| /* |
| * SPI flash operations |
| * |
| * Copyright (C) 2008 Atmel Corporation |
| * Copyright (C) 2010 Reinhard Meyer, EMK Elektronik |
| * Copyright (C) 2013 Jagannadha Sutradharudu Teki, Xilinx Inc. |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <errno.h> |
| #include <malloc.h> |
| #include <mapmem.h> |
| #include <spi.h> |
| #include <spi_flash.h> |
| #include <watchdog.h> |
| #include <linux/compiler.h> |
| #include <linux/log2.h> |
| |
| #include "sf_internal.h" |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| static void spi_flash_addr(u32 addr, u8 *cmd) |
| { |
| /* cmd[0] is actual command */ |
| cmd[1] = addr >> 16; |
| cmd[2] = addr >> 8; |
| cmd[3] = addr >> 0; |
| } |
| |
| /* Read commands array */ |
| static u8 spi_read_cmds_array[] = { |
| CMD_READ_ARRAY_SLOW, |
| CMD_READ_ARRAY_FAST, |
| CMD_READ_DUAL_OUTPUT_FAST, |
| CMD_READ_DUAL_IO_FAST, |
| CMD_READ_QUAD_OUTPUT_FAST, |
| CMD_READ_QUAD_IO_FAST, |
| }; |
| |
| static int read_sr(struct spi_flash *flash, u8 *rs) |
| { |
| int ret; |
| u8 cmd; |
| |
| cmd = CMD_READ_STATUS; |
| ret = spi_flash_read_common(flash, &cmd, 1, rs, 1); |
| if (ret < 0) { |
| debug("SF: fail to read status register\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int read_fsr(struct spi_flash *flash, u8 *fsr) |
| { |
| int ret; |
| const u8 cmd = CMD_FLAG_STATUS; |
| |
| ret = spi_flash_read_common(flash, &cmd, 1, fsr, 1); |
| if (ret < 0) { |
| debug("SF: fail to read flag status register\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int write_sr(struct spi_flash *flash, u8 ws) |
| { |
| u8 cmd; |
| int ret; |
| |
| cmd = CMD_WRITE_STATUS; |
| ret = spi_flash_write_common(flash, &cmd, 1, &ws, 1); |
| if (ret < 0) { |
| debug("SF: fail to write status register\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) |
| static int read_cr(struct spi_flash *flash, u8 *rc) |
| { |
| int ret; |
| u8 cmd; |
| |
| cmd = CMD_READ_CONFIG; |
| ret = spi_flash_read_common(flash, &cmd, 1, rc, 1); |
| if (ret < 0) { |
| debug("SF: fail to read config register\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int write_cr(struct spi_flash *flash, u8 wc) |
| { |
| u8 data[2]; |
| u8 cmd; |
| int ret; |
| |
| ret = read_sr(flash, &data[0]); |
| if (ret < 0) |
| return ret; |
| |
| cmd = CMD_WRITE_STATUS; |
| data[1] = wc; |
| ret = spi_flash_write_common(flash, &cmd, 1, &data, 2); |
| if (ret) { |
| debug("SF: fail to write config register\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_SPI_FLASH_BAR |
| static int spi_flash_write_bar(struct spi_flash *flash, u32 offset) |
| { |
| u8 cmd, bank_sel; |
| int ret; |
| |
| bank_sel = offset / (SPI_FLASH_16MB_BOUN << flash->shift); |
| if (bank_sel == flash->bank_curr) |
| goto bar_end; |
| |
| cmd = flash->bank_write_cmd; |
| ret = spi_flash_write_common(flash, &cmd, 1, &bank_sel, 1); |
| if (ret < 0) { |
| debug("SF: fail to write bank register\n"); |
| return ret; |
| } |
| |
| bar_end: |
| flash->bank_curr = bank_sel; |
| return flash->bank_curr; |
| } |
| |
