blob: 41469a186a3fa9dfe090c551e4aa543824cb744d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only OR MIT
/*
* Copyright (C) 2024 Texas Instruments Incorporated - https://www.ti.com
*
* PCIe controller driver for TI's K3 SoCs with Cadence PCIe controller
*
* Ported from the Linux driver - drivers/pci/controller/cadence/pci-j721e.c
*
* Author: Siddharth Vadapalli <s-vadapalli@ti.com>
*
*/
#include <asm/gpio.h>
#include <clk-uclass.h>
#include <dm.h>
#include <dm/device_compat.h>
#include <generic-phy.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/log2.h>
#include <power-domain.h>
#include <regmap.h>
#include <syscon.h>
#define CDNS_PCIE_LM_BASE 0x00100000
#define CDNS_PCIE_LM_ID (CDNS_PCIE_LM_BASE + 0x0044)
#define CDNS_PCIE_LTSSM_CTRL_CAP (CDNS_PCIE_LM_BASE + 0x0054)
#define CDNS_PCIE_LM_RC_BAR_CFG (CDNS_PCIE_LM_BASE + 0x0300)
#define CDNS_PCIE_LM_ID_VENDOR_MASK GENMASK(15, 0)
#define CDNS_PCIE_LM_ID_VENDOR_SHIFT 0
#define CDNS_PCIE_LM_ID_VENDOR(vid) \
(((vid) << CDNS_PCIE_LM_ID_VENDOR_SHIFT) & CDNS_PCIE_LM_ID_VENDOR_MASK)
#define CDNS_PCIE_LM_ID_SUBSYS_MASK GENMASK(31, 16)
#define CDNS_PCIE_LM_ID_SUBSYS_SHIFT 16
#define CDNS_PCIE_LM_ID_SUBSYS(sub) \
(((sub) << CDNS_PCIE_LM_ID_SUBSYS_SHIFT) & CDNS_PCIE_LM_ID_SUBSYS_MASK)
#define CDNS_PCIE_LM_RC_BAR_CFG_BAR0_CTRL_MASK GENMASK(8, 6)
#define CDNS_PCIE_LM_RC_BAR_CFG_BAR0_CTRL(c) \
(((c) << 6) & CDNS_PCIE_LM_RC_BAR_CFG_BAR0_CTRL_MASK)
#define CDNS_PCIE_LM_RC_BAR_CFG_BAR1_CTRL_MASK GENMASK(16, 14)
#define CDNS_PCIE_LM_RC_BAR_CFG_BAR1_CTRL(c) \
(((c) << 14) & CDNS_PCIE_LM_RC_BAR_CFG_BAR1_CTRL_MASK)
#define CDNS_PCIE_LM_RC_BAR_CFG_PREFETCH_MEM_ENABLE BIT(17)
#define CDNS_PCIE_LM_RC_BAR_CFG_PREFETCH_MEM_64BITS BIT(18)
#define CDNS_PCIE_LM_RC_BAR_CFG_IO_ENABLE BIT(19)
#define CDNS_PCIE_LM_RC_BAR_CFG_IO_32BITS BIT(20)
#define CDNS_PCIE_LM_BAR_CFG_CTRL_DISABLED 0x0
#define CDNS_PCIE_LM_BAR_CFG_CTRL_MEM_32BITS 0x4
#define CDNS_PCIE_LM_BAR_CFG_CTRL_PREFETCH_MEM_32BITS 0x5
#define CDNS_PCIE_LM_BAR_CFG_CTRL_MEM_64BITS 0x6
#define CDNS_PCIE_LM_BAR_CFG_CTRL_PREFETCH_MEM_64BITS 0x7
#define LM_RC_BAR_CFG_CTRL_MEM_32BITS(bar) \
(CDNS_PCIE_LM_BAR_CFG_CTRL_MEM_32BITS << (((bar) * 8) + 6))
#define LM_RC_BAR_CFG_CTRL_PREF_MEM_32BITS(bar) \
(CDNS_PCIE_LM_BAR_CFG_CTRL_PREFETCH_MEM_32BITS << (((bar) * 8) + 6))
#define LM_RC_BAR_CFG_CTRL_MEM_64BITS(bar) \
(CDNS_PCIE_LM_BAR_CFG_CTRL_MEM_64BITS << (((bar) * 8) + 6))
#define LM_RC_BAR_CFG_CTRL_PREF_MEM_64BITS(bar) \
(CDNS_PCIE_LM_BAR_CFG_CTRL_PREFETCH_MEM_64BITS << (((bar) * 8) + 6))
#define LM_RC_BAR_CFG_APERTURE(bar, aperture) \
(((aperture) - 2) << ((bar) * 8))
#define CDNS_PCIE_RP_BASE 0x00200000
#define CDNS_PCIE_RP_CAP_OFFSET 0xc0
/*
* Address Translation Registers
*/
#define CDNS_PCIE_AT_BASE 0x00400000
/* Region r Outbound AXI to PCIe Address Translation Register 0 */
#define CDNS_PCIE_AT_OB_REGION_PCI_ADDR0(r) \
