blob: bda02d062900ef5518b34e5aaaccab7261bcb849 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) ASPEED Technology Inc.
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <errno.h>
#include <ram.h>
#include <regmap.h>
#include <reset.h>
#include <asm/io.h>
#include <asm/arch/scu_ast2600.h>
#include <asm/arch/sdram_ast2600.h>
#include <asm/global_data.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <dt-bindings/clock/ast2600-clock.h>
#define DDR_PHY_TBL_CHG_ADDR 0xaeeddeea
#define DDR_PHY_TBL_END 0xaeededed
/**
* phyr030[18:16] - Ron PU (PHY side)
* phyr030[14:12] - Ron PD (PHY side)
* b'000 : disable
* b'001 : 240 ohm
* b'010 : 120 ohm
* b'011 : 80 ohm
* b'100 : 60 ohm
* b'101 : 48 ohm
* b'110 : 40 ohm
* b'111 : 34 ohm (default)
*/
#define PHY_RON ((0x7 << 16) | (0x7 << 12))
/**
* phyr030[10:8] - ODT configuration (PHY side)
* b'000 : ODT disabled
* b'001 : 240 ohm
* b'010 : 120 ohm
* b'011 : 80 ohm (default)
* b'100 : 60 ohm
* b'101 : 48 ohm
* b'110 : 40 ohm
* b'111 : 34 ohm
*/
#define PHY_ODT (0x3 << 8)
/**
* MR1[2:1] output driver impedance
* b'00 : 34 ohm (default)
* b'01 : 48 ohm
*/
#define DRAM_RON (0x0 << 1)
/**
* DRAM ODT - synchronous ODT mode
* RTT_WR: disable
* RTT_NOM = RTT_PARK
*
* MR1[10:8] RTT_NOM
* b'000 : RTT_NOM disable
* b'001 : 60 ohm
* b'010 : 120 ohm
* b'011 : 40 ohm
* b'100 : 240 ohm
* b'101 : 48 ohm (default)
* b'110 : 80 ohm
* b'111 : 34 ohm
*
* MR5[8:6] RTT_PARK
* b'000 : RTT_PARK disable
* b'001 : 60 ohm
* b'010 : 120 ohm
* b'011 : 40 ohm
* b'100 : 240 ohm
* b'101 : 48 ohm (default)
* b'110 : 80 ohm
* b'111 : 34 ohm
*
* MR2[11:9] RTT_WR
* b'000 : Dynamic ODT off (default)
* b'001 : 120 ohm
* b'010 : 240 ohm
* b'011 : Hi-Z
* b'100 : 80 ohm
*/
#define RTT_WR (0x0 << 9)
#define RTT_NOM (0x5 << 8)
#define RTT_PARK (0x5 << 6)
/**
* MR6[6] VrefDQ training range
* b'0 : range 1
* b'1 : range 2 (default)
*/
#define VREFDQ_RANGE_2 BIT(6)
/**
* Latency setting:
* AL = PL = 0 (hardware fixed setting)
* -> WL = AL + CWL + PL = CWL
* -> RL = AL + CL + PL = CL
*/
#define CONFIG_WL 9
#define CONFIG_RL 12
#define T_RDDATA_EN ((CONFIG_RL - 2) << 8)
#define T_PHY_WRLAT (CONFIG_WL - 2)
/* MR0 */
#define MR0_CL_12 (BIT(4) | BIT(2))
#define MR0_WR12_RTP6 BIT(9)
#define MR0_DLL_RESET BIT(8)
#define MR0_VAL (MR0_CL_12 | MR0_WR12_RTP6 | MR0_DLL_RESET)
/* MR1 */
#define MR1_VAL (0x0001 | RTT_NOM | DRAM_RON)
/* MR2 */
#define MR2_CWL_9 0
#define MR2_VAL (0x0000 | RTT_WR | MR2_CWL_9)
/* MR3 ~ MR6 */
#define MR3_VAL 0x0000
#define MR4_VAL 0x0000
#define MR5_VAL (0x0400 | RTT_PARK)
#define MR6_VAL 0x0400
/**
* The offset value applied to the DDR PHY write data eye training result
* to fine-tune the write DQ/DQS alignment
*/
#define WR_DATA_EYE_OFFSET (0x10 << 8)
#if defined(CONFIG_ASPEED_DDR4_800)
u32 ast2600_sdramphy_config[165] = {
0x1e6e0100, // start address
0x00000000, // phyr000
0x0c002062, // phyr004
0x1a7a0063, // phyr008
0x5a7a0063, // phyr00c
0x1a7a0063, // phyr010
0x1a7a0063, // phyr014
0x20000000, // phyr018
0x20000000, // phyr01c
0x20000000, // phyr020
0x20000000, // phyr024
0x00000008, // phyr028
0x00000000, // phyr02c
(PHY_RON | PHY_ODT), /* phyr030 */
0x00000000, // phyr034
0x00000000, // phyr038
0x20000000, // phyr03c
0x50506000, // phyr040
0x50505050, // phyr044
0x00002f07, // phyr048
0x00003080, // phyr04c
0x04000000, // phyr050
((MR3_VAL << 16) | MR2_VAL), /* phyr054 */
((MR0_VAL << 16) | MR1_VAL), /* phyr058 */
((MR5_VAL << 16) | MR4_VAL), /* phyr05c */
((0x0800 << 16) | MR6_VAL | VREFDQ_RANGE_2 | 0xe), /* phyr060 */
0x00000000, // phyr064
0x00180008, // phyr068
0x00e00400, // phyr06c
