blob: 949456d530903abc3407810f89768b11e4af77e9 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2014 - 2015 Xilinx, Inc.
* Michal Simek <michal.simek@xilinx.com>
*/
#include <common.h>
#include <cpu_func.h>
#include <log.h>
#include <asm/arch/hardware.h>
#include <asm/arch/sys_proto.h>
#include <asm/io.h>
#include <linux/delay.h>
#define LOCK 0
#define SPLIT 1
#define HALT 0
#define RELEASE 1
#define ZYNQMP_BOOTADDR_HIGH_MASK 0xFFFFFFFF
#define ZYNQMP_R5_HIVEC_ADDR 0xFFFF0000
#define ZYNQMP_R5_LOVEC_ADDR 0x0
#define ZYNQMP_RPU_CFG_CPU_HALT_MASK 0x01
#define ZYNQMP_RPU_CFG_HIVEC_MASK 0x04
#define ZYNQMP_RPU_GLBL_CTRL_SPLIT_LOCK_MASK 0x08
#define ZYNQMP_RPU_GLBL_CTRL_TCM_COMB_MASK 0x40
#define ZYNQMP_RPU_GLBL_CTRL_SLCLAMP_MASK 0x10
#define ZYNQMP_CRLAPB_RST_LPD_AMBA_RST_MASK 0x04
#define ZYNQMP_CRLAPB_RST_LPD_R50_RST_MASK 0x01
#define ZYNQMP_CRLAPB_RST_LPD_R51_RST_MASK 0x02
#define ZYNQMP_CRLAPB_CPU_R5_CTRL_CLKACT_MASK 0x1000000
#define ZYNQMP_TCM_START_ADDRESS 0xFFE00000
#define ZYNQMP_TCM_BOTH_SIZE 0x40000
#define ZYNQMP_CORE_APU0 0
#define ZYNQMP_CORE_APU3 3
#define ZYNQMP_CORE_RPU0 4
#define ZYNQMP_CORE_RPU1 5
#define ZYNQMP_MAX_CORES 6
int is_core_valid(unsigned int core)
{
if (core < ZYNQMP_MAX_CORES)
return 1;
return 0;
}
int cpu_reset(u32 nr)
{
puts("Feature is not implemented.\n");
return 0;
}
static void set_r5_halt_mode(u32 nr, u8 halt, u8 mode)
{
u32 tmp;
if (mode == LOCK || nr == ZYNQMP_CORE_RPU0) {
tmp = readl(&rpu_base->rpu0_cfg);
if (halt == HALT)
tmp &= ~ZYNQMP_RPU_CFG_CPU_HALT_MASK;
else
tmp |= ZYNQMP_RPU_CFG_CPU_HALT_MASK;
writel(tmp, &rpu_base->rpu0_cfg);
}
if (mode == LOCK || nr == ZYNQMP_CORE_RPU1) {
tmp = readl(&rpu_base->rpu1_cfg);
if (halt == HALT)
tmp &= ~ZYNQMP_RPU_CFG_CPU_HALT_MASK;
else
tmp |= ZYNQMP_RPU_CFG_CPU_HALT_MASK;
writel(tmp, &rpu_base->rpu1_cfg);
}
}
static void set_r5_tcm_mode(u8 mode)
{
u32 tmp;
tmp = readl(&rpu_base->rpu_glbl_ctrl);
if (mode == LOCK) {
tmp &= ~ZYNQMP_RPU_GLBL_CTRL_SPLIT_LOCK_MASK;
tmp |= ZYNQMP_RPU_GLBL_CTRL_TCM_COMB_MASK |
ZYNQMP_RPU_GLBL_CTRL_SLCLAMP_MASK;
} else {
tmp |= ZYNQMP_RPU_GLBL_CTRL_SPLIT_LOCK_MASK;
tmp &= ~(ZYNQMP_RPU_GLBL_CTRL_TCM_COMB_MASK |
ZYNQMP_RPU_GLBL_CTRL_SLCLAMP_MASK);
}
writel(tmp, &rpu_base->rpu_glbl_ctrl);
}
static void set_r5_reset(u32 nr, u8 mode)
{
u32 tmp;
tmp = readl(&crlapb_base->rst_lpd_top);
if (mode == LOCK) {
tmp |= (ZYNQMP_CRLAPB_RST_LPD_AMBA_RST_MASK |
