blob: 970182cd904edff627b00115ee059377d48af1cd [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) 2007-2008 Samuel Thibault.
* (C) Copyright 2020 EPAM Systems Inc.
*/
#define LOG_CATEGORY UCLASS_PVBLOCK
#include <blk.h>
#include <common.h>
#include <dm.h>
#include <dm/device-internal.h>
#include <malloc.h>
#include <part.h>
#include <asm/armv8/mmu.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <asm/xen/system.h>
#include <linux/bug.h>
#include <linux/compat.h>
#include <xen/events.h>
#include <xen/gnttab.h>
#include <xen/hvm.h>
#include <xen/xenbus.h>
#include <xen/interface/io/ring.h>
#include <xen/interface/io/blkif.h>
#include <xen/interface/io/protocols.h>
#define DRV_NAME "pvblock"
#define DRV_NAME_BLK "pvblock_blk"
#define O_RDONLY 00
#define O_RDWR 02
#define WAIT_RING_TO_MS 10
struct blkfront_info {
u64 sectors;
unsigned int sector_size;
int mode;
int info;
int barrier;
int flush;
};
/**
* struct blkfront_dev - Struct representing blkfront device
* @dom: Domain id
* @ring: Front_ring structure
* @ring_ref: The grant reference, allowing us to grant access
* to the ring to the other end/domain
* @evtchn: Event channel used to signal ring events
* @handle: Events handle
* @nodename: Device XenStore path in format "device/vbd/" + @devid
* @backend: Backend XenStore path
* @info: Private data
* @devid: Device id
*/
struct blkfront_dev {
domid_t dom;
struct blkif_front_ring ring;
grant_ref_t ring_ref;
evtchn_port_t evtchn;
blkif_vdev_t handle;
char *nodename;
char *backend;
struct blkfront_info info;
unsigned int devid;
u8 *bounce_buffer;
};
struct blkfront_plat {
unsigned int devid;
};
/**
* struct blkfront_aiocb - AIO сontrol block
* @aio_dev: Blockfront device
* @aio_buf: Memory buffer, which must be sector-aligned for
* @aio_dev sector
* @aio_nbytes: Size of AIO, which must be less than @aio_dev
* sector-sized amounts
* @aio_offset: Offset, which must not go beyond @aio_dev
* sector-aligned location
* @data: Data used to receiving response from ring
* @gref: Array of grant references
* @n: Number of segments
* @aio_cb: Represents one I/O request.
*/
struct blkfront_aiocb {
struct blkfront_dev *aio_dev;
u8 *aio_buf;
size_t aio_nbytes;
off_t aio_offset;
void *data;
grant_ref_t gref[BLKIF_MAX_SEGMENTS_PER_REQUEST];
int n;
void (*aio_cb)(struct blkfront_aiocb *aiocb, int ret);
};
static void blkfront_sync(struct blkfront_dev *dev);
static void free_blkfront(struct blkfront_dev *dev)
{
mask_evtchn(dev->evtchn);
free(dev->backend);
gnttab_end_access(dev->ring_ref);
free(dev->ring.sring);
unbind_evtchn(dev->evtchn);
free(dev->bounce_buffer);
free(dev->nodename);
free(dev);
}
static int init_blkfront(unsigned int devid, struct blkfront_dev *dev)
{
xenbus_transaction_t xbt;
char *err = NULL;
char *message = NULL;
struct blkif_sring *s;
int retry = 0;
char *msg = NULL;
char *c;
char nodename[32];
char path[ARRAY_SIZE(nodename) + strlen("/backend-id") + 1];
sprintf(nodename, "device/vbd/%d", devid);
memset(dev, 0, sizeof(*dev));
dev->nodename = strdup(nodename);
dev->devid = devid;
snprintf(path, sizeof(path), "%s/backend-id", nodename);
dev->dom = xenbus_read_integer(path);
evtchn_alloc_unbound(dev->dom, NULL, dev, &dev->evtchn);
s = (struct blkif_sring *)memalign(PAGE_SIZE, PAGE_SIZE);
if (!s) {
printf("Failed to allocate shared ring\n");
goto error;
}
SHARED_RING_INIT(s);
FRONT_RING_INIT(&dev->ring, s, PAGE_SIZE);