0x00140206, // phyr070
0x1d4c0000, // phyr074
(0x493e0100 | T_PHY_WRLAT), /* phyr078 */
0x08060404, // phyr07c
(0x90000000 | T_RDDATA_EN), /* phyr080 */
0x06420618, // phyr084
0x00001002, // phyr088
0x05701016, // phyr08c
0x10000000, // phyr090
0xaeeddeea, // change address
0x1e6e019c, // new address
0x20202020, // phyr09c
0x20202020, // phyr0a0
0x00002020, // phyr0a4
0x00002020, // phyr0a8
0x00000001, // phyr0ac
0xaeeddeea, // change address
0x1e6e01cc, // new address
0x01010101, // phyr0cc
0x01010101, // phyr0d0
0x80808080, // phyr0d4
0x80808080, // phyr0d8
0xaeeddeea, // change address
0x1e6e0288, // new address
0x80808080, // phyr188
0x80808080, // phyr18c
0x80808080, // phyr190
0x80808080, // phyr194
0xaeeddeea, // change address
0x1e6e02f8, // new address
0x90909090, // phyr1f8
0x88888888, // phyr1fc
0xaeeddeea, // change address
0x1e6e0300, // new address
0x00000000, // phyr200
0xaeeddeea, // change address
0x1e6e0194, // new address
0x80118260, // phyr094
0xaeeddeea, // change address
0x1e6e019c, // new address
0x20202020, // phyr09c
0x20202020, // phyr0a0
0x00002020, // phyr0a4
0x00000000, /* phyr0a8 */
0x00000001, // phyr0ac
0xaeeddeea, // change address
0x1e6e0318, // new address
0x09222719, // phyr218
0x00aa4403, // phyr21c
0xaeeddeea, // change address
0x1e6e0198, // new address
0x08060000, // phyr098
0xaeeddeea, // change address
0x1e6e01b0, // new address
0x00000000, // phyr0b0
0x00000000, // phyr0b4
0x00000000, // phyr0b8
0x00000000, // phyr0bc
0x00000000, // phyr0c0
0x00000000, // phyr0c4
0x000aff2c, // phyr0c8
0xaeeddeea, // change address
0x1e6e01dc, // new address
0x00080000, // phyr0dc
0x00000000, // phyr0e0
0xaa55aa55, // phyr0e4
0x55aa55aa, // phyr0e8
0xaaaa5555, // phyr0ec
0x5555aaaa, // phyr0f0
0xaa55aa55, // phyr0f4
0x55aa55aa, // phyr0f8
0xaaaa5555, // phyr0fc
0x5555aaaa, // phyr100
0xaa55aa55, // phyr104
0x55aa55aa, // phyr108
0xaaaa5555, // phyr10c
0x5555aaaa, // phyr110
0xaa55aa55, // phyr114
0x55aa55aa, // phyr118
0xaaaa5555, // phyr11c
0x5555aaaa, // phyr120
0x20202020, // phyr124
0x20202020, // phyr128
0x20202020, // phyr12c
0x20202020, // phyr130
0x20202020, // phyr134
0x20202020, // phyr138
0x20202020, // phyr13c
0x20202020, // phyr140
0x20202020, // phyr144
0x20202020, // phyr148
0x20202020, // phyr14c
0x20202020, // phyr150
0x20202020, // phyr154
0x20202020, // phyr158
0x20202020, // phyr15c
0x20202020, // phyr160
0x20202020, // phyr164
0x20202020, // phyr168
0x20202020, // phyr16c
0x20202020, // phyr170
0xaeeddeea, // change address
0x1e6e0298, // new address
0x20200000, /* phyr198 */
0x20202020, // phyr19c
0x20202020, // phyr1a0
0x20202020, // phyr1a4
0x20202020, // phyr1a8
0x20202020, // phyr1ac
0x20202020, // phyr1b0
0x20202020, // phyr1b4
0x20202020, // phyr1b8
0x20202020, // phyr1bc
0x20202020, // phyr1c0
0x20202020, // phyr1c4
0x20202020, // phyr1c8
0x20202020, // phyr1cc
0x20202020, // phyr1d0
0x20202020, // phyr1d4
0x20202020, // phyr1d8
0x20202020, // phyr1dc
0x20202020, // phyr1e0
0x20202020, // phyr1e4
0x00002020, // phyr1e8
0xaeeddeea, // change address
0x1e6e0304, // new address
(0x00000001 | WR_DATA_EYE_OFFSET), /* phyr204 */
0xaeeddeea, // change address
0x1e6e027c, // new address
0x4e400000, // phyr17c
0x59595959, // phyr180
0x40404040, // phyr184
0xaeeddeea, // change address
0x1e6e02f4, // new address
0x00000059, // phyr1f4
0xaeededed, // end
};
#else
u32 ast2600_sdramphy_config[165] = {
0x1e6e0100, // start address
0x00000000, // phyr000
0x0c002062, // phyr004
0x1a7a0063, // phyr008
0x5a7a0063, // phyr00c
0x1a7a0063, // phyr010
0x1a7a0063, // phyr014
0x20000000, // phyr018
