids,
.ops = &fusb302_ops,
.priv_auto = sizeof(struct fusb302_chip),
};