ZYNQMP_CRLAPB_RST_LPD_R50_RST_MASK |
ZYNQMP_CRLAPB_RST_LPD_R51_RST_MASK);
} else {
if (nr == ZYNQMP_CORE_RPU0) {
tmp |= ZYNQMP_CRLAPB_RST_LPD_R50_RST_MASK;
if (tmp & ZYNQMP_CRLAPB_RST_LPD_R51_RST_MASK)
tmp |= ZYNQMP_CRLAPB_RST_LPD_AMBA_RST_MASK;
} else {
tmp |= ZYNQMP_CRLAPB_RST_LPD_R51_RST_MASK;
if (tmp & ZYNQMP_CRLAPB_RST_LPD_R50_RST_MASK)
tmp |= ZYNQMP_CRLAPB_RST_LPD_AMBA_RST_MASK;
}
}
writel(tmp, &crlapb_base->rst_lpd_top);
}
static void release_r5_reset(u32 nr, u8 mode)
{
u32 tmp;
tmp = readl(&crlapb_base->rst_lpd_top);
if (mode == LOCK || nr == ZYNQMP_CORE_RPU0)
tmp &= ~(ZYNQMP_CRLAPB_RST_LPD_AMBA_RST_MASK |
ZYNQMP_CRLAPB_RST_LPD_R50_RST_MASK);
if (mode == LOCK || nr == ZYNQMP_CORE_RPU1)
tmp &= ~(ZYNQMP_CRLAPB_RST_LPD_AMBA_RST_MASK |
ZYNQMP_CRLAPB_RST_LPD_R51_RST_MASK);
writel(tmp, &crlapb_base->rst_lpd_top);
}
static void enable_clock_r5(void)
{
u32 tmp;
tmp = readl(&crlapb_base->cpu_r5_ctrl);
tmp |= ZYNQMP_CRLAPB_CPU_R5_CTRL_CLKACT_MASK;
writel(tmp, &crlapb_base->cpu_r5_ctrl);
/* Give some delay for clock
* to propagate */
udelay(0x500);
}
static int check_r5_mode(void)
{
u32 tmp;
tmp = readl(&rpu_base->rpu_glbl_ctrl);
if (tmp & ZYNQMP_RPU_GLBL_CTRL_SPLIT_LOCK_MASK)
return SPLIT;
return LOCK;
}
int cpu_disable(u32 nr)
{
if (nr <= ZYNQMP_CORE_APU3) {
u32 val = readl(&crfapb_base->rst_fpd_apu);
val |= 1 << nr;
writel(val, &crfapb_base->rst_fpd_apu);
} else {
set_r5_reset(nr, check_r5_mode());
}
return 0;
}
int cpu_status(u32 nr)
{
if (nr <= ZYNQMP_CORE_APU3) {
u32 addr_low = readl(((u8 *)&apu_base->rvbar_addr0_l) + nr * 8);
u32 addr_high = readl(((u8 *)&apu_base->rvbar_addr0_h) +
nr * 8);
u32 val = readl(&crfapb_base->rst_fpd_apu);
val &= 1 << nr;
printf("APU CPU%d %s - starting address HI: %x, LOW: %x\n",
nr, val ? "OFF" : "ON" , addr_high, addr_low);
} else {
u32 val = readl(&crlapb_base->rst_lpd_top);
val &= 1 << (nr - 4);
printf("RPU CPU%d %s\n", nr - 4, val ? "OFF" : "ON");
}
return 0;
}
static void set_r5_start(u8 high)
{
u32 tmp;
tmp = readl(&rpu_base->rpu0_cfg);
if (high)
tmp |= ZYNQMP_RPU_CFG_HIVEC_MASK;
else
tmp &= ~ZYNQMP_RPU_CFG_HIVEC_MASK;
writel(tmp, &rpu_base->rpu0_cfg);
tmp = readl(&rpu_base->rpu1_cfg);
if (high)
tmp |= ZYNQMP_RPU_CFG_HIVEC_MASK;
else
tmp &= ~ZYNQMP_RPU_CFG_HIVEC_MASK;
writel(tmp, &rpu_base->rpu1_cfg);
}
static void write_tcm_boot_trampoline(u32 boot_addr)
{
if (boot_addr) {
/*
* Boot trampoline is simple ASM code below.