(CDNS_PCIE_AT_BASE + 0x0000 + ((r) & 0x1f) * 0x0020)
#define CDNS_PCIE_AT_OB_REGION_PCI_ADDR0_NBITS_MASK GENMASK(5, 0)
#define CDNS_PCIE_AT_OB_REGION_PCI_ADDR0_NBITS(nbits) \
(((nbits) - 1) & CDNS_PCIE_AT_OB_REGION_PCI_ADDR0_NBITS_MASK)
#define CDNS_PCIE_AT_OB_REGION_PCI_ADDR0_DEVFN_MASK GENMASK(19, 12)
#define CDNS_PCIE_AT_OB_REGION_PCI_ADDR0_DEVFN(devfn) \
(((devfn) << 12) & CDNS_PCIE_AT_OB_REGION_PCI_ADDR0_DEVFN_MASK)
#define CDNS_PCIE_AT_OB_REGION_PCI_ADDR0_BUS_MASK GENMASK(27, 20)
#define CDNS_PCIE_AT_OB_REGION_PCI_ADDR0_BUS(bus) \
(((bus) << 20) & CDNS_PCIE_AT_OB_REGION_PCI_ADDR0_BUS_MASK)
/* Region r Outbound AXI to PCIe Address Translation Register 1 */
#define CDNS_PCIE_AT_OB_REGION_PCI_ADDR1(r) \
(CDNS_PCIE_AT_BASE + 0x0004 + ((r) & 0x1f) * 0x0020)
/* Region r Outbound PCIe Descriptor Register 0 */
#define CDNS_PCIE_AT_OB_REGION_DESC0(r) \
(CDNS_PCIE_AT_BASE + 0x0008 + ((r) & 0x1f) * 0x0020)
#define CDNS_PCIE_AT_OB_REGION_DESC0_TYPE_MEM 0x2
#define CDNS_PCIE_AT_OB_REGION_DESC0_TYPE_IO 0x6
#define CDNS_PCIE_AT_OB_REGION_DESC0_TYPE_CONF_TYPE0 0xa
#define CDNS_PCIE_AT_OB_REGION_DESC0_TYPE_CONF_TYPE1 0xb
/* Bit 23 MUST be set in RC mode. */
#define CDNS_PCIE_AT_OB_REGION_DESC0_HARDCODED_RID BIT(23)
#define CDNS_PCIE_AT_OB_REGION_DESC0_DEVFN_MASK GENMASK(31, 24)
#define CDNS_PCIE_AT_OB_REGION_DESC0_DEVFN(devfn) \
(((devfn) << 24) & CDNS_PCIE_AT_OB_REGION_DESC0_DEVFN_MASK)
/* Region r Outbound PCIe Descriptor Register 1 */
#define CDNS_PCIE_AT_OB_REGION_DESC1(r) \
(CDNS_PCIE_AT_BASE + 0x000c + ((r) & 0x1f) * 0x0020)
#define CDNS_PCIE_AT_OB_REGION_DESC1_BUS_MASK GENMASK(7, 0)
#define CDNS_PCIE_AT_OB_REGION_DESC1_BUS(bus) \
((bus) & CDNS_PCIE_AT_OB_REGION_DESC1_BUS_MASK)
/* Region r AXI Region Base Address Register 0 */
#define CDNS_PCIE_AT_OB_REGION_CPU_ADDR0(r) \
(CDNS_PCIE_AT_BASE + 0x0018 + ((r) & 0x1f) * 0x0020)
#define CDNS_PCIE_AT_OB_REGION_CPU_ADDR0_NBITS_MASK GENMASK(5, 0)
#define CDNS_PCIE_AT_OB_REGION_CPU_ADDR0_NBITS(nbits) \
(((nbits) - 1) & CDNS_PCIE_AT_OB_REGION_CPU_ADDR0_NBITS_MASK)
/* Region r AXI Region Base Address Register 1 */
#define CDNS_PCIE_AT_OB_REGION_CPU_ADDR1(r) \
(CDNS_PCIE_AT_BASE + 0x001c + ((r) & 0x1f) * 0x0020)
/* Root Port BAR Inbound PCIe to AXI Address Translation Register */
#define CDNS_PCIE_AT_IB_RP_BAR_ADDR0(bar) \
(CDNS_PCIE_AT_BASE + 0x0800 + (bar) * 0x0008)
#define CDNS_PCIE_AT_IB_RP_BAR_ADDR0_NBITS_MASK GENMASK(5, 0)
#define CDNS_PCIE_AT_IB_RP_BAR_ADDR0_NBITS(nbits) \
(((nbits) - 1) & CDNS_PCIE_AT_IB_RP_BAR_ADDR0_NBITS_MASK)
#define CDNS_PCIE_AT_IB_RP_BAR_ADDR1(bar) \
(CDNS_PCIE_AT_BASE + 0x0804 + (bar) * 0x0008)
/* AXI link down register */
#define CDNS_PCIE_AT_LINKDOWN (CDNS_PCIE_AT_BASE + 0x0824)
#define CDNS_PCIE_DETECT_QUIET_MIN_DELAY_MASK GENMASK(2, 1)
#define CDNS_PCIE_DETECT_QUIET_MIN_DELAY_SHIFT 1
#define CDNS_PCIE_DETECT_QUIET_MIN_DELAY(delay) \
