blob: a1ae78a7f55f35b1f08f772f65e17fdbadf88810 [file] [log] [blame]
/*
* Copyright 2008-2009 Freescale Semiconductor, Inc.
* Kumar Gala <kumar.gala@freescale.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <config.h>
#include <mpc85xx.h>
#include <version.h>
#define _LINUX_CONFIG_H 1 /* avoid reading Linux autoconf.h file */
#include <ppc_asm.tmpl>
#include <ppc_defs.h>
#include <asm/cache.h>
#include <asm/mmu.h>
/* To boot secondary cpus, we need a place for them to start up.
* Normally, they start at 0xfffffffc, but that's usually the
* firmware, and we don't want to have to run the firmware again.
* Instead, the primary cpu will set the BPTR to point here to
* this page. We then set up the core, and head to
* start_secondary. Note that this means that the code below
* must never exceed 1023 instructions (the branch at the end
* would then be the 1024th).
*/
.globl __secondary_start_page
.align 12
__secondary_start_page:
/* First do some preliminary setup */
lis r3, HID0_EMCP@h /* enable machine check */
#ifndef CONFIG_E500MC
ori r3,r3,HID0_TBEN@l /* enable Timebase */
#endif
#ifdef CONFIG_PHYS_64BIT
ori r3,r3,HID0_ENMAS7@l /* enable MAS7 updates */
#endif
mtspr SPRN_HID0,r3
#ifndef CONFIG_E500MC
li r3,(HID1_ASTME|HID1_ABE)@l /* Addr streaming & broadcast */
mtspr SPRN_HID1,r3
#endif
/* Enable branch prediction */
li r3,0x201
mtspr SPRN_BUCSR,r3
/* Ensure TB is 0 */
li r3,0
mttbl r3
mttbu r3
/* Enable/invalidate the I-Cache */
mfspr r0,SPRN_L1CSR1
ori r0,r0,(L1CSR1_ICFI|L1CSR1_ICE)
mtspr SPRN_L1CSR1,r0
isync
/* Enable/invalidate the D-Cache */
mfspr r0,SPRN_L1CSR0
ori r0,r0,(L1CSR0_DCFI|L1CSR0_DCE)
msync
isync
mtspr SPRN_L1CSR0,r0
isync
#define toreset(x) (x - __secondary_start_page + 0xfffff000)
/* get our PIR to figure out our table entry */
lis r3,toreset(__spin_table)@h
ori r3,r3,toreset(__spin_table)@l
/* r10 has the base address for the entry */
mfspr r0,SPRN_PIR
#ifdef CONFIG_E500MC
rlwinm r4,r0,27,27,31
#else
mr r4,r0
#endif
slwi r8,r4,5
add r10,r3,r8
#ifdef CONFIG_BACKSIDE_L2_CACHE
/* Enable/invalidate the L2 cache */
msync
lis r3,(L2CSR0_L2FI|L2CSR0_L2LFC)@h
ori r3,r3,(L2CSR0_L2FI|L2CSR0_L2LFC)@l
mtspr SPRN_L2CSR0,r3
1:
mfspr r3,SPRN_L2CSR0
andis. r1,r3,L2CSR0_L2FI@h
bne 1b
lis r3,CONFIG_SYS_INIT_L2CSR0@h
ori r3,r3,CONFIG_SYS_INIT_L2CSR0@l
mtspr SPRN_L2CSR0,r3
isync
#endif
#define EPAPR_MAGIC (0x45504150)
#define ENTRY_ADDR_UPPER 0
#define ENTRY_ADDR_LOWER 4
#define ENTRY_R3_UPPER 8
#define ENTRY_R3_LOWER 12
#define ENTRY_RESV 16
#define ENTRY_PIR 20
#define ENTRY_R6_UPPER 24
#define ENTRY_R6_LOWER 28
#define ENTRY_SIZE 32
/* setup the entry */
li r3,0
li r8,1
stw r0,ENTRY_PIR(r10)
stw r3,ENTRY_ADDR_UPPER(r10)
stw r8,ENTRY_ADDR_LOWER(r10)
stw r3,ENTRY_R3_UPPER(r10)
stw r4,ENTRY_R3_LOWER(r10)
stw r3,ENTRY_R6_UPPER(r10)
stw r3,ENTRY_R6_LOWER(r10)
/* load r13 with the address of the 'bootpg' in SDRAM */
lis r13,toreset(__bootpg_addr)@h
ori r13,r13,toreset(__bootpg_addr)@l
lwz r13,0(r13)
/* setup mapping for AS = 1, and jump there */
lis r11,(MAS0_TLBSEL(1)|MAS0_ESEL(1))@h
mtspr SPRN_MAS0,r11
lis r11,(MAS1_VALID|MAS1_IPROT)@h
ori r11,r11,(MAS1_TS|MAS1_TSIZE(BOOKE_PAGESZ_4K))@l
mtspr SPRN_MAS1,r11
oris r11,r13,(MAS2_I)@h
ori r11,r13,(MAS2_I)@l
mtspr SPRN_MAS2,r11
oris r11,r13,(MAS3_SX|MAS3_SW|MAS3_SR)@h
ori r11,r13,(MAS3_SX|MAS3_SW|MAS3_SR)@l
mtspr SPRN_MAS3,r11
tlbwe
bl 1f
1: mflr r11
/*
* OR in 0xfff to create a mask of the bootpg SDRAM address. We use
* this mask to fixup the cpu spin table and the address that we want
* to jump to, eg change them from 0xfffffxxx to 0x7ffffxxx if the
* bootpg is at 0x7ffff000 in SDRAM.