0x20000000, // phyr01c
0x20000000, // phyr020
0x20000000, // phyr024
0x00000008, // phyr028
0x00000000, // phyr02c
(PHY_RON | PHY_ODT), /* phyr030 */
0x00000000, // phyr034
0x00000000, // phyr038
0x20000000, // phyr03c
0x50506000, // phyr040
0x50505050, // phyr044
0x00002f07, // phyr048
0x00003080, // phyr04c
0x04000000, // phyr050
((MR3_VAL << 16) | MR2_VAL), /* phyr054 */
((MR0_VAL << 16) | MR1_VAL), /* phyr058 */
((MR5_VAL << 16) | MR4_VAL), /* phyr05c */
((0x0800 << 16) | MR6_VAL | VREFDQ_RANGE_2 | 0xe), /* phyr060 */
0x00000000, // phyr064
0x00180008, // phyr068
0x00e00400, // phyr06c
0x00140206, // phyr070
0x1d4c0000, // phyr074
(0x493e0100 | T_PHY_WRLAT), /* phyr078 */
0x08060404, // phyr07c
(0x90000000 | T_RDDATA_EN), /* phyr080 */
0x06420c30, // phyr084
0x00001002, // phyr088
0x05701016, // phyr08c
0x10000000, // phyr090
0xaeeddeea, // change address
0x1e6e019c, // new address
0x20202020, // phyr09c
0x20202020, // phyr0a0
0x00002020, // phyr0a4
0x00002020, // phyr0a8
0x00000001, // phyr0ac
0xaeeddeea, // change address
0x1e6e01cc, // new address
0x01010101, // phyr0cc
0x01010101, // phyr0d0
0x80808080, // phyr0d4
0x80808080, // phyr0d8
0xaeeddeea, // change address
0x1e6e0288, // new address
0x80808080, // phyr188
0x80808080, // phyr18c
0x80808080, // phyr190
0x80808080, // phyr194
0xaeeddeea, // change address
0x1e6e02f8, // new address
0x90909090, // phyr1f8
0x88888888, // phyr1fc
0xaeeddeea, // change address
0x1e6e0300, // new address
0x00000000, // phyr200
0xaeeddeea, // change address
0x1e6e0194, // new address
0x801112e0, // phyr094
0xaeeddeea, // change address
0x1e6e019c, // new address
0x20202020, // phyr09c
0x20202020, // phyr0a0
0x00002020, // phyr0a4
0x00000000, /* phyr0a8 */
0x00000001, // phyr0ac
0xaeeddeea, // change address
0x1e6e0318, // new address
0x09222719, // phyr218
0x00aa4403, // phyr21c
0xaeeddeea, // change address
0x1e6e0198, // new address
0x08060000, // phyr098
0xaeeddeea, // change address
0x1e6e01b0, // new address
0x00000000, // phyr0b0
0x00000000, // phyr0b4
0x00000000, // phyr0b8
0x00000000, // phyr0bc
0x00000000, // phyr0c0 - ori
0x00000000, // phyr0c4
0x000aff2c, // phyr0c8
0xaeeddeea, // change address
0x1e6e01dc, // new address
0x00080000, // phyr0dc
0x00000000, // phyr0e0
0xaa55aa55, // phyr0e4
0x55aa55aa, // phyr0e8
0xaaaa5555, // phyr0ec
0x5555aaaa, // phyr0f0
0xaa55aa55, // phyr0f4
0x55aa55aa, // phyr0f8
0xaaaa5555, // phyr0fc
0x5555aaaa, // phyr100
0xaa55aa55, // phyr104
0x55aa55aa, // phyr108
0xaaaa5555, // phyr10c
0x5555aaaa, // phyr110
0xaa55aa55, // phyr114
0x55aa55aa, // phyr118
0xaaaa5555, // phyr11c
0x5555aaaa, // phyr120
0x20202020, // phyr124
0x20202020, // phyr128
0x20202020, // phyr12c
0x20202020, // phyr130
0x20202020, // phyr134
0x20202020, // phyr138
0x20202020, // phyr13c
0x20202020, // phyr140
0x20202020, // phyr144
0x20202020, // phyr148
0x20202020, // phyr14c
0x20202020, // phyr150
0x20202020, // phyr154
0x20202020, // phyr158
0x20202020, // phyr15c
0x20202020, // phyr160
0x20202020, // phyr164
0x20202020, // phyr168
0x20202020, // phyr16c
0x20202020, // phyr170
0xaeeddeea, // change address
0x1e6e0298, // new address
0x20200000, /* phyr198 */
0x20202020, // phyr19c
0x20202020, // phyr1a0
0x20202020, // phyr1a4
0x20202020, // phyr1a8
0x20202020, // phyr1ac
0x20202020, // phyr1b0
0x20202020, // phyr1b4
0x20202020, // phyr1b8
0x20202020, // phyr1bc
0x20202020, // phyr1c0
0x20202020, // phyr1c4
0x20202020, // phyr1c8
0x20202020, // phyr1cc
0x20202020, // phyr1d0
0x20202020, // phyr1d4
0x20202020, // phyr1d8
0x20202020, // phyr1dc