(((delay) << CDNS_PCIE_DETECT_QUIET_MIN_DELAY_SHIFT) & \
CDNS_PCIE_DETECT_QUIET_MIN_DELAY_MASK)
#define CDNS_PCIE_RP_MAX_IB 0x3
#define LINK_TRAINING_ENABLE BIT(0)
#define LINK_WAIT_MAX_RETRIES 10
#define LINK_WAIT_UDELAY_MAX 100000
#define LINK_RETRAIN_MAX_RETRIES 1000
#define PCIE_USER_CMD_STATUS_REG_OFFSET 0x4
#define PCIE_USER_LINK_STATUS_REG_OFFSET 0x14
#define PCIE_USER_LINK_STATUS_MASK GENMASK(1, 0)
#define CDNS_TI_PCIE_MODE_RC BIT(7)
#define PCIE_MODE_SEL_MASK BIT(7)
#define PCIE_GEN_SEL_MASK GENMASK(1, 0)
#define PCIE_LINK_WIDTH_MASK GENMASK(9, 8)
enum cdns_ti_pcie_mode {
PCIE_MODE_RC,
PCIE_MODE_EP,
};
enum cdns_pcie_rp_bar {
RP_BAR_UNDEFINED = -1,
RP_BAR0,
RP_BAR1,
RP_NO_BAR
};
static u8 bar_aperture_mask[] = {
[RP_BAR0] = 0x1F,
[RP_BAR1] = 0xF,
};
enum link_status {
NO_RECEIVERS_DETECTED,
LINK_TRAINING_IN_PROGRESS,
LINK_UP_DL_IN_PROGRESS,
LINK_UP_DL_COMPLETED,
};
struct pcie_cdns_ti_data {
enum cdns_ti_pcie_mode mode;
unsigned int quirk_retrain_flag:1;
unsigned int quirk_detect_quiet_flag:1;
unsigned int max_lanes;
};
struct pcie_cdns_ti {
struct udevice *dev;
void __iomem *intd_cfg_base;
void __iomem *user_cfg_base;
void __iomem *reg_base;
void __iomem *cfg_base;
fdt_size_t cfg_size;
struct regmap *syscon_base;
struct pci_controller *host_bridge;
u32 device_id;
u32 max_link_speed;
u32 num_lanes;
u32 pcie_ctrl_offset;
u32 vendor_id;
u32 mode;
unsigned int quirk_retrain_flag:1;
unsigned int quirk_detect_quiet_flag:1;
bool avail_ib_bar[CDNS_PCIE_RP_MAX_IB];
/* IO, MEM & PREFETCH PCI regions */
struct pci_region io;
struct pci_region mem;
struct pci_region prefetch;
};
/* Cadence PCIe Controller register access helpers */
static inline void pcie_cdns_ti_writel(struct pcie_cdns_ti *pcie, u32 reg, u32 val)
{
writel(val, pcie->reg_base + reg);
}
static inline u32 pcie_cdns_ti_readl(struct pcie_cdns_ti *pcie, u32 reg)
{
return readl(pcie->reg_base + reg);
}
/* Root Port register access helpers */
static inline void pcie_cdns_ti_rp_writeb(struct pcie_cdns_ti *pcie,
u32 reg, u8 val)
{
void __iomem *addr = pcie->reg_base + CDNS_PCIE_RP_BASE + reg;
writeb(val, addr);
}
static inline void pcie_cdns_ti_rp_writew(struct pcie_cdns_ti *pcie,
u32 reg, u16 val)
{
void __iomem *addr = pcie->reg_base + CDNS_PCIE_RP_BASE + reg;
writew(val, addr);
}
static inline u16 pcie_cdns_ti_rp_readw(struct pcie_cdns_ti *pcie, u32 reg)
{
void __iomem *addr = pcie->reg_base + CDNS_PCIE_RP_BASE + reg;
return readw(addr);
}
/* User register access helpers */
static inline u32 pcie_cdns_ti_user_readl(struct pcie_cdns_ti *pcie, u32 offset)
{
return readl(pcie->user_cfg_base + offset);
}
static inline void pcie_cdns_ti_user_writel(struct pcie_cdns_ti *pcie, u32 offset,
u32 val)
{
writel(val, pcie->user_cfg_base + offset);
}
void __iomem *pcie_cdns_ti_map_bus(struct pcie_cdns_ti *pcie, pci_dev_t bdf,
uint offset)
{
int busnr, devnr, funcnr, devfn;
