| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Freescale i.MX23/i.MX28 common code |
| * |
| * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com> |
| * on behalf of DENX Software Engineering GmbH |
| * |
| * Based on code from LTIB: |
| * Copyright (C) 2010 Freescale Semiconductor, Inc. |
| */ |
| |
| #include <command.h> |
| #include <cpu_func.h> |
| #include <hang.h> |
| #include <init.h> |
| #include <net.h> |
| #include <asm/global_data.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <asm/io.h> |
| #include <asm/arch/clock.h> |
| #include <asm/mach-imx/dma.h> |
| #include <asm/arch/gpio.h> |
| #include <asm/arch/iomux.h> |
| #include <asm/arch/imx-regs.h> |
| #include <asm/arch/sys_proto.h> |
| #include <asm/sections.h> |
| #include <linux/compiler.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| /* Lowlevel init isn't used on i.MX28, so just have a dummy here */ |
| __weak void lowlevel_init(void) {} |
| |
| void reset_cpu(void) __attribute__((noreturn)); |
| |
| void reset_cpu(void) |
| { |
| struct mxs_rtc_regs *rtc_regs = |
| (struct mxs_rtc_regs *)MXS_RTC_BASE; |
| struct mxs_lcdif_regs *lcdif_regs = |
| (struct mxs_lcdif_regs *)MXS_LCDIF_BASE; |
| |
| /* |
| * Shut down the LCD controller as it interferes with BootROM boot mode |
| * pads sampling. |
| */ |
| writel(LCDIF_CTRL_RUN, &lcdif_regs->hw_lcdif_ctrl_clr); |
| |
| /* Wait 1 uS before doing the actual watchdog reset */ |
| writel(1, &rtc_regs->hw_rtc_watchdog); |
| writel(RTC_CTRL_WATCHDOGEN, &rtc_regs->hw_rtc_ctrl_set); |
| |
| /* Endless loop, reset will exit from here */ |
| for (;;) |
| ; |
| } |
| |
| /* |
| * This function will craft a jumptable at 0x0 which will redirect interrupt |
| * vectoring to proper location of U-Boot in RAM. |
| * |
| * The structure of the jumptable will be as follows: |
| * ldr pc, [pc, #0x18] ..... for each vector, thus repeated 8 times |
| * <destination address> ... for each previous ldr, thus also repeated 8 times |
| * |
| * The "ldr pc, [pc, #0x18]" instruction above loads address from memory at |
| * offset 0x18 from current value of PC register. Note that PC is already |
| * incremented by 4 when computing the offset, so the effective offset is |
| * actually 0x20, this the associated <destination address>. Loading the PC |
| * register with an address performs a jump to that address. |
| */ |
| noinline __attribute__((target("arm"))) |
| void mx28_fixup_vt(uint32_t start_addr) |
| { |
| /* ldr pc, [pc, #0x18] */ |
| const uint32_t ldr_pc = 0xe59ff018; |
| /* Jumptable location is 0x0 */ |
| uint32_t *vt = (uint32_t *)0x0; |
| int i; |
| |
| for (i = 0; i < 8; i++) { |
| /* cppcheck-suppress nullPointer */ |
| vt[i] = ldr_pc; |
| /* cppcheck-suppress nullPointer */ |
| vt[i + 8] = start_addr + (4 * i); |
| } |
| |
| /* Make sure ARM core points to low vectors */ |
| set_cr(get_cr() & ~CR_V); |
| } |
| |
| #ifdef CONFIG_ARCH_MISC_INIT |
| int arch_misc_init(void) |
| { |
| mx28_fixup_vt(gd->relocaddr); |
| return 0; |
| } |
| #endif |
| |
| int arch_cpu_init(void) |
| { |
| struct mxs_clkctrl_regs *clkctrl_regs = |
| (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| |
| mx28_fixup_vt((uint32_t)_start); |
| |
| /* |
| * Enable NAND clock |
| */ |
| /* Set bypass bit */ |
| writel(CLKCTRL_CLKSEQ_BYPASS_GPMI, |
| &clkctrl_regs->hw_clkctrl_clkseq_set); |
| |
| /* Set GPMI clock to ref_xtal / 1 */ |
| clrbits_le32(&clkctrl_regs->hw_clkctrl_gpmi, CLKCTRL_GPMI_CLKGATE); |
| while (readl(&clkctrl_regs->hw_clkctrl_gpmi) & CLKCTRL_GPMI_CLKGATE) |
| ; |
| clrsetbits_le32(&clkctrl_regs->hw_clkctrl_gpmi, |
| CLKCTRL_GPMI_DIV_MASK, 1); |
| |
| udelay(1000); |
| |
| /* |
| * Configure GPIO unit |
| */ |
| mxs_gpio_init(); |
| |
| #ifdef CONFIG_APBH_DMA |
| /* Start APBH DMA */ |
| mxs_dma_init(); |
| #endif |
| |
| return 0; |
| } |
| |
| u32 get_cpu_rev(void) |
| { |
| struct mxs_digctl_regs *digctl_regs = |
| (struct mxs_digctl_regs *)MXS_DIGCTL_BASE; |