0x20202020, // phyr1e0
0x20202020, // phyr1e4
0x00002020, // phyr1e8
0xaeeddeea, // change address
0x1e6e0304, // new address
(0x00000001 | WR_DATA_EYE_OFFSET), /* phyr204 */
0xaeeddeea, // change address
0x1e6e027c, // new address
0x4e400000, // phyr17c
0x59595959, // phyr180
0x40404040, // phyr184
0xaeeddeea, // change address
0x1e6e02f4, // new address
0x00000059, // phyr1f4
0xaeededed, // end
};
#endif
/* MPLL configuration */
#define SCU_MPLL_FREQ_400M 0x0008405F
#define SCU_MPLL_EXT_400M 0x0000002F
#define SCU_MPLL_FREQ_333M 0x00488299
#define SCU_MPLL_EXT_333M 0x0000014C
#define SCU_MPLL_FREQ_200M 0x0078007F
#define SCU_MPLL_EXT_200M 0x0000003F
#define SCU_MPLL_FREQ_100M 0x0078003F
#define SCU_MPLL_EXT_100M 0x0000001F
#if defined(CONFIG_ASPEED_DDR4_1600)
#define SCU_MPLL_FREQ_CFG SCU_MPLL_FREQ_400M
#define SCU_MPLL_EXT_CFG SCU_MPLL_EXT_400M
#elif defined(CONFIG_ASPEED_DDR4_1333)
#define SCU_MPLL_FREQ_CFG SCU_MPLL_FREQ_333M
#define SCU_MPLL_EXT_CFG SCU_MPLL_EXT_333M
#elif defined(CONFIG_ASPEED_DDR4_800)
#define SCU_MPLL_FREQ_CFG SCU_MPLL_FREQ_200M
#define SCU_MPLL_EXT_CFG SCU_MPLL_EXT_200M
#elif defined(CONFIG_ASPEED_DDR4_400)
#define SCU_MPLL_FREQ_CFG SCU_MPLL_FREQ_100M
#define SCU_MPLL_EXT_CFG SCU_MPLL_EXT_100M
#else
#error "undefined DDR4 target rate\n"
#endif
/*
* AC timing and SDRAM mode register setting
* for real chip are derived from the model GDDR4-1600
*/
#define DDR4_MR01_MODE ((MR1_VAL << 16) | MR0_VAL)
#define DDR4_MR23_MODE ((MR3_VAL << 16) | MR2_VAL)
#define DDR4_MR45_MODE ((MR5_VAL << 16) | MR4_VAL)
#define DDR4_MR6_MODE MR6_VAL
#define DDR4_TRFC_1600 0x467299f1
#define DDR4_TRFC_1333 0x3a5f80c9
#define DDR4_TRFC_800 0x23394c78
#define DDR4_TRFC_400 0x111c263c
#if defined(CONFIG_ASPEED_DDR4_1600)
#define DDR4_TRFC DDR4_TRFC_1600
#define DDR4_PHY_TRAIN_TRFC 0xc30
#elif defined(CONFIG_ASPEED_DDR4_1333)
#define DDR4_TRFC DDR4_TRFC_1333
#define DDR4_PHY_TRAIN_TRFC 0xa25
#elif defined(CONFIG_ASPEED_DDR4_800)
#define DDR4_TRFC DDR4_TRFC_800
#define DDR4_PHY_TRAIN_TRFC 0x618
#elif defined(CONFIG_ASPEED_DDR4_400)
#define DDR4_TRFC DDR4_TRFC_400
#define DDR4_PHY_TRAIN_TRFC 0x30c
#else
#error "undefined tRFC setting"
#endif
/* supported SDRAM size */
#define SDRAM_SIZE_1KB (1024U)
#define SDRAM_SIZE_1MB (SDRAM_SIZE_1KB * SDRAM_SIZE_1KB)
#define SDRAM_MIN_SIZE (256 * SDRAM_SIZE_1MB)
#define SDRAM_MAX_SIZE (2048 * SDRAM_SIZE_1MB)
DECLARE_GLOBAL_DATA_PTR;
static const u32 ddr4_ac_timing[4] = {
0x040e0307, 0x0f4711f1, 0x0e060304, 0x00001240 };
static const u32 ddr_max_grant_params[4] = {
0x44444444, 0x44444444, 0x44444444, 0x44444444 };
struct dram_info {
struct ram_info info;
struct clk ddr_clk;
struct ast2600_sdrammc_regs *regs;
struct ast2600_scu *scu;
struct ast2600_ddr_phy *phy;
void __iomem *phy_setting;
void __iomem *phy_status;
ulong clock_rate;
};
static void ast2600_sdramphy_kick_training(struct dram_info *info)
{
u32 data;
struct ast2600_sdrammc_regs *regs = info->regs;
writel(SDRAM_PHYCTRL0_NRST, &regs->phy_ctrl[0]);
udelay(5);
writel(SDRAM_PHYCTRL0_NRST | SDRAM_PHYCTRL0_INIT, &regs->phy_ctrl[0]);
udelay(1000);
while (1) {
data = readl(&regs->phy_ctrl[0]) & SDRAM_PHYCTRL0_INIT;
if (data == 0)
break;
}
}
/**
* @brief load DDR-PHY configurations table to the PHY registers
* @param[in] p_tbl - pointer to the configuration table
* @param[in] info - pointer to the DRAM info struct
*
* There are two sets of MRS (Mode Registers) configuration in ast2600 memory
* system: one is in the SDRAM MC (memory controller) which is used in run
* time, and the other is in the DDR-PHY IP which is used during DDR-PHY
* training.
