| /* |
| * (C) Copyright 2010-2015 |
| * NVIDIA Corporation <www.nvidia.com> |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <dm.h> |
| #include <ns16550.h> |
| #include <spl.h> |
| #include <asm/io.h> |
| #include <asm/arch/clock.h> |
| #include <asm/arch/funcmux.h> |
| #include <asm/arch/mc.h> |
| #include <asm/arch/tegra.h> |
| #include <asm/arch-tegra/ap.h> |
| #include <asm/arch-tegra/board.h> |
| #include <asm/arch-tegra/pmc.h> |
| #include <asm/arch-tegra/sys_proto.h> |
| #include <asm/arch-tegra/warmboot.h> |
| |
| void save_boot_params_ret(void); |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| enum { |
| /* UARTs which we can enable */ |
| UARTA = 1 << 0, |
| UARTB = 1 << 1, |
| UARTC = 1 << 2, |
| UARTD = 1 << 3, |
| UARTE = 1 << 4, |
| UART_COUNT = 5, |
| }; |
| |
| static bool from_spl __attribute__ ((section(".data"))); |
| |
| #ifndef CONFIG_SPL_BUILD |
| void save_boot_params(u32 r0, u32 r1, u32 r2, u32 r3) |
| { |
| from_spl = r0 != UBOOT_NOT_LOADED_FROM_SPL; |
| save_boot_params_ret(); |
| } |
| #endif |
| |
| bool spl_was_boot_source(void) |
| { |
| return from_spl; |
| } |
| |
| #if defined(CONFIG_TEGRA_SUPPORT_NON_SECURE) |
| #if !defined(CONFIG_TEGRA124) |
| #error tegra_cpu_is_non_secure has only been validated on Tegra124 |
| #endif |
| bool tegra_cpu_is_non_secure(void) |
| { |
| /* |
| * This register reads 0xffffffff in non-secure mode. This register |
| * only implements bits 31:20, so the lower bits will always read 0 in |
| * secure mode. Thus, the lower bits are an indicator for secure vs. |
| * non-secure mode. |
| */ |
| struct mc_ctlr *mc = (struct mc_ctlr *)NV_PA_MC_BASE; |
| uint32_t mc_s_cfg0 = readl(&mc->mc_security_cfg0); |
| return (mc_s_cfg0 & 1) == 1; |
| } |
| #endif |
| |
| /* Read the RAM size directly from the memory controller */ |
| static phys_size_t query_sdram_size(void) |
| { |
| struct mc_ctlr *const mc = (struct mc_ctlr *)NV_PA_MC_BASE; |
| u32 emem_cfg; |
| phys_size_t size_bytes; |
| |
| emem_cfg = readl(&mc->mc_emem_cfg); |
| #if defined(CONFIG_TEGRA20) |
| debug("mc->mc_emem_cfg (MEM_SIZE_KB) = 0x%08x\n", emem_cfg); |
| size_bytes = get_ram_size((void *)PHYS_SDRAM_1, emem_cfg * 1024); |
| #else |
| debug("mc->mc_emem_cfg (MEM_SIZE_MB) = 0x%08x\n", emem_cfg); |
| #ifndef CONFIG_PHYS_64BIT |
| /* |
| * If >=4GB RAM is present, the byte RAM size won't fit into 32-bits |
| * and will wrap. Clip the reported size to the maximum that a 32-bit |
| * variable can represent (rounded to a page). |
| */ |
| if (emem_cfg >= 4096) { |
| size_bytes = U32_MAX & ~(0x1000 - 1); |
| } else |
| #endif |
| { |
| /* RAM size EMC is programmed to. */ |
| size_bytes = (phys_size_t)emem_cfg * 1024 * 1024; |
| #ifndef CONFIG_ARM64 |
| /* |
| * If all RAM fits within 32-bits, it can be accessed without |
| * LPAE, so go test the RAM size. Otherwise, we can't access |
| * all the RAM, and get_ram_size() would get confused, so |
| * avoid using it. There's no reason we should need this |
| * validation step anyway. |
