blob: 4c30f3294b7ac5b286419e22d612cb0b0fdcfec9 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016
* Author: Chen-Yu Tsai <wens@csie.org>
*
* Based on assembly code by Marc Zyngier <marc.zyngier@arm.com>,
* which was based on code by Carl van Schaik <carl@ok-labs.com>.
*/
#include <config.h>
#include <asm/cache.h>
#include <asm/arch/cpu.h>
#include <asm/armv7.h>
#include <asm/gic.h>
#include <asm/io.h>
#include <asm/psci.h>
#include <asm/secure.h>
#include <asm/system.h>
#include <linux/bitops.h>
#define __irq __attribute__ ((interrupt ("IRQ")))
#define GICD_BASE (SUNXI_GIC400_BASE + GIC_DIST_OFFSET)
#define GICC_BASE (SUNXI_GIC400_BASE + GIC_CPU_OFFSET_A15)
/*
* Offsets into the CPUCFG block applicable to most SUNXIs.
*/
#define SUNXI_CPU_RST(cpu) (0x40 + (cpu) * 0x40 + 0x0)
#define SUNXI_CPU_STATUS(cpu) (0x40 + (cpu) * 0x40 + 0x8)
#define SUNXI_GEN_CTRL (0x184)
#define SUNXI_PRIV0 (0x1a4)
#define SUN7I_CPU1_PWR_CLAMP (0x1b0)
#define SUN7I_CPU1_PWROFF (0x1b4)
#define SUNXI_DBG_CTRL1 (0x1e4)
/*
* R40 is different from other single cluster SoCs.
*
* The power clamps are located in the unused space after the per-core
* reset controls for core 3. The secondary core entry address register
* is in the SRAM controller address range.
*/
#define SUN8I_R40_PWROFF (0x110)
#define SUN8I_R40_PWR_CLAMP(cpu) (0x120 + (cpu) * 0x4)
#define SUN8I_R40_SRAMC_SOFT_ENTRY_REG0 (0xbc)
/*
* R528 is also different, as it has both cores powered up (but held in reset
* state) after the SoC is reset. Like the R40, it uses a "soft" entry point
* address register, but unlike the R40, it uses a newer "CPUX" block to manage
* CPU state, rather than the older CPUCFG system.
*/
#define SUN8I_R528_SOFT_ENTRY (0x1c8)
#define SUN8I_R528_C0_RST_CTRL (0x0000)
#define SUN8I_R528_C0_CTRL_REG0 (0x0010)
#define SUN8I_R528_C0_CPU_STATUS (0x0080)
#define SUN8I_R528_C0_STATUS_STANDBYWFI (16)
/* Only newer cores have this additional IP block. */
#ifndef SUNXI_R_CPUCFG_BASE
#define SUNXI_R_CPUCFG_BASE 0
#endif
static void __secure cp15_write_cntp_tval(u32 tval)
{
asm volatile ("mcr p15, 0, %0, c14, c2, 0" : : "r" (tval));
}
static void __secure cp15_write_cntp_ctl(u32 val)
{
asm volatile ("mcr p15, 0, %0, c14, c2, 1" : : "r" (val));
}
static u32 __secure cp15_read_cntp_ctl(void)
{
u32 val;
asm volatile ("mrc p15, 0, %0, c14, c2, 1" : "=r" (val));
return val;
}
#define ONE_MS (CONFIG_COUNTER_FREQUENCY / 1000)
static void __secure __mdelay(u32 ms)
{
u32 reg = ONE_MS * ms;
cp15_write_cntp_tval(reg);
isb();
cp15_write_cntp_ctl(3);
do {
isb();
reg = cp15_read_cntp_ctl();
} while (!(reg & BIT(2)));
cp15_write_cntp_ctl(0);
isb();
}
static void __secure clamp_release(u32 *clamp)
{
u32 tmp = 0x1ff;
do {
tmp >>= 1;
writel(tmp, clamp);