*/
static void ast2600_sdramphy_init(u32 *p_tbl, struct dram_info *info)
{
u32 reg_base = (u32)info->phy_setting;
u32 addr = p_tbl[0];
u32 data;
int i = 1;
writel(0, &info->regs->phy_ctrl[0]);
udelay(10);
while (1) {
if (addr < reg_base) {
debug("invalid DDR-PHY addr: 0x%08x\n", addr);
break;
}
data = p_tbl[i++];
if (data == DDR_PHY_TBL_END) {
break;
} else if (data == DDR_PHY_TBL_CHG_ADDR) {
addr = p_tbl[i++];
} else {
writel(data, addr);
addr += 4;
}
}
data = readl(info->phy_setting + 0x84) & ~GENMASK(16, 0);
data |= DDR4_PHY_TRAIN_TRFC;
writel(data, info->phy_setting + 0x84);
}
static int ast2600_sdramphy_check_status(struct dram_info *info)
{
u32 value, tmp;
u32 reg_base = (u32)info->phy_status;
int need_retrain = 0;
debug("\nSDRAM PHY training report:\n");
/* training status */
value = readl(reg_base + 0x00);
debug("rO_DDRPHY_reg offset 0x00 = 0x%08x\n", value);
if (value & BIT(3))
debug("\tinitial PVT calibration fail\n");
if (value & BIT(5))
debug("\truntime calibration fail\n");
/* PU & PD */
value = readl(reg_base + 0x30);
debug("rO_DDRPHY_reg offset 0x30 = 0x%08x\n", value);
debug(" PU = 0x%02x\n", value & 0xff);
debug(" PD = 0x%02x\n", (value >> 16) & 0xff);
/* read eye window */
value = readl(reg_base + 0x68);
if (0 == (value & GENMASK(7, 0)))
need_retrain = 1;
debug("rO_DDRPHY_reg offset 0x68 = 0x%08x\n", value);
debug(" rising edge of read data eye training pass window\n");
tmp = (((value & GENMASK(7, 0)) >> 0) * 100) / 255;
debug(" B0:%d%%\n", tmp);
tmp = (((value & GENMASK(15, 8)) >> 8) * 100) / 255;
debug(" B1:%d%%\n", tmp);
value = readl(reg_base + 0xC8);
debug("rO_DDRPHY_reg offset 0xC8 = 0x%08x\n", value);
debug(" falling edge of read data eye training pass window\n");
tmp = (((value & GENMASK(7, 0)) >> 0) * 100) / 255;
debug(" B0:%d%%\n", tmp);
tmp = (((value & GENMASK(15, 8)) >> 8) * 100) / 255;
debug(" B1:%d%%\n", tmp);
/* write eye window */
value = readl(reg_base + 0x7c);
if (0 == (value & GENMASK(7, 0)))
need_retrain = 1;
debug("rO_DDRPHY_reg offset 0x7C = 0x%08x\n", value);
debug(" rising edge of write data eye training pass window\n");
tmp = (((value & GENMASK(7, 0)) >> 0) * 100) / 255;
debug(" B0:%d%%\n", tmp);
tmp = (((value & GENMASK(15, 8)) >> 8) * 100) / 255;
debug(" B1:%d%%\n", tmp);
/* read Vref training result */
value = readl(reg_base + 0x88);
debug("rO_DDRPHY_reg offset 0x88 = 0x%08x\n", value);
debug(" read Vref training result\n");
tmp = (((value & GENMASK(7, 0)) >> 0) * 100) / 127;
debug(" B0:%d%%\n", tmp);
tmp = (((value & GENMASK(15, 8)) >> 8) * 100) / 127;
debug(" B1:%d%%\n", tmp);
/* write Vref training result */
value = readl(reg_base + 0x90);
debug("rO_DDRPHY_reg offset 0x90 = 0x%08x\n", value);
/* gate train */
value = readl(reg_base + 0x50);
if ((0 == (value & GENMASK(15, 0))) ||
(0 == (value & GENMASK(31, 16)))) {
need_retrain = 1;
}
debug("rO_DDRPHY_reg offset 0x50 = 0x%08x\n", value);
return need_retrain;
}
#ifndef CONFIG_ASPEED_BYPASS_SELFTEST
#define MC_TEST_PATTERN_N 8
static u32 as2600_sdrammc_test_pattern[MC_TEST_PATTERN_N] = {
0xcc33cc33, 0xff00ff00, 0xaa55aa55, 0x88778877,
0x92cc4d6e, 0x543d3cde, 0xf1e843c7, 0x7c61d253 };
#define TIMEOUT_DRAM 5000000
int ast2600_sdrammc_dg_test(struct dram_info *info, unsigned int datagen, u32 mode)
{
unsigned int data;
unsigned int timeout = 0;
struct ast2600_sdrammc_regs *regs = info->regs;
writel(0, &regs->ecc_test_ctrl);
if (mode == 0)
writel(0x00000085 | (datagen << 3), &regs->ecc_test_ctrl);
else