dev->ring_ref = gnttab_grant_access(dev->dom, virt_to_pfn(s), 0);
again:
err = xenbus_transaction_start(&xbt);
if (err) {
printf("starting transaction\n");
free(err);
}
err = xenbus_printf(xbt, nodename, "ring-ref", "%u", dev->ring_ref);
if (err) {
message = "writing ring-ref";
goto abort_transaction;
}
err = xenbus_printf(xbt, nodename, "event-channel", "%u", dev->evtchn);
if (err) {
message = "writing event-channel";
goto abort_transaction;
}
err = xenbus_printf(xbt, nodename, "protocol", "%s",
XEN_IO_PROTO_ABI_NATIVE);
if (err) {
message = "writing protocol";
goto abort_transaction;
}
snprintf(path, sizeof(path), "%s/state", nodename);
err = xenbus_switch_state(xbt, path, XenbusStateConnected);
if (err) {
message = "switching state";
goto abort_transaction;
}
err = xenbus_transaction_end(xbt, 0, &retry);
free(err);
if (retry) {
goto again;
printf("completing transaction\n");
}
goto done;
abort_transaction:
free(err);
err = xenbus_transaction_end(xbt, 1, &retry);
printf("Abort transaction %s\n", message);
goto error;
done:
snprintf(path, sizeof(path), "%s/backend", nodename);
msg = xenbus_read(XBT_NIL, path, &dev->backend);
if (msg) {
printf("Error %s when reading the backend path %s\n",
msg, path);
goto error;
}
dev->handle = strtoul(strrchr(nodename, '/') + 1, NULL, 0);
{
XenbusState state;
char path[strlen(dev->backend) +
strlen("/feature-flush-cache") + 1];
snprintf(path, sizeof(path), "%s/mode", dev->backend);
msg = xenbus_read(XBT_NIL, path, &c);
if (msg) {
printf("Error %s when reading the mode\n", msg);
goto error;
}
if (*c == 'w')
dev->info.mode = O_RDWR;
else
dev->info.mode = O_RDONLY;
free(c);
snprintf(path, sizeof(path), "%s/state", dev->backend);
msg = NULL;
state = xenbus_read_integer(path);
while (!msg && state < XenbusStateConnected)
msg = xenbus_wait_for_state_change(path, &state);
if (msg || state != XenbusStateConnected) {
printf("backend not available, state=%d\n", state);
goto error;
}
snprintf(path, sizeof(path), "%s/info", dev->backend);
dev->info.info = xenbus_read_integer(path);
snprintf(path, sizeof(path), "%s/sectors", dev->backend);
/*
* FIXME: read_integer returns an int, so disk size
* limited to 1TB for now
*/
dev->info.sectors = xenbus_read_integer(path);
snprintf(path, sizeof(path), "%s/sector-size", dev->backend);
dev->info.sector_size = xenbus_read_integer(path);
snprintf(path, sizeof(path), "%s/feature-barrier",
dev->backend);
dev->info.barrier = xenbus_read_integer(path);
snprintf(path, sizeof(path), "%s/feature-flush-cache",
dev->backend);
dev->info.flush = xenbus_read_integer(path);
}
unmask_evtchn(dev->evtchn);
dev->bounce_buffer = memalign(dev->info.sector_size,
dev->info.sector_size);
if (!dev->bounce_buffer) {
printf("Failed to allocate bouncing buffer\n");
goto error;
}
debug("%llu sectors of %u bytes, bounce buffer at %p\n",
dev->info.sectors, dev->info.sector_size,
dev->bounce_buffer);
return 0;
error:
free(msg);
free(err);
free_blkfront(dev);
return -ENODEV;
}
static void shutdown_blkfront(struct blkfront_dev *dev)
{
char *err = NULL, *err2;
XenbusState state;
char path[strlen(dev->backend) + strlen("/state") + 1];
char nodename[strlen(dev->nodename) + strlen("/event-channel") + 1];
debug("Close " DRV_NAME ", device ID %d\n", dev->devid);
blkfront_sync(dev);
snprintf(path, sizeof(path), "%s/state", dev->backend);
snprintf(nodename, sizeof(nodename), "%s/state", dev->nodename);
err = xenbus_switch_state(XBT_NIL, nodename, XenbusStateClosing);