*/
ori r13,r13,0xfff
and r11, r11, r13
and r10, r10, r13
addi r11,r11,(2f-1b)
mfmsr r13
ori r12,r13,MSR_IS|MSR_DS@l
mtspr SPRN_SRR0,r11
mtspr SPRN_SRR1,r12
rfi
/* spin waiting for addr */
2:
lwz r4,ENTRY_ADDR_LOWER(r10)
andi. r11,r4,1
bne 2b
isync
/* setup IVORs to match fixed offsets */
#include "fixed_ivor.S"
/* get the upper bits of the addr */
lwz r11,ENTRY_ADDR_UPPER(r10)
/* setup branch addr */
mtspr SPRN_SRR0,r4
/* mark the entry as released */
li r8,3
stw r8,ENTRY_ADDR_LOWER(r10)
/* mask by ~64M to setup our tlb we will jump to */
rlwinm r12,r4,0,0,5
/* setup r3, r4, r5, r6, r7, r8, r9 */
lwz r3,ENTRY_R3_LOWER(r10)
li r4,0
li r5,0
lwz r6,ENTRY_R6_LOWER(r10)
lis r7,(64*1024*1024)@h
li r8,0
li r9,0
/* load up the pir */
lwz r0,ENTRY_PIR(r10)
mtspr SPRN_PIR,r0
mfspr r0,SPRN_PIR
stw r0,ENTRY_PIR(r10)
mtspr IVPR,r12
/*
* Coming here, we know the cpu has one TLB mapping in TLB1[0]
* which maps 0xfffff000-0xffffffff one-to-one. We set up a
* second mapping that maps addr 1:1 for 64M, and then we jump to
* addr
*/
lis r10,(MAS0_TLBSEL(1)|MAS0_ESEL(0))@h
mtspr SPRN_MAS0,r10
lis r10,(MAS1_VALID|MAS1_IPROT)@h
ori r10,r10,(MAS1_TSIZE(BOOKE_PAGESZ_64M))@l
mtspr SPRN_MAS1,r10
/* WIMGE = 0b00000 for now */
mtspr SPRN_MAS2,r12
ori r12,r12,(MAS3_SX|MAS3_SW|MAS3_SR)
mtspr SPRN_MAS3,r12
#ifdef CONFIG_ENABLE_36BIT_PHYS
mtspr SPRN_MAS7,r11
#endif
tlbwe
/* Now we have another mapping for this page, so we jump to that
* mapping
*/
mtspr SPRN_SRR1,r13
rfi
/*
* Allocate some space for the SDRAM address of the bootpg.
* This variable has to be in the boot page so that it can
* be accessed by secondary cores when they come out of reset.
*/
.globl __bootpg_addr
__bootpg_addr:
.long 0
.align L1_CACHE_SHIFT
.globl __spin_table
__spin_table:
.space CONFIG_MAX_CPUS*ENTRY_SIZE
/* Fill in the empty space. The actual reset vector is
* the last word of the page */
__secondary_start_code_end:
.space 4092 - (__secondary_start_code_end - __secondary_start_page)
__secondary_reset_vector:
b __secondary_start_page