writel(0x000000C1 | (datagen << 3), &regs->ecc_test_ctrl);
do {
data = readl(&regs->ecc_test_ctrl) & GENMASK(13, 12);
if (data & BIT(13))
return 0;
if (++timeout > TIMEOUT_DRAM) {
debug("Timeout!!\n");
writel(0, &regs->ecc_test_ctrl);
return -1;
}
} while (!data);
writel(0, &regs->ecc_test_ctrl);
return 0;
}
int ast2600_sdrammc_cbr_test(struct dram_info *info)
{
u32 i;
struct ast2600_sdrammc_regs *regs = info->regs;
clrsetbits_le32(&regs->test_addr, GENMASK(30, 4), 0x7ffff0);
/* single */
for (i = 0; i < 8; i++)
if (ast2600_sdrammc_dg_test(info, i, 0))
return -1;
/* burst */
for (i = 0; i < 8; i++)
if (ast2600_sdrammc_dg_test(info, i, i))
return -1;
return 0;
}
static int ast2600_sdrammc_test(struct dram_info *info)
{
struct ast2600_sdrammc_regs *regs = info->regs;
u32 pass_cnt = 0;
u32 fail_cnt = 0;
u32 target_cnt = 2;
u32 test_cnt = 0;
u32 pattern;
u32 i = 0;
bool finish = false;
debug("sdram mc test:\n");
while (!finish) {
pattern = as2600_sdrammc_test_pattern[i++];
i = i % MC_TEST_PATTERN_N;
debug(" pattern = %08X : ", pattern);
writel(pattern, &regs->test_init_val);
if (ast2600_sdrammc_cbr_test(info)) {
debug("fail\n");
fail_cnt++;
} else {
debug("pass\n");
pass_cnt++;
}
if (++test_cnt == target_cnt)
finish = true;
}
debug("statistics: pass/fail/total:%d/%d/%d\n", pass_cnt, fail_cnt,
target_cnt);
return fail_cnt;
}
#endif
/*
* scu500[14:13]
* 2b'00: VGA memory size = 16MB
* 2b'01: VGA memory size = 16MB
* 2b'10: VGA memory size = 32MB
* 2b'11: VGA memory size = 64MB
*
* mcr04[3:2]
* 2b'00: VGA memory size = 8MB
* 2b'01: VGA memory size = 16MB
* 2b'10: VGA memory size = 32MB
* 2b'11: VGA memory size = 64MB
*/
static size_t ast2600_sdrammc_get_vga_mem_size(struct dram_info *info)
{
u32 vga_hwconf;
size_t vga_mem_size_base = 8 * 1024 * 1024;
vga_hwconf =
(readl(&info->scu->hwstrap1) & SCU_HWSTRAP1_VGA_MEM_MASK) >>
SCU_HWSTRAP1_VGA_MEM_SHIFT;
if (vga_hwconf == 0) {
vga_hwconf = 1;
writel(vga_hwconf << SCU_HWSTRAP1_VGA_MEM_SHIFT,
&info->scu->hwstrap1);
}
clrsetbits_le32(&info->regs->config, SDRAM_CONF_VGA_SIZE_MASK,
((vga_hwconf << SDRAM_CONF_VGA_SIZE_SHIFT) &
SDRAM_CONF_VGA_SIZE_MASK));
/* no need to reserve VGA memory if efuse[VGA disable] is set */
if (readl(&info->scu->efuse) & SCU_EFUSE_DIS_VGA)
return 0;
return vga_mem_size_base << vga_hwconf;
}
/*
* Find out RAM size and save it in dram_info
*
* The procedure is taken from Aspeed SDK
*/
static void ast2600_sdrammc_calc_size(struct dram_info *info)
{
/* The controller supports 256/512/1024/2048 MB ram */
size_t ram_size = SDRAM_MIN_SIZE;
const int write_test_offset = 0x100000;
u32 test_pattern = 0xdeadbeef;
u32 cap_param = SDRAM_CONF_CAP_2048M;
u32 refresh_timing_param = DDR4_TRFC;
const u32 write_addr_base = CONFIG_SYS_SDRAM_BASE + write_test_offset;
for (ram_size = SDRAM_MAX_SIZE; ram_size > SDRAM_MIN_SIZE;
ram_size >>= 1) {
writel(test_pattern, write_addr_base + (ram_size >> 1));
test_pattern = (test_pattern >> 4) | (test_pattern << 28);
}
/* One last write to overwrite all wrapped values */
writel(test_pattern, write_addr_base);
/* Reset the pattern and see which value was really written */
test_pattern = 0xdeadbeef;
for (ram_size = SDRAM_MAX_SIZE; ram_size > SDRAM_MIN_SIZE;
ram_size >>= 1) {
if (readl(write_addr_base + (ram_size >> 1)) == test_pattern)
break;
--cap_param;
refresh_timing_param >>= 8;
test_pattern = (test_pattern >> 4) | (test_pattern << 28);
}
clrsetbits_le32(&info->regs->ac_timing[1],
(SDRAM_AC_TRFC_MASK << SDRAM_AC_TRFC_SHIFT),
((refresh_timing_param & SDRAM_AC_TRFC_MASK)