if (err) {
printf("%s: error changing state to %d: %s\n", __func__,
XenbusStateClosing, err);
goto close;
}
state = xenbus_read_integer(path);
while (!err && state < XenbusStateClosing)
err = xenbus_wait_for_state_change(path, &state);
free(err);
err = xenbus_switch_state(XBT_NIL, nodename, XenbusStateClosed);
if (err) {
printf("%s: error changing state to %d: %s\n", __func__,
XenbusStateClosed, err);
goto close;
}
state = xenbus_read_integer(path);
while (state < XenbusStateClosed) {
err = xenbus_wait_for_state_change(path, &state);
free(err);
}
err = xenbus_switch_state(XBT_NIL, nodename, XenbusStateInitialising);
if (err) {
printf("%s: error changing state to %d: %s\n", __func__,
XenbusStateInitialising, err);
goto close;
}
state = xenbus_read_integer(path);
while (!err &&
(state < XenbusStateInitWait || state >= XenbusStateClosed))
err = xenbus_wait_for_state_change(path, &state);
close:
free(err);
snprintf(nodename, sizeof(nodename), "%s/ring-ref", dev->nodename);
err2 = xenbus_rm(XBT_NIL, nodename);
free(err2);
snprintf(nodename, sizeof(nodename), "%s/event-channel", dev->nodename);
err2 = xenbus_rm(XBT_NIL, nodename);
free(err2);
if (!err)
free_blkfront(dev);
}
/**
* blkfront_aio_poll() - AIO polling function.
* @dev: Blkfront device
*
* Here we receive response from the ring and check its status. This happens
* until we read all data from the ring. We read the data from consumed pointer
* to the response pointer. Then increase consumed pointer to make it clear that
* the data has been read.
*
* Return: Number of consumed bytes.
*/
static int blkfront_aio_poll(struct blkfront_dev *dev)
{
RING_IDX rp, cons;
struct blkif_response *rsp;
int more;
int nr_consumed;
moretodo:
rp = dev->ring.sring->rsp_prod;
rmb(); /* Ensure we see queued responses up to 'rp'. */
cons = dev->ring.rsp_cons;
nr_consumed = 0;
while ((cons != rp)) {
struct blkfront_aiocb *aiocbp;
int status;
rsp = RING_GET_RESPONSE(&dev->ring, cons);
nr_consumed++;
aiocbp = (void *)(uintptr_t)rsp->id;
status = rsp->status;
switch (rsp->operation) {
case BLKIF_OP_READ:
case BLKIF_OP_WRITE:
{
int j;
if (status != BLKIF_RSP_OKAY)
printf("%s error %d on %s at offset %llu, num bytes %llu\n",
rsp->operation == BLKIF_OP_READ ?
"read" : "write",
status, aiocbp->aio_dev->nodename,
(unsigned long long)aiocbp->aio_offset,
(unsigned long long)aiocbp->aio_nbytes);
for (j = 0; j < aiocbp->n; j++)
gnttab_end_access(aiocbp->gref[j]);
break;
}
case BLKIF_OP_WRITE_BARRIER:
if (status != BLKIF_RSP_OKAY)
printf("write barrier error %d\n", status);
break;
case BLKIF_OP_FLUSH_DISKCACHE:
if (status != BLKIF_RSP_OKAY)
printf("flush error %d\n", status);
break;
default:
printf("unrecognized block operation %d response (status %d)\n",
rsp->operation, status);
break;
}
dev->ring.rsp_cons = ++cons;
/* Nota: callback frees aiocbp itself */
if (aiocbp && aiocbp->aio_cb)
aiocbp->aio_cb(aiocbp, status ? -EIO : 0);
if (dev->ring.rsp_cons != cons)
/* We reentered, we must not continue here */
break;
}
RING_FINAL_CHECK_FOR_RESPONSES(&dev->ring, more);
if (more)
goto moretodo;
return nr_consumed;
}
static void blkfront_wait_slot(struct blkfront_dev *dev)
{
/* Wait for a slot */
if (RING_FULL(&dev->ring)) {
while (true) {
blkfront_aio_poll(dev);
if (!RING_FULL(&dev->ring))
break;
wait_event_timeout(NULL, !RING_FULL(&dev->ring),
WAIT_RING_TO_MS);
}
}
}
/**
* blkfront_aio_poll() - Issue an aio.