| */ |
| if (emem_cfg <= (0 - PHYS_SDRAM_1) / (1024 * 1024)) |
| size_bytes = get_ram_size((void *)PHYS_SDRAM_1, |
| size_bytes); |
| #endif |
| } |
| #endif |
| |
| #if defined(CONFIG_TEGRA30) || defined(CONFIG_TEGRA114) |
| /* External memory limited to 2047 MB due to IROM/HI-VEC */ |
| if (size_bytes == SZ_2G) |
| size_bytes -= SZ_1M; |
| #endif |
| |
| return size_bytes; |
| } |
| |
| int dram_init(void) |
| { |
| /* We do not initialise DRAM here. We just query the size */ |
| gd->ram_size = query_sdram_size(); |
| return 0; |
| } |
| |
| static int uart_configs[] = { |
| #if defined(CONFIG_TEGRA20) |
| #if defined(CONFIG_TEGRA_UARTA_UAA_UAB) |
| FUNCMUX_UART1_UAA_UAB, |
| #elif defined(CONFIG_TEGRA_UARTA_GPU) |
| FUNCMUX_UART1_GPU, |
| #elif defined(CONFIG_TEGRA_UARTA_SDIO1) |
| FUNCMUX_UART1_SDIO1, |
| #else |
| FUNCMUX_UART1_IRRX_IRTX, |
| #endif |
| FUNCMUX_UART2_UAD, |
| -1, |
| FUNCMUX_UART4_GMC, |
| -1, |
| #elif defined(CONFIG_TEGRA30) |
| FUNCMUX_UART1_ULPI, /* UARTA */ |
| -1, |
| -1, |
| -1, |
| -1, |
| #elif defined(CONFIG_TEGRA114) |
| -1, |
| -1, |
| -1, |
| FUNCMUX_UART4_GMI, /* UARTD */ |
| -1, |
| #elif defined(CONFIG_TEGRA124) |
| FUNCMUX_UART1_KBC, /* UARTA */ |
| -1, |
| -1, |
| FUNCMUX_UART4_GPIO, /* UARTD */ |
| -1, |
| #else /* Tegra210 */ |
| FUNCMUX_UART1_UART1, /* UARTA */ |
| -1, |
| -1, |
| FUNCMUX_UART4_UART4, /* UARTD */ |
| -1, |
| #endif |
| }; |
| |
| /** |
| * Set up the specified uarts |
| * |
| * @param uarts_ids Mask containing UARTs to init (UARTx) |
| */ |
| static void setup_uarts(int uart_ids) |
| { |
| static enum periph_id id_for_uart[] = { |
| PERIPH_ID_UART1, |
| PERIPH_ID_UART2, |
| PERIPH_ID_UART3, |
| PERIPH_ID_UART4, |
| PERIPH_ID_UART5, |
| }; |
| size_t i; |
| |
| for (i = 0; i < UART_COUNT; i++) { |
| if (uart_ids & (1 << i)) { |
| enum periph_id id = id_for_uart[i]; |
| |
| funcmux_select(id, uart_configs[i]); |
| clock_ll_start_uart(id); |
| } |
| } |
| } |
| |
| void board_init_uart_f(void) |
| { |
| int uart_ids = 0; /* bit mask of which UART ids to enable */ |
| |
| #ifdef CONFIG_TEGRA_ENABLE_UARTA |
| uart_ids |= UARTA; |
| #endif |
| #ifdef CONFIG_TEGRA_ENABLE_UARTB |
| uart_ids |= UARTB; |
| #endif |
| #ifdef CONFIG_TEGRA_ENABLE_UARTC |
| uart_ids |= UARTC; |
| #endif |
| #ifdef CONFIG_TEGRA_ENABLE_UARTD |
| uart_ids |= UARTD; |
| #endif |
| #ifdef CONFIG_TEGRA_ENABLE_UARTE |
| uart_ids |= UARTE; |
| #endif |
| setup_uarts(uart_ids); |
| } |
| |
| #if CONFIG_IS_ENABLED(DM_SERIAL) && !CONFIG_IS_ENABLED(OF_CONTROL) |
| static struct ns16550_platdata ns16550_com1_pdata = { |
| .base = CONFIG_SYS_NS16550_COM1, |
| .reg_shift = 2, |
| .clock = CONFIG_SYS_NS16550_CLK, |
| }; |
| |
| U_BOOT_DEVICE(ns16550_com1) = { |
| "ns16550_serial", &ns16550_com1_pdata |
| }; |
| #endif |
| |
| #if !defined(CONFIG_SYS_DCACHE_OFF) && !defined(CONFIG_ARM64) |
| void enable_caches(void) |
| { |
| /* Enable D-cache. I-cache is already enabled in start.S */ |
| dcache_enable(); |
| } |
| #endif |