u32 addr0, desc0;
busnr = PCI_BUS(bdf);
devnr = PCI_DEV(bdf);
funcnr = PCI_FUNC(bdf);
devfn = (devnr << 3) | funcnr;
if (busnr == 0) {
if (devfn)
return NULL;
return pcie->reg_base + (offset & 0xfff);
}
if (!(pcie_cdns_ti_readl(pcie, CDNS_PCIE_LM_BASE) & 0x1))
return NULL;
pcie_cdns_ti_writel(pcie, CDNS_PCIE_AT_LINKDOWN, 0x0);
addr0 = CDNS_PCIE_AT_OB_REGION_PCI_ADDR0_NBITS(12) |
CDNS_PCIE_AT_OB_REGION_PCI_ADDR0_DEVFN(devfn) |
CDNS_PCIE_AT_OB_REGION_PCI_ADDR0_BUS(busnr);
pcie_cdns_ti_writel(pcie, CDNS_PCIE_AT_OB_REGION_PCI_ADDR0(0), addr0);
desc0 = CDNS_PCIE_AT_OB_REGION_DESC0_HARDCODED_RID |
CDNS_PCIE_AT_OB_REGION_DESC0_DEVFN(0);
if (busnr == 1)
desc0 |= CDNS_PCIE_AT_OB_REGION_DESC0_TYPE_CONF_TYPE0;
else
desc0 |= CDNS_PCIE_AT_OB_REGION_DESC0_TYPE_CONF_TYPE1;
pcie_cdns_ti_writel(pcie, CDNS_PCIE_AT_OB_REGION_DESC0(0), desc0);
return pcie->cfg_base + (offset & 0xfff);
}
static int pcie_cdns_ti_read_config(const struct udevice *bus, pci_dev_t bdf,
uint offset, ulong *valuep,
enum pci_size_t size)
{
struct pcie_cdns_ti *pcie = dev_get_priv(bus);
void __iomem *addr;
ulong value;
addr = pcie_cdns_ti_map_bus(pcie, bdf, offset & ~0x3);
if (!addr) {
debug("%s: bdf out of range\n", __func__);
*valuep = pci_get_ff(size);
return 0;
}
value = readl(addr);
*valuep = pci_conv_32_to_size(value, offset, size);
return 0;
}
static int pcie_cdns_ti_write_config(struct udevice *bus, pci_dev_t bdf,
uint offset, ulong value,
enum pci_size_t size)
{
struct pcie_cdns_ti *pcie = dev_get_priv(bus);
void __iomem *addr;
ulong prev;
addr = pcie_cdns_ti_map_bus(pcie, bdf, offset & ~0x3);
if (!addr) {
debug("%s: bdf out of range\n", __func__);
return 0;
}
prev = readl(addr);
value = pci_conv_size_to_32(prev, value, offset, size);
writel(value, addr);
return 0;
}
static int pcie_cdns_ti_ctrl_init(struct pcie_cdns_ti *pcie)
{
struct regmap *syscon = pcie->syscon_base;
u32 val = 0;
if (pcie->mode == PCIE_MODE_RC)
val = CDNS_TI_PCIE_MODE_RC;
/* Set mode of operation */
regmap_update_bits(syscon, pcie->pcie_ctrl_offset, PCIE_MODE_SEL_MASK,
val);
/* Set link speed */
regmap_update_bits(syscon, pcie->pcie_ctrl_offset, PCIE_GEN_SEL_MASK,
pcie->max_link_speed - 1);
/* Set link width */
regmap_update_bits(syscon, pcie->pcie_ctrl_offset, PCIE_LINK_WIDTH_MASK,
(pcie->num_lanes - 1) << 8);
return 0;
}
static void pcie_cdns_ti_detect_quiet_quirk(struct pcie_cdns_ti *pcie)
{
u32 delay = 0x3;
u32 ltssm_ctrl_cap;
ltssm_ctrl_cap = pcie_cdns_ti_readl(pcie, CDNS_PCIE_LTSSM_CTRL_CAP);
ltssm_ctrl_cap = ((ltssm_ctrl_cap &
~CDNS_PCIE_DETECT_QUIET_MIN_DELAY_MASK) |
CDNS_PCIE_DETECT_QUIET_MIN_DELAY(delay));
pcie_cdns_ti_writel(pcie, CDNS_PCIE_LTSSM_CTRL_CAP, ltssm_ctrl_cap);
ltssm_ctrl_cap = pcie_cdns_ti_readl(pcie, CDNS_PCIE_LTSSM_CTRL_CAP);
}
static void pcie_cdns_ti_start_user_link(struct pcie_cdns_ti *pcie)
{
u32 reg;