* @aiocbp: AIO control block structure
* @write: Describes is it read or write operation
* 0 - read
* 1 - write
*
* We check whether the AIO parameters meet the requirements of the device.
* Then receive request from ring and define its arguments. After this we
* grant access to the grant references. The last step is notifying about AIO
* via event channel.
*/
static void blkfront_aio(struct blkfront_aiocb *aiocbp, int write)
{
struct blkfront_dev *dev = aiocbp->aio_dev;
struct blkif_request *req;
RING_IDX i;
int notify;
int n, j;
uintptr_t start, end;
/* Can't io at non-sector-aligned location */
BUG_ON(aiocbp->aio_offset & (dev->info.sector_size - 1));
/* Can't io non-sector-sized amounts */
BUG_ON(aiocbp->aio_nbytes & (dev->info.sector_size - 1));
/* Can't io non-sector-aligned buffer */
BUG_ON(((uintptr_t)aiocbp->aio_buf & (dev->info.sector_size - 1)));
start = (uintptr_t)aiocbp->aio_buf & PAGE_MASK;
end = ((uintptr_t)aiocbp->aio_buf + aiocbp->aio_nbytes +
PAGE_SIZE - 1) & PAGE_MASK;
n = (end - start) / PAGE_SIZE;
aiocbp->n = n;
BUG_ON(n > BLKIF_MAX_SEGMENTS_PER_REQUEST);
blkfront_wait_slot(dev);
i = dev->ring.req_prod_pvt;
req = RING_GET_REQUEST(&dev->ring, i);
req->operation = write ? BLKIF_OP_WRITE : BLKIF_OP_READ;
req->nr_segments = n;
req->handle = dev->handle;
req->id = (uintptr_t)aiocbp;
req->sector_number = aiocbp->aio_offset / dev->info.sector_size;
for (j = 0; j < n; j++) {
req->seg[j].first_sect = 0;
req->seg[j].last_sect = PAGE_SIZE / dev->info.sector_size - 1;
}
req->seg[0].first_sect = ((uintptr_t)aiocbp->aio_buf & ~PAGE_MASK) /
dev->info.sector_size;
req->seg[n - 1].last_sect = (((uintptr_t)aiocbp->aio_buf +
aiocbp->aio_nbytes - 1) & ~PAGE_MASK) / dev->info.sector_size;
for (j = 0; j < n; j++) {
uintptr_t data = start + j * PAGE_SIZE;
if (!write) {
/* Trigger CoW if needed */
*(char *)(data + (req->seg[j].first_sect *
dev->info.sector_size)) = 0;
barrier();
}
req->seg[j].gref = gnttab_grant_access(dev->dom,
virt_to_pfn((void *)data),
write);
aiocbp->gref[j] = req->seg[j].gref;
}
dev->ring.req_prod_pvt = i + 1;
wmb();
RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&dev->ring, notify);
if (notify)
notify_remote_via_evtchn(dev->evtchn);
}
static void blkfront_aio_cb(struct blkfront_aiocb *aiocbp, int ret)
{
aiocbp->data = (void *)1;
aiocbp->aio_cb = NULL;
}
static void blkfront_io(struct blkfront_aiocb *aiocbp, int write)
{
aiocbp->aio_cb = blkfront_aio_cb;
blkfront_aio(aiocbp, write);
aiocbp->data = NULL;
while (true) {
blkfront_aio_poll(aiocbp->aio_dev);
if (aiocbp->data)
break;
cpu_relax();
}
}
static void blkfront_push_operation(struct blkfront_dev *dev, u8 op,
uint64_t id)
{
struct blkif_request *req;
int notify, i;
blkfront_wait_slot(dev);
i = dev->ring.req_prod_pvt;
req = RING_GET_REQUEST(&dev->ring, i);
req->operation = op;
req->nr_segments = 0;
req->handle = dev->handle;
req->id = id;
req->sector_number = 0;
dev->ring.req_prod_pvt = i + 1;
wmb();
RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&dev->ring, notify);
if (notify)
notify_remote_via_evtchn(dev->evtchn);
}
static void blkfront_sync(struct blkfront_dev *dev)
{
if (dev->info.mode == O_RDWR) {
if (dev->info.barrier == 1)
blkfront_push_operation(dev,
BLKIF_OP_WRITE_BARRIER, 0);
if (dev->info.flush == 1)
blkfront_push_operation(dev,
BLKIF_OP_FLUSH_DISKCACHE, 0);
}
while (true) {
blkfront_aio_poll(dev);
if (RING_FREE_REQUESTS(&dev->ring) == RING_SIZE(&dev->ring))
break;
cpu_relax();
}
}
/**
* pvblock_iop() - Issue an aio.