<< SDRAM_AC_TRFC_SHIFT));
info->info.base = CONFIG_SYS_SDRAM_BASE;
info->info.size = ram_size - ast2600_sdrammc_get_vga_mem_size(info);
clrsetbits_le32(&info->regs->config, SDRAM_CONF_CAP_MASK,
((cap_param << SDRAM_CONF_CAP_SHIFT) & SDRAM_CONF_CAP_MASK));
}
static int ast2600_sdrammc_init_ddr4(struct dram_info *info)
{
const u32 power_ctrl = MCR34_CKE_EN | MCR34_AUTOPWRDN_EN |
MCR34_MREQ_BYPASS_DIS | MCR34_RESETN_DIS |
MCR34_ODT_EN | MCR34_ODT_AUTO_ON |
(0x1 << MCR34_ODT_EXT_SHIFT);
/* init SDRAM-PHY only on real chip */
ast2600_sdramphy_init(ast2600_sdramphy_config, info);
writel((MCR34_CKE_EN | MCR34_MREQI_DIS | MCR34_RESETN_DIS),
&info->regs->power_ctrl);
udelay(5);
ast2600_sdramphy_kick_training(info);
udelay(500);
writel(SDRAM_RESET_DLL_ZQCL_EN, &info->regs->refresh_timing);
writel(MCR30_SET_MR(3), &info->regs->mode_setting_control);
writel(MCR30_SET_MR(6), &info->regs->mode_setting_control);
writel(MCR30_SET_MR(5), &info->regs->mode_setting_control);
writel(MCR30_SET_MR(4), &info->regs->mode_setting_control);
writel(MCR30_SET_MR(2), &info->regs->mode_setting_control);
writel(MCR30_SET_MR(1), &info->regs->mode_setting_control);
writel(MCR30_SET_MR(0) | MCR30_RESET_DLL_DELAY_EN,
&info->regs->mode_setting_control);
writel(SDRAM_REFRESH_EN | SDRAM_RESET_DLL_ZQCL_EN |
(0x5f << SDRAM_REFRESH_PERIOD_SHIFT),
&info->regs->refresh_timing);
/* wait self-refresh idle */
while (readl(&info->regs->power_ctrl) &
MCR34_SELF_REFRESH_STATUS_MASK)
;
writel(SDRAM_REFRESH_EN | SDRAM_LOW_PRI_REFRESH_EN |
SDRAM_REFRESH_ZQCS_EN |
(0x5f << SDRAM_REFRESH_PERIOD_SHIFT) |
(0x42aa << SDRAM_REFRESH_PERIOD_ZQCS_SHIFT),
&info->regs->refresh_timing);
writel(power_ctrl, &info->regs->power_ctrl);
udelay(500);
return 0;
}
static void ast2600_sdrammc_unlock(struct dram_info *info)
{
writel(SDRAM_UNLOCK_KEY, &info->regs->protection_key);
while (!readl(&info->regs->protection_key))
;
}
static void ast2600_sdrammc_lock(struct dram_info *info)
{
writel(~SDRAM_UNLOCK_KEY, &info->regs->protection_key);
while (readl(&info->regs->protection_key))
;
}
static void ast2600_sdrammc_common_init(struct ast2600_sdrammc_regs *regs)
{
int i;
writel(MCR34_MREQI_DIS | MCR34_RESETN_DIS, &regs->power_ctrl);
writel(SDRAM_VIDEO_UNLOCK_KEY, &regs->gm_protection_key);
writel(0x10 << MCR38_RW_MAX_GRANT_CNT_RQ_SHIFT,
&regs->arbitration_ctrl);
writel(0xFFBBFFF4, &regs->req_limit_mask);
for (i = 0; i < ARRAY_SIZE(ddr_max_grant_params); ++i)
writel(ddr_max_grant_params[i], &regs->max_grant_len[i]);
writel(MCR50_RESET_ALL_INTR, &regs->intr_ctrl);
writel(0x07FFFFFF, &regs->ecc_range_ctrl);
writel(0, &regs->ecc_test_ctrl);
writel(0x80000001, &regs->test_addr);
writel(0, &regs->test_fail_dq_bit);
writel(0, &regs->test_init_val);
writel(0xFFFFFFFF, &regs->req_input_ctrl);
writel(0, &regs->req_high_pri_ctrl);
udelay(600);
#ifdef CONFIG_ASPEED_DDR4_DUALX8
writel(0x37, &regs->config);
#else
writel(0x17, &regs->config);
#endif
/* load controller setting */
for (i = 0; i < ARRAY_SIZE(ddr4_ac_timing); ++i)
writel(ddr4_ac_timing[i], &regs->ac_timing[i]);
writel(DDR4_MR01_MODE, &regs->mr01_mode_setting);
writel(DDR4_MR23_MODE, &regs->mr23_mode_setting);
writel(DDR4_MR45_MODE, &regs->mr45_mode_setting);
writel(DDR4_MR6_MODE, &regs->mr6_mode_setting);
}
/*
* Update size info according to the ECC HW setting
*
* Assume SDRAM has been initialized by SPL or the host. To get the RAM size, we
* don't need to calculate the ECC size again but read from MCR04 and derive the
* size from its value.