reg = pcie_cdns_ti_user_readl(pcie, PCIE_USER_CMD_STATUS_REG_OFFSET);
reg |= LINK_TRAINING_ENABLE;
pcie_cdns_ti_user_writel(pcie, PCIE_USER_CMD_STATUS_REG_OFFSET, reg);
}
static bool pcie_cdns_ti_user_link_up(struct pcie_cdns_ti *pcie)
{
u32 reg;
reg = pcie_cdns_ti_user_readl(pcie, PCIE_USER_LINK_STATUS_REG_OFFSET);
reg &= PCIE_USER_LINK_STATUS_MASK;
if (reg == LINK_UP_DL_COMPLETED)
return true;
return false;
}
static int pcie_cdns_ti_host_wait_for_link(struct pcie_cdns_ti *pcie)
{
int retries;
for (retries = 0; retries < LINK_WAIT_MAX_RETRIES; retries++) {
if (pcie_cdns_ti_user_link_up(pcie)) {
dev_info(pcie->dev, "link up\n");
return 0;
}
udelay(LINK_WAIT_UDELAY_MAX);
}
dev_err(pcie->dev, "failed to bring up link\n");
return -ETIMEDOUT;
}
static int pcie_cdns_ti_host_training_complete(struct pcie_cdns_ti *pcie)
{
u32 pcie_cap_off = CDNS_PCIE_RP_CAP_OFFSET;
int retries;
u16 lnk_stat;
/* Wait for link training to complete */
for (retries = 0; retries < LINK_RETRAIN_MAX_RETRIES; retries++) {
lnk_stat = pcie_cdns_ti_rp_readw(pcie, pcie_cap_off +
PCI_EXP_LNKSTA);
if (!(lnk_stat & PCI_EXP_LNKSTA_LT))
break;
udelay(1000);
}
if (!(lnk_stat & PCI_EXP_LNKSTA_LT))
return 0;
return -ETIMEDOUT;
}
static int pcie_cdns_ti_retrain_link(struct pcie_cdns_ti *pcie)
{
u32 lnk_cap_sls, pcie_cap_off = CDNS_PCIE_RP_CAP_OFFSET;
u16 lnk_stat, lnk_ctl;
int ret = 0;
lnk_cap_sls = pcie_cdns_ti_readl(pcie, (CDNS_PCIE_RP_BASE +
pcie_cap_off +
PCI_EXP_LNKCAP));
if ((lnk_cap_sls & PCI_EXP_LNKCAP_SLS) <= PCI_EXP_LNKCAP_SLS_2_5GB)
return ret;
lnk_stat = pcie_cdns_ti_rp_readw(pcie, pcie_cap_off + PCI_EXP_LNKSTA);
if ((lnk_stat & PCI_EXP_LNKSTA_CLS) == PCI_EXP_LNKSTA_CLS_2_5GB) {
lnk_ctl = pcie_cdns_ti_rp_readw(pcie,
pcie_cap_off + PCI_EXP_LNKCTL);
lnk_ctl |= PCI_EXP_LNKCTL_RL;
pcie_cdns_ti_rp_writew(pcie, pcie_cap_off + PCI_EXP_LNKCTL,
lnk_ctl);
ret = pcie_cdns_ti_host_training_complete(pcie);
if (ret)
return ret;
ret = pcie_cdns_ti_host_wait_for_link(pcie);
}
return ret;
}
static int pcie_cdns_ti_start_host_link(struct pcie_cdns_ti *pcie)
{
int ret;
ret = pcie_cdns_ti_host_wait_for_link(pcie);
if (!ret && pcie->quirk_retrain_flag)
ret = pcie_cdns_ti_retrain_link(pcie);
return ret;
}
static void pcie_cdns_ti_init_root_port(struct pcie_cdns_ti *pcie)
{
u32 val, ctrl, id;
ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_DISABLED;
val = CDNS_PCIE_LM_RC_BAR_CFG_BAR0_CTRL(ctrl) |
CDNS_PCIE_LM_RC_BAR_CFG_BAR1_CTRL(ctrl) |
CDNS_PCIE_LM_RC_BAR_CFG_PREFETCH_MEM_ENABLE |
CDNS_PCIE_LM_RC_BAR_CFG_PREFETCH_MEM_64BITS |
CDNS_PCIE_LM_RC_BAR_CFG_IO_ENABLE |
CDNS_PCIE_LM_RC_BAR_CFG_IO_32BITS;
pcie_cdns_ti_writel(pcie, CDNS_PCIE_LM_RC_BAR_CFG, val);
if (pcie->vendor_id != 0xffff) {
id = CDNS_PCIE_LM_ID_VENDOR(pcie->vendor_id) |
CDNS_PCIE_LM_ID_SUBSYS(pcie->vendor_id);
pcie_cdns_ti_writel(pcie, CDNS_PCIE_LM_ID, id);
}
if (pcie->device_id != 0xffff)