* @udev: Pvblock device
* @blknr: Block number to read from / write to
* @blkcnt: Amount of blocks to read / write
* @buffer: Memory buffer with data to be read / write
* @write: Describes is it read or write operation
* 0 - read
* 1 - write
*
* Depending on the operation - reading or writing, data is read / written from the
* specified address (@buffer) to the sector (@blknr).
*/
static ulong pvblock_iop(struct udevice *udev, lbaint_t blknr,
lbaint_t blkcnt, void *buffer, int write)
{
struct blkfront_dev *blk_dev = dev_get_priv(udev);
struct blk_desc *desc = dev_get_uclass_plat(udev);
struct blkfront_aiocb aiocb;
lbaint_t blocks_todo;
bool unaligned;
if (blkcnt == 0)
return 0;
if ((blknr + blkcnt) > desc->lba) {
printf(DRV_NAME ": block number 0x" LBAF " exceeds max(0x" LBAF ")\n",
blknr + blkcnt, desc->lba);
return 0;
}
unaligned = (uintptr_t)buffer & (blk_dev->info.sector_size - 1);
aiocb.aio_dev = blk_dev;
aiocb.aio_offset = blknr * desc->blksz;
aiocb.aio_cb = NULL;
aiocb.data = NULL;
blocks_todo = blkcnt;
do {
aiocb.aio_buf = unaligned ? blk_dev->bounce_buffer : buffer;
if (write && unaligned)
memcpy(blk_dev->bounce_buffer, buffer, desc->blksz);
aiocb.aio_nbytes = unaligned ? desc->blksz :
min((size_t)(BLKIF_MAX_SEGMENTS_PER_REQUEST * PAGE_SIZE),
(size_t)(blocks_todo * desc->blksz));
blkfront_io(&aiocb, write);
if (!write && unaligned)
memcpy(buffer, blk_dev->bounce_buffer, desc->blksz);
aiocb.aio_offset += aiocb.aio_nbytes;
buffer += aiocb.aio_nbytes;
blocks_todo -= aiocb.aio_nbytes / desc->blksz;
} while (blocks_todo > 0);
return blkcnt;
}
ulong pvblock_blk_read(struct udevice *udev, lbaint_t blknr, lbaint_t blkcnt,
void *buffer)
{
return pvblock_iop(udev, blknr, blkcnt, buffer, 0);
}
ulong pvblock_blk_write(struct udevice *udev, lbaint_t blknr, lbaint_t blkcnt,
const void *buffer)
{
return pvblock_iop(udev, blknr, blkcnt, (void *)buffer, 1);
}
static int pvblock_blk_bind(struct udevice *udev)
{
struct blk_desc *desc = dev_get_uclass_plat(udev);
int devnum;
desc->uclass_id = UCLASS_PVBLOCK;
/*
* Initialize the devnum to -ENODEV. This is to make sure that
* blk_next_free_devnum() works as expected, since the default
* value 0 is a valid devnum.