*/
static void ast2600_sdrammc_update_size(struct dram_info *info)
{
struct ast2600_sdrammc_regs *regs = info->regs;
u32 conf = readl(&regs->config);
u32 cap_param;
size_t ram_size = SDRAM_MAX_SIZE;
size_t hw_size;
cap_param = (conf & SDRAM_CONF_CAP_MASK) >> SDRAM_CONF_CAP_SHIFT;
switch (cap_param) {
case SDRAM_CONF_CAP_2048M:
ram_size = 2048 * SDRAM_SIZE_1MB;
break;
case SDRAM_CONF_CAP_1024M:
ram_size = 1024 * SDRAM_SIZE_1MB;
break;
case SDRAM_CONF_CAP_512M:
ram_size = 512 * SDRAM_SIZE_1MB;
break;
case SDRAM_CONF_CAP_256M:
ram_size = 256 * SDRAM_SIZE_1MB;
break;
}
info->info.base = CONFIG_SYS_SDRAM_BASE;
info->info.size = ram_size - ast2600_sdrammc_get_vga_mem_size(info);
if (0 == (conf & SDRAM_CONF_ECC_SETUP))
return;
hw_size = readl(&regs->ecc_range_ctrl) & SDRAM_ECC_RANGE_ADDR_MASK;
hw_size += (1 << SDRAM_ECC_RANGE_ADDR_SHIFT);
info->info.size = hw_size;
}
#ifdef CONFIG_ASPEED_ECC
static void ast2600_sdrammc_ecc_enable(struct dram_info *info)
{
struct ast2600_sdrammc_regs *regs = info->regs;
size_t conf_size;
u32 reg;
conf_size = CONFIG_ASPEED_ECC_SIZE * SDRAM_SIZE_1MB;
if (conf_size > info->info.size) {
printf("warning: ECC configured %dMB but actual size is %dMB\n",
CONFIG_ASPEED_ECC_SIZE,
info->info.size / SDRAM_SIZE_1MB);
conf_size = info->info.size;
} else if (conf_size == 0) {
conf_size = info->info.size;
}
info->info.size = (((conf_size / 9) * 8) >> 20) << 20;
writel(((info->info.size >> 20) - 1) << 20, &regs->ecc_range_ctrl);
reg = readl(&regs->config) | SDRAM_CONF_ECC_SETUP;
writel(reg, &regs->config);
writel(0, &regs->test_init_val);
writel(0x80000001, &regs->test_addr);
writel(0x221, &regs->ecc_test_ctrl);
while (0 == (readl(&regs->ecc_test_ctrl) & BIT(12)))
;
writel(0, &regs->ecc_test_ctrl);
writel(BIT(31), &regs->intr_ctrl);
writel(0, &regs->intr_ctrl);
}
#endif
static int ast2600_sdrammc_probe(struct udevice *dev)
{
int ret;
u32 reg;
struct dram_info *priv = (struct dram_info *)dev_get_priv(dev);
struct ast2600_sdrammc_regs *regs = priv->regs;
struct udevice *clk_dev;
/* find SCU base address from clock device */
ret = uclass_get_device_by_driver(UCLASS_CLK,
DM_DRIVER_GET(aspeed_ast2600_scu), &clk_dev);
if (ret) {
debug("clock device not defined\n");
return ret;
}
priv->scu = devfdt_get_addr_ptr(clk_dev);
if (IS_ERR(priv->scu)) {
debug("%s(): can't get SCU\n", __func__);
return PTR_ERR(priv->scu);
}
if (readl(&priv->scu->dram_hdshk) & SCU_DRAM_HDSHK_RDY) {
printf("already initialized, ");
ast2600_sdrammc_update_size(priv);
return 0;
}
reg = readl(&priv->scu->mpll);
reg &= ~(SCU_PLL_BYPASS | SCU_PLL_DIV_MASK |
SCU_PLL_DENUM_MASK | SCU_PLL_NUM_MASK);
reg |= (SCU_PLL_RST | SCU_PLL_OFF | SCU_MPLL_FREQ_CFG);
writel(reg, &priv->scu->mpll);
writel(SCU_MPLL_EXT_CFG, &priv->scu->mpll_ext);
udelay(100);
reg &= ~(SCU_PLL_RST | SCU_PLL_OFF);
writel(reg, &priv->scu->mpll);
while ((readl(&priv->scu->mpll_ext) & BIT(31)) == 0)
;
ast2600_sdrammc_unlock(priv);
ast2600_sdrammc_common_init(regs);
L_ast2600_sdramphy_train:
ast2600_sdrammc_init_ddr4(priv);
if (ast2600_sdramphy_check_status(priv) != 0) {
printf("DDR4 PHY training fail, retrain\n");
goto L_ast2600_sdramphy_train;
}
ast2600_sdrammc_calc_size(priv);
#ifndef CONFIG_ASPEED_BYPASS_SELFTEST
if (ast2600_sdrammc_test(priv) != 0) {
printf("%s: DDR4 init fail\n", __func__);
return -EINVAL;
}
#endif
#ifdef CONFIG_ASPEED_ECC
ast2600_sdrammc_ecc_enable(priv);
#endif
writel(readl(&priv->scu->dram_hdshk) | SCU_DRAM_HDSHK_RDY,
&priv->scu->dram_hdshk);
clrbits_le32(&regs->intr_ctrl, MCR50_RESET_ALL_INTR);
ast2600_sdrammc_lock(priv);
return 0;
}
static int ast2600_sdrammc_of_to_plat(struct udevice *dev)
{
struct dram_info *priv = dev_get_priv(dev);
priv->regs = (void *)(uintptr_t)devfdt_get_addr_index(dev, 0);
priv->phy_setting = (void *)(uintptr_t)devfdt_get_addr_index(dev, 1);
priv->phy_status = (void *)(uintptr_t)devfdt_get_addr_index(dev, 2);
priv->clock_rate = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev),
"clock-frequency", 0);
if (!priv->clock_rate) {
debug("DDR Clock Rate not defined\n");
return -EINVAL;
}
return 0;
}
static int ast2600_sdrammc_get_info(struct udevice *dev, struct ram_info *info)
{
struct dram_info *priv = dev_get_priv(dev);
*info = priv->info;
return 0;
}
static struct ram_ops ast2600_sdrammc_ops = {
.get_info = ast2600_sdrammc_get_info,
};
static const struct udevice_id ast2600_sdrammc_ids[] = {
{ .compatible = "aspeed,ast2600-sdrammc" },
{ }
};
U_BOOT_DRIVER(sdrammc_ast2600) = {
.name = "aspeed_ast2600_sdrammc",
.id = UCLASS_RAM,
.of_match = ast2600_sdrammc_ids,
.ops = &ast2600_sdrammc_ops,
.of_to_plat = ast2600_sdrammc_of_to_plat,
.probe = ast2600_sdrammc_probe,
.priv_auto = sizeof(struct dram_info),
};