} while (tmp);
__mdelay(10);
}
static void __secure clamp_set(u32 *clamp)
{
writel(0xff, clamp);
}
static void __secure sunxi_cpu_set_entry(int __always_unused cpu, void *entry)
{
if (IS_ENABLED(CONFIG_MACH_SUN8I_R40)) {
writel((u32)entry,
SUNXI_SRAMC_BASE + SUN8I_R40_SRAMC_SOFT_ENTRY_REG0);
} else if (IS_ENABLED(CONFIG_MACH_SUN8I_R528)) {
writel((u32)entry,
SUNXI_R_CPUCFG_BASE + SUN8I_R528_SOFT_ENTRY);
} else {
writel((u32)entry, SUNXI_CPUCFG_BASE + SUNXI_PRIV0);
}
}
static void __secure sunxi_cpu_set_power(int cpu, bool on)
{
u32 *clamp = NULL;
u32 *pwroff;
/* sun7i (A20) is different from other single cluster SoCs */
if (IS_ENABLED(CONFIG_MACH_SUN7I)) {
clamp = (void *)SUNXI_CPUCFG_BASE + SUN7I_CPU1_PWR_CLAMP;
pwroff = (void *)SUNXI_CPUCFG_BASE + SUN7I_CPU1_PWROFF;
cpu = 0;
} else if (IS_ENABLED(CONFIG_MACH_SUN8I_R40)) {
clamp = (void *)SUNXI_CPUCFG_BASE + SUN8I_R40_PWR_CLAMP(cpu);
pwroff = (void *)SUNXI_CPUCFG_BASE + SUN8I_R40_PWROFF;
} else if (IS_ENABLED(CONFIG_MACH_SUN8I_R528)) {
/* R528 leaves both cores powered up, manages them via reset */
return;
} else {
if (IS_ENABLED(CONFIG_MACH_SUN6I) ||
IS_ENABLED(CONFIG_MACH_SUN8I_H3))
clamp = (void *)SUNXI_PRCM_BASE + 0x140 + cpu * 0x4;
pwroff = (void *)SUNXI_PRCM_BASE + 0x100;
}
if (on) {
/* Release power clamp */
if (clamp)
clamp_release(clamp);
/* Clear power gating */
clrbits_le32(pwroff, BIT(cpu));
} else {
/* Set power gating */
setbits_le32(pwroff, BIT(cpu));
/* Activate power clamp */
if (clamp)
clamp_set(clamp);
}
}
static void __secure sunxi_cpu_set_reset(int cpu, bool reset)
{
if (IS_ENABLED(CONFIG_MACH_SUN8I_R528)) {
if (reset)
clrbits_le32(SUNXI_CPUCFG_BASE + SUN8I_R528_C0_RST_CTRL,
BIT(cpu));
else
setbits_le32(SUNXI_CPUCFG_BASE + SUN8I_R528_C0_RST_CTRL,
BIT(cpu));
return;
}
writel(reset ? 0b00 : 0b11, SUNXI_CPUCFG_BASE + SUNXI_CPU_RST(cpu));
}
static void __secure sunxi_cpu_set_locking(int cpu, bool lock)
{
if (IS_ENABLED(CONFIG_MACH_SUN8I_R528)) {
/* Not required on R528 */
return;
}
if (lock)
clrbits_le32(SUNXI_CPUCFG_BASE + SUNXI_DBG_CTRL1, BIT(cpu));
else
setbits_le32(SUNXI_CPUCFG_BASE + SUNXI_DBG_CTRL1, BIT(cpu));
}
static bool __secure sunxi_cpu_poll_wfi(int cpu)
{
if (IS_ENABLED(CONFIG_MACH_SUN8I_R528)) {
return !!(readl(SUNXI_CPUCFG_BASE + SUN8I_R528_C0_CPU_STATUS) &
BIT(SUN8I_R528_C0_STATUS_STANDBYWFI + cpu));
}
return !!(readl(SUNXI_CPUCFG_BASE + SUNXI_CPU_STATUS(cpu)) & BIT(2));
}
static void __secure sunxi_cpu_invalidate_cache(int cpu)
{
if (IS_ENABLED(CONFIG_MACH_SUN8I_R528)) {
clrbits_le32(SUNXI_CPUCFG_BASE + SUN8I_R528_C0_CTRL_REG0,
BIT(cpu));
return;
}
clrbits_le32(SUNXI_CPUCFG_BASE + SUNXI_GEN_CTRL, BIT(cpu));
}
static void __secure sunxi_cpu_power_off(u32 cpuid)
{
u32 cpu = cpuid & 0x3;