pcie_cdns_ti_rp_writew(pcie, PCI_DEVICE_ID, pcie->device_id);
pcie_cdns_ti_rp_writeb(pcie, PCI_CLASS_REVISION, 0);
pcie_cdns_ti_rp_writeb(pcie, PCI_CLASS_PROG, 0);
pcie_cdns_ti_rp_writew(pcie, PCI_CLASS_DEVICE, PCI_CLASS_BRIDGE_PCI);
}
void pcie_cdns_ti_set_outbound_region(struct pcie_cdns_ti *pcie, u8 busnr,
u8 fn, u32 r, bool is_io, u64 cpu_addr,
u64 pci_addr, u32 size)
{
u64 sz = 1ULL << fls64(size - 1);
int nbits = ilog2(sz);
u32 addr0, addr1, desc0, desc1;
if (nbits < 8)
nbits = 8;
addr0 = CDNS_PCIE_AT_OB_REGION_PCI_ADDR0_NBITS(nbits) |
(lower_32_bits(pci_addr) & GENMASK(31, 8));
addr1 = upper_32_bits(pci_addr);
pcie_cdns_ti_writel(pcie, CDNS_PCIE_AT_OB_REGION_PCI_ADDR0(r), addr0);
pcie_cdns_ti_writel(pcie, CDNS_PCIE_AT_OB_REGION_PCI_ADDR1(r), addr1);
if (is_io)
desc0 = CDNS_PCIE_AT_OB_REGION_DESC0_TYPE_IO;
else
desc0 = CDNS_PCIE_AT_OB_REGION_DESC0_TYPE_MEM;
desc1 = 0;
desc0 |= CDNS_PCIE_AT_OB_REGION_DESC0_HARDCODED_RID |
CDNS_PCIE_AT_OB_REGION_DESC0_DEVFN(0);
desc1 |= CDNS_PCIE_AT_OB_REGION_DESC1_BUS(busnr);
pcie_cdns_ti_writel(pcie, CDNS_PCIE_AT_OB_REGION_DESC0(r), desc0);
pcie_cdns_ti_writel(pcie, CDNS_PCIE_AT_OB_REGION_DESC1(r), desc1);
addr0 = CDNS_PCIE_AT_OB_REGION_CPU_ADDR0_NBITS(nbits) |
(lower_32_bits(cpu_addr) & GENMASK(31, 8));
addr1 = upper_32_bits(cpu_addr);
pcie_cdns_ti_writel(pcie, CDNS_PCIE_AT_OB_REGION_CPU_ADDR0(r), addr0);
pcie_cdns_ti_writel(pcie, CDNS_PCIE_AT_OB_REGION_CPU_ADDR1(r), addr1);
}
static int pcie_cdns_ti_bar_ib_config(struct pcie_cdns_ti *pcie,
enum cdns_pcie_rp_bar bar,
u64 cpu_addr, u64 size,
unsigned long flags)
{
u32 addr0, addr1, aperture, value;
if (!pcie->avail_ib_bar[bar])
return -EBUSY;
pcie->avail_ib_bar[bar] = false;
aperture = ilog2(size);
addr0 = CDNS_PCIE_AT_IB_RP_BAR_ADDR0_NBITS(aperture) |
(lower_32_bits(cpu_addr) & GENMASK(31, 8));
addr1 = upper_32_bits(cpu_addr);
pcie_cdns_ti_writel(pcie, CDNS_PCIE_AT_IB_RP_BAR_ADDR0(bar), addr0);
pcie_cdns_ti_writel(pcie, CDNS_PCIE_AT_IB_RP_BAR_ADDR1(bar), addr1);
if (bar == RP_NO_BAR)
return 0;
value = pcie_cdns_ti_readl(pcie, CDNS_PCIE_LM_RC_BAR_CFG);
value &= ~(LM_RC_BAR_CFG_CTRL_MEM_64BITS(bar) |
LM_RC_BAR_CFG_CTRL_PREF_MEM_64BITS(bar) |
LM_RC_BAR_CFG_CTRL_MEM_32BITS(bar) |
LM_RC_BAR_CFG_CTRL_PREF_MEM_32BITS(bar) |
LM_RC_BAR_CFG_APERTURE(bar, bar_aperture_mask[bar] + 2));
if (size + cpu_addr >= SZ_4G) {
if (!(flags & IORESOURCE_PREFETCH))
value |= LM_RC_BAR_CFG_CTRL_MEM_64BITS(bar);
value |= LM_RC_BAR_CFG_CTRL_PREF_MEM_64BITS(bar);
} else {
if (!(flags & IORESOURCE_PREFETCH))
value |= LM_RC_BAR_CFG_CTRL_MEM_32BITS(bar);
value |= LM_RC_BAR_CFG_CTRL_PREF_MEM_32BITS(bar);
}
value |= LM_RC_BAR_CFG_APERTURE(bar, aperture);
pcie_cdns_ti_writel(pcie, CDNS_PCIE_LM_RC_BAR_CFG, value);
return 0;
}
static int pcie_cdns_ti_map_dma_ranges(struct pcie_cdns_ti *pcie)
{
u32 no_bar_nbits = 32;
int ret;
/*
* Assume that DMA-Ranges have not been specified.