| static int spi_flash_read_bar(struct spi_flash *flash, u8 idcode0) |
| { |
| u8 curr_bank = 0; |
| int ret; |
| |
| if (flash->size <= SPI_FLASH_16MB_BOUN) |
| goto bank_end; |
| |
| switch (idcode0) { |
| case SPI_FLASH_CFI_MFR_SPANSION: |
| flash->bank_read_cmd = CMD_BANKADDR_BRRD; |
| flash->bank_write_cmd = CMD_BANKADDR_BRWR; |
| default: |
| flash->bank_read_cmd = CMD_EXTNADDR_RDEAR; |
| flash->bank_write_cmd = CMD_EXTNADDR_WREAR; |
| } |
| |
| ret = spi_flash_read_common(flash, &flash->bank_read_cmd, 1, |
| &curr_bank, 1); |
| if (ret) { |
| debug("SF: fail to read bank addr register\n"); |
| return ret; |
| } |
| |
| bank_end: |
| flash->bank_curr = curr_bank; |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_SF_DUAL_FLASH |
| static void spi_flash_dual(struct spi_flash *flash, u32 *addr) |
| { |
| switch (flash->dual_flash) { |
| case SF_DUAL_STACKED_FLASH: |
| if (*addr >= (flash->size >> 1)) { |
| *addr -= flash->size >> 1; |
| flash->spi->flags |= SPI_XFER_U_PAGE; |
| } else { |
| flash->spi->flags &= ~SPI_XFER_U_PAGE; |
| } |
| break; |
| case SF_DUAL_PARALLEL_FLASH: |
| *addr >>= flash->shift; |
| break; |
| default: |
| debug("SF: Unsupported dual_flash=%d\n", flash->dual_flash); |
| break; |
| } |
| } |
| #endif |
| |
| static int spi_flash_sr_ready(struct spi_flash *flash) |
| { |
| u8 sr; |
| int ret; |
| |
| ret = read_sr(flash, &sr); |
| if (ret < 0) |
| return ret; |
| |
| return !(sr & STATUS_WIP); |
| } |
| |
| static int spi_flash_fsr_ready(struct spi_flash *flash) |
| { |
| u8 fsr; |
| int ret; |
| |
| ret = read_fsr(flash, &fsr); |
| if (ret < 0) |
| return ret; |
| |
| return fsr & STATUS_PEC; |
| } |
| |
| static int spi_flash_ready(struct spi_flash *flash) |
| { |
| int sr, fsr; |
| |
| sr = spi_flash_sr_ready(flash); |
| if (sr < 0) |
| return sr; |
| |
| fsr = 1; |
| if (flash->flags & SNOR_F_USE_FSR) { |
| fsr = spi_flash_fsr_ready(flash); |
| if (fsr < 0) |
| return fsr; |
| } |
| |
| return sr && fsr; |
| } |
| |
| static int spi_flash_cmd_wait_ready(struct spi_flash *flash, |
| unsigned long timeout) |
| { |
| int timebase, ret; |
| |
| timebase = get_timer(0); |
| |
| while (get_timer(timebase) < timeout) { |
| ret = spi_flash_ready(flash); |
| if (ret < 0) |
| return ret; |
| if (ret) |
| return 0; |
| } |
| |
| printf("SF: Timeout!\n"); |
| |
| return -ETIMEDOUT; |
| } |
| |
| int spi_flash_write_common(struct spi_flash *flash, const u8 *cmd, |
| size_t cmd_len, const void *buf, size_t buf_len) |
| { |
| struct spi_slave *spi = flash->spi; |
| unsigned long timeout = SPI_FLASH_PROG_TIMEOUT; |
| int ret; |
| |
| if (buf == NULL) |
| timeout = SPI_FLASH_PAGE_ERASE_TIMEOUT; |
| |
| ret = spi_claim_bus(flash->spi); |
| if (ret) { |
| debug("SF: unable to claim SPI bus\n"); |
| return ret; |
| } |
| |
| ret = spi_flash_cmd_write_enable(flash); |
| if (ret < 0) { |
| debug("SF: enabling write failed\n"); |
| return ret; |
| } |
| |
| ret = spi_flash_cmd_write(spi, cmd, cmd_len, buf, buf_len); |
| if (ret < 0) { |
| debug("SF: write cmd failed\n"); |
| return ret; |
| } |
| |