| uint8_t rev = readl(&digctl_regs->hw_digctl_chipid) & 0x000000FF; |
| |
| switch (readl(&digctl_regs->hw_digctl_chipid) & HW_DIGCTL_CHIPID_MASK) { |
| case HW_DIGCTL_CHIPID_MX23: |
| switch (rev) { |
| case 0x0: |
| case 0x1: |
| case 0x2: |
| case 0x3: |
| case 0x4: |
| return (MXC_CPU_MX23 << 12) | (rev + 0x10); |
| default: |
| return 0; |
| } |
| case HW_DIGCTL_CHIPID_MX28: |
| switch (rev) { |
| case 0x1: |
| return (MXC_CPU_MX28 << 12) | 0x12; |
| default: |
| return 0; |
| } |
| default: |
| return 0; |
| } |
| } |
| |
| #if defined(CONFIG_DISPLAY_CPUINFO) |
| const char *get_imx_type(u32 imxtype) |
| { |
| switch (imxtype) { |
| case MXC_CPU_MX23: |
| return "23"; |
| case MXC_CPU_MX28: |
| return "28"; |
| default: |
| return "??"; |
| } |
| } |
| |
| int print_cpuinfo(void) |
| { |
| u32 cpurev; |
| struct mxs_spl_data *data = MXS_SPL_DATA; |
| |
| cpurev = get_cpu_rev(); |
| printf("CPU: Freescale i.MX%s rev%d.%d at %d MHz\n", |
| get_imx_type((cpurev & 0xFF000) >> 12), |
| (cpurev & 0x000F0) >> 4, |
| (cpurev & 0x0000F) >> 0, |
| mxc_get_clock(MXC_ARM_CLK) / 1000000); |
| printf("BOOT: %s\n", mxs_boot_modes[data->boot_mode_idx].mode); |
| return 0; |
| } |
| #endif |
| |
| int do_mx28_showclocks(struct cmd_tbl *cmdtp, int flag, int argc, |
| char *const argv[]) |
| { |
| printf("CPU: %3d MHz\n", mxc_get_clock(MXC_ARM_CLK) / 1000000); |
| printf("BUS: %3d MHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000000); |
| printf("EMI: %3d MHz\n", mxc_get_clock(MXC_EMI_CLK)); |
| printf("GPMI: %3d MHz\n", mxc_get_clock(MXC_GPMI_CLK) / 1000000); |
| return 0; |
| } |
| |
| /* |
| * Initializes on-chip ethernet controllers. |
| */ |
| #if defined(CONFIG_MX28) && defined(CONFIG_CMD_NET) |
| int cpu_eth_init(struct bd_info *bis) |
| { |
| struct mxs_clkctrl_regs *clkctrl_regs = |
| (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| |
| /* Turn on ENET clocks */ |
| clrbits_le32(&clkctrl_regs->hw_clkctrl_enet, |
| CLKCTRL_ENET_SLEEP | CLKCTRL_ENET_DISABLE); |
| |
| /* Set up ENET PLL for 50 MHz */ |
| /* Power on ENET PLL */ |
| writel(CLKCTRL_PLL2CTRL0_POWER, |
| &clkctrl_regs->hw_clkctrl_pll2ctrl0_set); |
| |
| udelay(10); |
| |
| /* Gate on ENET PLL */ |
| writel(CLKCTRL_PLL2CTRL0_CLKGATE, |
| &clkctrl_regs->hw_clkctrl_pll2ctrl0_clr); |
| |
| /* Enable pad output */ |
| setbits_le32(&clkctrl_regs->hw_clkctrl_enet, CLKCTRL_ENET_CLK_OUT_EN); |
| |
| return 0; |
| } |
| #endif |
| |
| __weak void mx28_adjust_mac(int dev_id, unsigned char *mac) |
| { |
| mac[0] = 0x00; |
| mac[1] = 0x04; /* Use FSL vendor MAC address by default */ |
| |
| if (dev_id == 1) /* Let MAC1 be MAC0 + 1 by default */ |
| mac[5] += 1; |
| } |
| |
| #ifdef CONFIG_MX28_FEC_MAC_IN_OCOTP |
| |
| #define MXS_OCOTP_MAX_TIMEOUT 1000000 |
| void imx_get_mac_from_fuse(int dev_id, unsigned char *mac) |
| { |
| struct mxs_ocotp_regs *ocotp_regs = |
| (struct mxs_ocotp_regs *)MXS_OCOTP_BASE; |
| uint32_t data; |
| |
| memset(mac, 0, 6); |
| |
| writel(OCOTP_CTRL_RD_BANK_OPEN, &ocotp_regs->hw_ocotp_ctrl_set); |
| |
| if (mxs_wait_mask_clr(&ocotp_regs->hw_ocotp_ctrl_reg, OCOTP_CTRL_BUSY, |
| MXS_OCOTP_MAX_TIMEOUT)) { |
| printf("MXS FEC: Can't get MAC from OCOTP\n"); |
| return; |
| } |
| |
| data = readl(&ocotp_regs->hw_ocotp_cust0); |
| |
| mac[2] = (data >> 24) & 0xff; |
| mac[3] = (data >> 16) & 0xff; |
| mac[4] = (data >> 8) & 0xff; |
| mac[5] = data & 0xff; |
| mx28_adjust_mac(dev_id, mac); |
| } |
| #else |
| void imx_get_mac_from_fuse(int dev_id, unsigned char *mac) |
| { |
| memset(mac, 0, 6); |
| } |
| #endif |
| |
| int mxs_dram_init(void) |
| { |
| struct mxs_spl_data *data = MXS_SPL_DATA; |
| |
| if (data->mem_dram_size == 0) { |
| printf("MXS:\n" |
| "Error, the RAM size passed up from SPL is 0!\n"); |
| hang(); |
| } |
| |
| gd->ram_size = data->mem_dram_size; |
| return 0; |
| } |
| |
| U_BOOT_CMD( |
| clocks, CONFIG_SYS_MAXARGS, 1, do_mx28_showclocks, |
| "display clocks", |
| "" |
| ); |