*
* b over;
* label:
* .word 0
* over: ldr r0, =label
* ldr r1, [r0]
* bx r1
*/
debug("Write boot trampoline for %x\n", boot_addr);
writel(0xea000000, ZYNQMP_TCM_START_ADDRESS);
writel(boot_addr, ZYNQMP_TCM_START_ADDRESS + 0x4);
writel(0xe59f0004, ZYNQMP_TCM_START_ADDRESS + 0x8);
writel(0xe5901000, ZYNQMP_TCM_START_ADDRESS + 0xc);
writel(0xe12fff11, ZYNQMP_TCM_START_ADDRESS + 0x10);
writel(0x00000004, ZYNQMP_TCM_START_ADDRESS + 0x14); // address for
}
}
void initialize_tcm(bool mode)
{
if (!mode) {
set_r5_tcm_mode(LOCK);
set_r5_halt_mode(ZYNQMP_CORE_RPU0, HALT, LOCK);
enable_clock_r5();
release_r5_reset(ZYNQMP_CORE_RPU0, LOCK);
} else {
set_r5_tcm_mode(SPLIT);
set_r5_halt_mode(ZYNQMP_CORE_RPU1, HALT, SPLIT);
enable_clock_r5();
release_r5_reset(ZYNQMP_CORE_RPU1, SPLIT);
}
}
int cpu_release(u32 nr, int argc, char *const argv[])
{
if (nr <= ZYNQMP_CORE_APU3) {
u64 boot_addr = simple_strtoull(argv[0], NULL, 16);
/* HIGH */
writel((u32)(boot_addr >> 32),
((u8 *)&apu_base->rvbar_addr0_h) + nr * 8);
/* LOW */
writel((u32)(boot_addr & ZYNQMP_BOOTADDR_HIGH_MASK),
((u8 *)&apu_base->rvbar_addr0_l) + nr * 8);
u32 val = readl(&crfapb_base->rst_fpd_apu);
val &= ~(1 << nr);
writel(val, &crfapb_base->rst_fpd_apu);
} else {
if (argc != 2) {
printf("Invalid number of arguments to release.\n");
printf("<addr> <mode>-Start addr lockstep or split\n");
return 1;
}
u32 boot_addr = hextoul(argv[0], NULL);
u32 boot_addr_uniq = 0;
if (!(boot_addr == ZYNQMP_R5_LOVEC_ADDR ||
boot_addr == ZYNQMP_R5_HIVEC_ADDR)) {
printf("Using TCM jump trampoline for address 0x%x\n",
boot_addr);
/* Save boot address for later usage */
boot_addr_uniq = boot_addr;
/*
* R5 needs to start from LOVEC at TCM
* OCM will be probably occupied by ATF
*/
boot_addr = ZYNQMP_R5_LOVEC_ADDR;
}
/*
* Since we don't know where the user may have loaded the image
* for an R5 we have to flush all the data cache to ensure
* the R5 sees it.
*/
flush_dcache_all();
if (!strncmp(argv[1], "lockstep", 8)) {
printf("R5 lockstep mode\n");
set_r5_reset(nr, LOCK);
set_r5_tcm_mode(LOCK);
set_r5_halt_mode(nr, HALT, LOCK);
set_r5_start(boot_addr);
enable_clock_r5();
release_r5_reset(nr, LOCK);
dcache_disable();
write_tcm_boot_trampoline(boot_addr_uniq);
dcache_enable();
set_r5_halt_mode(nr, RELEASE, LOCK);
} else if (!strncmp(argv[1], "split", 5)) {
printf("R5 split mode\n");
set_r5_reset(nr, SPLIT);
set_r5_tcm_mode(SPLIT);
set_r5_halt_mode(nr, HALT, SPLIT);
set_r5_start(boot_addr);
enable_clock_r5();
release_r5_reset(nr, SPLIT);
dcache_disable();
write_tcm_boot_trampoline(boot_addr_uniq);
dcache_enable();
set_r5_halt_mode(nr, RELEASE, SPLIT);
} else {
printf("Unsupported mode\n");
return 1;
}
}
return 0;
}