* TODO: Add support for "dma-ranges".
*/
dev_read_u32(pcie->dev, "cdns,no-bar-match-nbits",
&no_bar_nbits);
ret = pcie_cdns_ti_bar_ib_config(pcie, RP_NO_BAR, 0x0,
(u64)1 << no_bar_nbits, 0);
if (ret)
dev_err(pcie->dev, "IB BAR: %d config failed\n",
RP_NO_BAR);
return ret;
}
static int pcie_cdns_ti_init_address_translation(struct pcie_cdns_ti *pcie)
{
struct pci_controller *hb = pcie->host_bridge;
u32 addr0, addr1, desc1, region = 1;
u64 cpu_addr = (u64)pcie->cfg_base;
int i, busnr = 0;
/*
* Reserve region 0 for PCI configure space accesses:
* OB_REGION_PCI_ADDR0 and OB_REGION_DESC0 are updated dynamically by
* cdns_pci_map_bus(), other region registers are set here once for all.
*/
addr1 = 0; /* Should be programmed to zero. */
desc1 = CDNS_PCIE_AT_OB_REGION_DESC1_BUS(busnr);
pcie_cdns_ti_writel(pcie, CDNS_PCIE_AT_OB_REGION_PCI_ADDR1(0), addr1);
pcie_cdns_ti_writel(pcie, CDNS_PCIE_AT_OB_REGION_DESC1(0), desc1);
addr0 = CDNS_PCIE_AT_OB_REGION_CPU_ADDR0_NBITS(12) |
(lower_32_bits(cpu_addr) & GENMASK(31, 8));
addr1 = upper_32_bits(cpu_addr);
pcie_cdns_ti_writel(pcie, CDNS_PCIE_AT_OB_REGION_CPU_ADDR0(0), addr0);
pcie_cdns_ti_writel(pcie, CDNS_PCIE_AT_OB_REGION_CPU_ADDR1(0), addr1);
for (i = 0; i < hb->region_count; i++) {
if (hb->regions[i].flags == PCI_REGION_IO) {
pcie->io.phys_start = hb->regions[i].phys_start; /* IO base */
pcie->io.bus_start = hb->regions[i].bus_start; /* IO_bus_addr */
pcie->io.size = hb->regions[i].size; /* IO size */
pcie_cdns_ti_set_outbound_region(pcie, busnr, 0, region,
true, pcie->io.phys_start,
pcie->io.bus_start,
pcie->io.size);
} else {
pcie->mem.phys_start = hb->regions[i].phys_start; /* MEM base */
pcie->mem.bus_start = hb->regions[i].bus_start; /* MEM_bus_addr */
pcie->mem.size = hb->regions[i].size; /* MEM size */
pcie_cdns_ti_set_outbound_region(pcie, busnr, 0, region,
false, pcie->mem.phys_start,
pcie->mem.bus_start,
pcie->mem.size);
}
region++;
}
return pcie_cdns_ti_map_dma_ranges(pcie);
}
static int pcie_cdns_ti_host_init(struct pcie_cdns_ti *pcie)
{
pcie_cdns_ti_init_root_port(pcie);
return pcie_cdns_ti_init_address_translation(pcie);
}
static int pcie_cdns_ti_setup_host(struct pcie_cdns_ti *pcie)
{
enum cdns_pcie_rp_bar bar;
int ret;
if (pcie->quirk_detect_quiet_flag)
pcie_cdns_ti_detect_quiet_quirk(pcie);
pcie_cdns_ti_start_user_link(pcie);
ret = pcie_cdns_ti_start_host_link(pcie);
if (ret)
return ret;
for (bar = RP_BAR0; bar <= RP_NO_BAR; bar++)
pcie->avail_ib_bar[bar] = true;
ret = pcie_cdns_ti_host_init(pcie);
if (ret)
return ret;
return 0;
}
static int pcie_cdns_ti_probe(struct udevice *dev)
{
struct pcie_cdns_ti *pcie = dev_get_priv(dev);
struct udevice *pci_ctlr = pci_get_controller(dev);
struct pci_controller *host_bridge = dev_get_uclass_priv(pci_ctlr);
const struct pcie_cdns_ti_data *data;
struct power_domain pci_pwrdmn;
struct gpio_desc *gpiod;
struct phy serdes;
struct clk *clk;
int ret;
pcie->dev = dev;
pcie->host_bridge = host_bridge;
data = (struct pcie_cdns_ti_data *)dev_get_driver_data(dev);
if (!data)
return -EINVAL;
pcie->mode = data->mode;
pcie->quirk_retrain_flag = data->quirk_retrain_flag;