| ret = spi_flash_cmd_wait_ready(flash, timeout); |
| if (ret < 0) { |
| debug("SF: write %s timed out\n", |
| timeout == SPI_FLASH_PROG_TIMEOUT ? |
| "program" : "page erase"); |
| return ret; |
| } |
| |
| spi_release_bus(spi); |
| |
| return ret; |
| } |
| |
| int spi_flash_cmd_erase_ops(struct spi_flash *flash, u32 offset, size_t len) |
| { |
| u32 erase_size, erase_addr; |
| u8 cmd[SPI_FLASH_CMD_LEN]; |
| int ret = -1; |
| |
| erase_size = flash->erase_size; |
| if (offset % erase_size || len % erase_size) { |
| debug("SF: Erase offset/length not multiple of erase size\n"); |
| return -1; |
| } |
| |
| if (flash->flash_is_locked) { |
| if (flash->flash_is_locked(flash, offset, len) > 0) { |
| printf("offset 0x%x is protected and cannot be erased\n", |
| offset); |
| return -EINVAL; |
| } |
| } |
| |
| cmd[0] = flash->erase_cmd; |
| while (len) { |
| erase_addr = offset; |
| |
| #ifdef CONFIG_SF_DUAL_FLASH |
| if (flash->dual_flash > SF_SINGLE_FLASH) |
| spi_flash_dual(flash, &erase_addr); |
| #endif |
| #ifdef CONFIG_SPI_FLASH_BAR |
| ret = spi_flash_write_bar(flash, erase_addr); |
| if (ret < 0) |
| return ret; |
| #endif |
| spi_flash_addr(erase_addr, cmd); |
| |
| debug("SF: erase %2x %2x %2x %2x (%x)\n", cmd[0], cmd[1], |
| cmd[2], cmd[3], erase_addr); |
| |
| ret = spi_flash_write_common(flash, cmd, sizeof(cmd), NULL, 0); |
| if (ret < 0) { |
| debug("SF: erase failed\n"); |
| break; |
| } |
| |
| offset += erase_size; |
| len -= erase_size; |
| } |
| |
| return ret; |
| } |
| |
| int spi_flash_cmd_write_ops(struct spi_flash *flash, u32 offset, |
| size_t len, const void *buf) |
| { |
| unsigned long byte_addr, page_size; |
| u32 write_addr; |
| size_t chunk_len, actual; |
| u8 cmd[SPI_FLASH_CMD_LEN]; |
| int ret = -1; |
| |
| page_size = flash->page_size; |
| |
| if (flash->flash_is_locked) { |
| if (flash->flash_is_locked(flash, offset, len) > 0) { |
| printf("offset 0x%x is protected and cannot be written\n", |
| offset); |
| return -EINVAL; |
| } |
| } |
| |
| cmd[0] = flash->write_cmd; |
| for (actual = 0; actual < len; actual += chunk_len) { |
| write_addr = offset; |
| |
| #ifdef CONFIG_SF_DUAL_FLASH |
| if (flash->dual_flash > SF_SINGLE_FLASH) |
| spi_flash_dual(flash, &write_addr); |
| #endif |
| #ifdef CONFIG_SPI_FLASH_BAR |
| ret = spi_flash_write_bar(flash, write_addr); |
| if (ret < 0) |
| return ret; |
| #endif |
| byte_addr = offset % page_size; |
| chunk_len = min(len - actual, (size_t)(page_size - byte_addr)); |
| |
| if (flash->spi->max_write_size) |
| chunk_len = min(chunk_len, |
| (size_t)flash->spi->max_write_size); |
| |
| spi_flash_addr(write_addr, cmd); |
| |
| debug("SF: 0x%p => cmd = { 0x%02x 0x%02x%02x%02x } chunk_len = %zu\n", |
| buf + actual, cmd[0], cmd[1], cmd[2], cmd[3], chunk_len); |
| |
| ret = spi_flash_write_common(flash, cmd, sizeof(cmd), |
| buf + actual, chunk_len); |
| if (ret < 0) { |
| debug("SF: write failed\n"); |
| break; |
| } |
| |
| offset += chunk_len; |
| } |
| |
| return ret; |
| } |
| |
| int spi_flash_read_common(struct spi_flash *flash, const u8 *cmd, |