*/
desc->devnum = -ENODEV;
devnum = blk_next_free_devnum(UCLASS_PVBLOCK);
if (devnum < 0)
return devnum;
desc->devnum = devnum;
desc->part_type = PART_TYPE_UNKNOWN;
desc->bdev = udev;
strncpy(desc->vendor, "Xen", sizeof(desc->vendor));
strncpy(desc->revision, "1", sizeof(desc->revision));
strncpy(desc->product, "Virtual disk", sizeof(desc->product));
return 0;
}
static int pvblock_blk_probe(struct udevice *udev)
{
struct blkfront_dev *blk_dev = dev_get_priv(udev);
struct blkfront_plat *plat = dev_get_plat(udev);
struct blk_desc *desc = dev_get_uclass_plat(udev);
int ret, devid;
devid = plat->devid;
free(plat);
ret = init_blkfront(devid, blk_dev);
if (ret < 0)
return ret;
desc->blksz = blk_dev->info.sector_size;
desc->lba = blk_dev->info.sectors;
desc->log2blksz = LOG2(blk_dev->info.sector_size);
return 0;
}
static int pvblock_blk_remove(struct udevice *udev)
{
struct blkfront_dev *blk_dev = dev_get_priv(udev);
shutdown_blkfront(blk_dev);
return 0;
}
static const struct blk_ops pvblock_blk_ops = {
.read = pvblock_blk_read,
.write = pvblock_blk_write,
};
U_BOOT_DRIVER(pvblock_blk) = {
.name = DRV_NAME_BLK,
.id = UCLASS_BLK,
.ops = &pvblock_blk_ops,
.bind = pvblock_blk_bind,
.probe = pvblock_blk_probe,
.remove = pvblock_blk_remove,
.priv_auto = sizeof(struct blkfront_dev),
.flags = DM_FLAG_OS_PREPARE,
};
/*******************************************************************************
* Para-virtual block device class
*******************************************************************************/
typedef int (*enum_vbd_callback)(struct udevice *parent, unsigned int devid);
static int on_new_vbd(struct udevice *parent, unsigned int devid)
{
struct driver_info info;
struct udevice *udev;
struct blkfront_plat *plat;
int ret;
debug("New " DRV_NAME_BLK ", device ID %d\n", devid);
plat = malloc(sizeof(struct blkfront_plat));
if (!plat) {
printf("Failed to allocate platform data\n");
return -ENOMEM;
}
plat->devid = devid;
info.name = DRV_NAME_BLK;
info.plat = plat;
ret = device_bind_by_name(parent, false, &info, &udev);
if (ret < 0) {
printf("Failed to bind " DRV_NAME_BLK " to device with ID %d, ret: %d\n",
devid, ret);
free(plat);
}
return ret;
}
static int xenbus_enumerate_vbd(struct udevice *udev, enum_vbd_callback clb)
{
char **dirs, *msg;
int i, ret;
msg = xenbus_ls(XBT_NIL, "device/vbd", &dirs);
if (msg) {
printf("Failed to read device/vbd directory: %s\n", msg);
free(msg);
return -ENODEV;
}
for (i = 0; dirs[i]; i++) {
int devid;
sscanf(dirs[i], "%d", &devid);
ret = clb(udev, devid);
if (ret < 0)
goto fail;
free(dirs[i]);
}
ret = 0;
fail:
for (; dirs[i]; i++)
free(dirs[i]);
free(dirs);
return ret;
}
static void print_pvblock_devices(void)
{
struct udevice *udev;
bool first = true;
const char *class_name;
class_name = uclass_get_name(UCLASS_PVBLOCK);
for (blk_first_device(UCLASS_PVBLOCK, &udev); udev;
blk_next_device(&udev), first = false) {
struct blk_desc *desc = dev_get_uclass_plat(udev);
if (!first)
puts(", ");
printf("%s: %d", class_name, desc->devnum);
}
printf("\n");
}
void pvblock_init(void)
{
struct driver_info info;
struct udevice *udev;
struct uclass *uc;
int ret;
/*
* At this point Xen drivers have already initialized,
* so we can instantiate the class driver and enumerate
* virtual block devices.
*/
info.name = DRV_NAME;
ret = device_bind_by_name(gd->dm_root, false, &info, &udev);
if (ret < 0)
printf("Failed to bind " DRV_NAME ", ret: %d\n", ret);
/* Bootstrap virtual block devices class driver */
ret = uclass_get(UCLASS_PVBLOCK, &uc);
if (ret)
return;
uclass_foreach_dev_probe(UCLASS_PVBLOCK, udev);
print_pvblock_devices();
}
static int pvblock_probe(struct udevice *udev)
{
struct uclass *uc;
int ret;
if (xenbus_enumerate_vbd(udev, on_new_vbd) < 0)
return -ENODEV;
ret = uclass_get(UCLASS_BLK, &uc);
if (ret)
return ret;
uclass_foreach_dev_probe(UCLASS_BLK, udev) {
if (_ret)
return _ret;
};
return 0;
}
U_BOOT_DRIVER(pvblock_drv) = {
.name = DRV_NAME,
.id = UCLASS_PVBLOCK,
.probe = pvblock_probe,
};
UCLASS_DRIVER(pvblock) = {
.name = DRV_NAME,
.id = UCLASS_PVBLOCK,
};