pcie->quirk_detect_quiet_flag = data->quirk_detect_quiet_flag;
if (pcie->num_lanes > data->max_lanes) {
dev_warn(dev, "cannot support %d lanes, defaulting to %d\n",
pcie->num_lanes, data->max_lanes);
pcie->num_lanes = data->max_lanes;
}
ret = power_domain_get_by_index(dev, &pci_pwrdmn, 0);
if (ret) {
dev_err(dev, "failed to get power domain\n");
return ret;
}
ret = power_domain_on(&pci_pwrdmn);
if (ret) {
dev_err(dev, "failed to power on\n");
return ret;
}
clk = devm_clk_get(dev, "fck");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
dev_err(dev, "failed to get functional clock\n");
return ret;
}
ret = generic_phy_get_by_name(dev, "pcie-phy", &serdes);
if (ret) {
dev_err(dev, "unable to get serdes");
return ret;
}
generic_phy_reset(&serdes);
generic_phy_init(&serdes);
generic_phy_power_on(&serdes);
ret = pcie_cdns_ti_ctrl_init(pcie);
if (ret)
return ret;
gpiod = devm_gpiod_get_optional(dev, "reset", GPIOD_IS_OUT);
if (IS_ERR(gpiod)) {
ret = PTR_ERR(gpiod);
if (ret != -EPROBE_DEFER)
dev_err(dev, "Failed to get reset GPIO\n");
return ret;
}
if (gpiod) {
ret = dm_gpio_set_value(gpiod, 0);
udelay(200);
ret = dm_gpio_set_value(gpiod, 1);
if (ret)
return ret;
}
ret = pcie_cdns_ti_setup_host(pcie);
if (ret)
return ret;
return 0;
}
static int pcie_cdns_ti_of_to_plat(struct udevice *dev)
{
struct pcie_cdns_ti *pcie = dev_get_priv(dev);
struct regmap *syscon;
u32 offset;
int ret;
pcie->intd_cfg_base = dev_remap_addr_name(dev, "intd_cfg");
if (!pcie->intd_cfg_base)
return -EINVAL;
pcie->user_cfg_base = dev_remap_addr_name(dev, "user_cfg");
if (!pcie->user_cfg_base)
return -EINVAL;
pcie->reg_base = dev_remap_addr_name(dev, "reg");
if (!pcie->reg_base)
return -EINVAL;
pcie->cfg_base = dev_remap_addr_name(dev, "cfg");
if (!pcie->cfg_base)
return -EINVAL;
pcie->vendor_id = 0xffff;
pcie->device_id = 0xffff;
dev_read_u32(dev, "vendor-id", &pcie->vendor_id);
dev_read_u32(dev, "device-id", &pcie->device_id);
ret = dev_read_u32(dev, "num-lanes", &pcie->num_lanes);
if (ret)
return ret;
ret = dev_read_u32(dev, "max-link-speed", &pcie->max_link_speed);
if (ret)
return ret;
syscon = syscon_regmap_lookup_by_phandle(dev, "ti,syscon-pcie-ctrl");
if (IS_ERR(syscon)) {
if (PTR_ERR(syscon) == -ENODEV)
return 0;
return PTR_ERR(syscon);
}
ret = dev_read_u32_index(dev, "ti,syscon-pcie-ctrl", 1, &offset);
if (ret)
return ret;
pcie->syscon_base = syscon;
pcie->pcie_ctrl_offset = offset;
return 0;
}
static const struct dm_pci_ops pcie_cdns_ti_ops = {
.read_config = pcie_cdns_ti_read_config,
.write_config = pcie_cdns_ti_write_config,
};
static const struct pcie_cdns_ti_data j7200_pcie_rc_data = {
.mode = PCIE_MODE_RC,
.quirk_detect_quiet_flag = true,
.max_lanes = 2,
};
static const struct udevice_id pcie_cdns_ti_ids[] = {
{
.compatible = "ti,j7200-pcie-host",
.data = (ulong)&j7200_pcie_rc_data,
},
{},
};
U_BOOT_DRIVER(pcie_cdns_ti) = {
.name = "pcie_cdns_ti",
.id = UCLASS_PCI,
.of_match = pcie_cdns_ti_ids,
.ops = &pcie_cdns_ti_ops,
.of_to_plat = pcie_cdns_ti_of_to_plat,
.probe = pcie_cdns_ti_probe,
.priv_auto = sizeof(struct pcie_cdns_ti),
};