| size_t cmd_len, void *data, size_t data_len) |
| { |
| struct spi_slave *spi = flash->spi; |
| int ret; |
| |
| ret = spi_claim_bus(flash->spi); |
| if (ret) { |
| debug("SF: unable to claim SPI bus\n"); |
| return ret; |
| } |
| |
| ret = spi_flash_cmd_read(spi, cmd, cmd_len, data, data_len); |
| if (ret < 0) { |
| debug("SF: read cmd failed\n"); |
| return ret; |
| } |
| |
| spi_release_bus(spi); |
| |
| return ret; |
| } |
| |
| void __weak spi_flash_copy_mmap(void *data, void *offset, size_t len) |
| { |
| memcpy(data, offset, len); |
| } |
| |
| int spi_flash_cmd_read_ops(struct spi_flash *flash, u32 offset, |
| size_t len, void *data) |
| { |
| u8 *cmd, cmdsz; |
| u32 remain_len, read_len, read_addr; |
| int bank_sel = 0; |
| int ret = -1; |
| |
| /* Handle memory-mapped SPI */ |
| if (flash->memory_map) { |
| ret = spi_claim_bus(flash->spi); |
| if (ret) { |
| debug("SF: unable to claim SPI bus\n"); |
| return ret; |
| } |
| spi_xfer(flash->spi, 0, NULL, NULL, SPI_XFER_MMAP); |
| spi_flash_copy_mmap(data, flash->memory_map + offset, len); |
| spi_xfer(flash->spi, 0, NULL, NULL, SPI_XFER_MMAP_END); |
| spi_release_bus(flash->spi); |
| return 0; |
| } |
| |
| cmdsz = SPI_FLASH_CMD_LEN + flash->dummy_byte; |
| cmd = calloc(1, cmdsz); |
| if (!cmd) { |
| debug("SF: Failed to allocate cmd\n"); |
| return -ENOMEM; |
| } |
| |
| cmd[0] = flash->read_cmd; |
| while (len) { |
| read_addr = offset; |
| |
| #ifdef CONFIG_SF_DUAL_FLASH |
| if (flash->dual_flash > SF_SINGLE_FLASH) |
| spi_flash_dual(flash, &read_addr); |
| #endif |
| #ifdef CONFIG_SPI_FLASH_BAR |
| ret = spi_flash_write_bar(flash, read_addr); |
| if (ret < 0) |
| return ret; |
| bank_sel = flash->bank_curr; |
| #endif |
| remain_len = ((SPI_FLASH_16MB_BOUN << flash->shift) * |
| (bank_sel + 1)) - offset; |
| if (len < remain_len) |
| read_len = len; |
| else |
| read_len = remain_len; |
| |
| spi_flash_addr(read_addr, cmd); |
| |
| ret = spi_flash_read_common(flash, cmd, cmdsz, data, read_len); |
| if (ret < 0) { |
| debug("SF: read failed\n"); |
| break; |
| } |
| |
| offset += read_len; |
| len -= read_len; |
| data += read_len; |
| } |
| |
| free(cmd); |
| return ret; |
| } |
| |
| #ifdef CONFIG_SPI_FLASH_SST |
| static int sst_byte_write(struct spi_flash *flash, u32 offset, const void *buf) |
| { |
| int ret; |
| u8 cmd[4] = { |
| CMD_SST_BP, |
| offset >> 16, |
| offset >> 8, |
| offset, |
| }; |
| |
| debug("BP[%02x]: 0x%p => cmd = { 0x%02x 0x%06x }\n", |
| spi_w8r8(flash->spi, CMD_READ_STATUS), buf, cmd[0], offset); |
| |
| ret = spi_flash_cmd_write_enable(flash); |
| if (ret) |
| return ret; |
| |
| ret = spi_flash_cmd_write(flash->spi, cmd, sizeof(cmd), buf, 1); |
| if (ret) |
| return ret; |
| |
| return spi_flash_cmd_wait_ready(flash, SPI_FLASH_PROG_TIMEOUT); |
| } |
| |
| int sst_write_wp(struct spi_flash *flash, u32 offset, size_t len, |
| const void *buf) |
| { |
| size_t actual, cmd_len; |
| int ret; |
| u8 cmd[4]; |
| |
| ret = spi_claim_bus(flash->spi); |
| if (ret) { |