/* Wait for the core to enter WFI */
while (!sunxi_cpu_poll_wfi(cpu))
__mdelay(1);
/* Assert reset on target CPU */
sunxi_cpu_set_reset(cpu, true);
/* Lock CPU (Disable external debug access) */
sunxi_cpu_set_locking(cpu, true);
/* Power down CPU */
sunxi_cpu_set_power(cpuid, false);
/* Unlock CPU (Reenable external debug access) */
sunxi_cpu_set_locking(cpu, false);
}
static u32 __secure cp15_read_scr(void)
{
u32 scr;
asm volatile ("mrc p15, 0, %0, c1, c1, 0" : "=r" (scr));
return scr;
}
static void __secure cp15_write_scr(u32 scr)
{
asm volatile ("mcr p15, 0, %0, c1, c1, 0" : : "r" (scr));
isb();
}
/*
* Although this is an FIQ handler, the FIQ is processed in monitor mode,
* which means there's no FIQ banked registers. This is the same as IRQ
* mode, so use the IRQ attribute to ask the compiler to handler entry
* and return.
*/
void __secure __irq psci_fiq_enter(void)
{
u32 scr, reg, cpu;
/* Switch to secure mode */
scr = cp15_read_scr();
cp15_write_scr(scr & ~BIT(0));
/* Validate reason based on IAR and acknowledge */
reg = readl(GICC_BASE + GICC_IAR);
/* Skip spurious interrupts 1022 and 1023 */
if (reg == 1023 || reg == 1022)
goto out;
/* End of interrupt */
writel(reg, GICC_BASE + GICC_EOIR);
dsb();
/* Get CPU number */
cpu = (reg >> 10) & 0x7;
/* Power off the CPU */
sunxi_cpu_power_off(cpu);
out:
/* Restore security level */
cp15_write_scr(scr);
}
int __secure psci_cpu_on(u32 __always_unused unused, u32 mpidr, u32 pc,
u32 context_id)
{
u32 cpu = (mpidr & 0x3);
/* store target PC and context id */
psci_save(cpu, pc, context_id);
/* Set secondary core power on PC */
sunxi_cpu_set_entry(cpu, &psci_cpu_entry);
/* Assert reset on target CPU */
sunxi_cpu_set_reset(cpu, true);
/* Invalidate L1 cache */
sunxi_cpu_invalidate_cache(cpu);
/* Lock CPU (Disable external debug access) */
sunxi_cpu_set_locking(cpu, true);
/* Power up target CPU */
sunxi_cpu_set_power(cpu, true);
/* De-assert reset on target CPU */
sunxi_cpu_set_reset(cpu, false);
/* Unlock CPU (Reenable external debug access) */
sunxi_cpu_set_locking(cpu, false);
return ARM_PSCI_RET_SUCCESS;
}
s32 __secure psci_cpu_off(void)
{
psci_cpu_off_common();
/* Ask CPU0 via SGI15 to pull the rug... */
writel(BIT(16) | 15, GICD_BASE + GICD_SGIR);
dsb();
/* Wait to be turned off */
while (1)
wfi();
}
void __secure psci_arch_init(void)
{
u32 reg;
/* SGI15 as Group-0 */
clrbits_le32(GICD_BASE + GICD_IGROUPRn, BIT(15));
/* Set SGI15 priority to 0 */
writeb(0, GICD_BASE + GICD_IPRIORITYRn + 15);
/* Be cool with non-secure */
writel(0xff, GICC_BASE + GICC_PMR);
/* Switch FIQEn on */
setbits_le32(GICC_BASE + GICC_CTLR, BIT(3));
reg = cp15_read_scr();
reg |= BIT(2); /* Enable FIQ in monitor mode */
reg &= ~BIT(0); /* Secure mode */
cp15_write_scr(reg);
}