| debug("SF: Unable to claim SPI bus\n"); |
| return ret; |
| } |
| |
| /* If the data is not word aligned, write out leading single byte */ |
| actual = offset % 2; |
| if (actual) { |
| ret = sst_byte_write(flash, offset, buf); |
| if (ret) |
| goto done; |
| } |
| offset += actual; |
| |
| ret = spi_flash_cmd_write_enable(flash); |
| if (ret) |
| goto done; |
| |
| cmd_len = 4; |
| cmd[0] = CMD_SST_AAI_WP; |
| cmd[1] = offset >> 16; |
| cmd[2] = offset >> 8; |
| cmd[3] = offset; |
| |
| for (; actual < len - 1; actual += 2) { |
| debug("WP[%02x]: 0x%p => cmd = { 0x%02x 0x%06x }\n", |
| spi_w8r8(flash->spi, CMD_READ_STATUS), buf + actual, |
| cmd[0], offset); |
| |
| ret = spi_flash_cmd_write(flash->spi, cmd, cmd_len, |
| buf + actual, 2); |
| if (ret) { |
| debug("SF: sst word program failed\n"); |
| break; |
| } |
| |
| ret = spi_flash_cmd_wait_ready(flash, SPI_FLASH_PROG_TIMEOUT); |
| if (ret) |
| break; |
| |
| cmd_len = 1; |
| offset += 2; |
| } |
| |
| if (!ret) |
| ret = spi_flash_cmd_write_disable(flash); |
| |
| /* If there is a single trailing byte, write it out */ |
| if (!ret && actual != len) |
| ret = sst_byte_write(flash, offset, buf + actual); |
| |
| done: |
| debug("SF: sst: program %s %zu bytes @ 0x%zx\n", |
| ret ? "failure" : "success", len, offset - actual); |
| |
| spi_release_bus(flash->spi); |
| return ret; |
| } |
| |
| int sst_write_bp(struct spi_flash *flash, u32 offset, size_t len, |
| const void *buf) |
| { |
| size_t actual; |
| int ret; |
| |
| ret = spi_claim_bus(flash->spi); |
| if (ret) { |
| debug("SF: Unable to claim SPI bus\n"); |
| return ret; |
| } |
| |
| for (actual = 0; actual < len; actual++) { |
| ret = sst_byte_write(flash, offset, buf + actual); |
| if (ret) { |
| debug("SF: sst byte program failed\n"); |
| break; |
| } |
| offset++; |
| } |
| |
| if (!ret) |
| ret = spi_flash_cmd_write_disable(flash); |
| |
| debug("SF: sst: program %s %zu bytes @ 0x%zx\n", |
| ret ? "failure" : "success", len, offset - actual); |
| |
| spi_release_bus(flash->spi); |
| return ret; |
| } |
| #endif |
| |
| #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST) |
| static void stm_get_locked_range(struct spi_flash *flash, u8 sr, loff_t *ofs, |
| u32 *len) |
| { |
| u8 mask = SR_BP2 | SR_BP1 | SR_BP0; |
| int shift = ffs(mask) - 1; |
| int pow; |
| |
| if (!(sr & mask)) { |
| /* No protection */ |
| *ofs = 0; |
| *len = 0; |
| } else { |
| pow = ((sr & mask) ^ mask) >> shift; |
| *len = flash->size >> pow; |
| *ofs = flash->size - *len; |
| } |
| } |
| |
| /* |
| * Return 1 if the entire region is locked, 0 otherwise |
| */ |
| static int stm_is_locked_sr(struct spi_flash *flash, u32 ofs, u32 len, |
| u8 sr) |
| { |
| loff_t lock_offs; |
| u32 lock_len; |
| |
| stm_get_locked_range(flash, sr, &lock_offs, &lock_len); |
| |
| return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs); |
| } |
| |
| /* |
| * Check if a region of the flash is (completely) locked. See stm_lock() for |
| * more info. |
| * |
| * Returns 1 if entire region is locked, 0 if any portion is unlocked, and |
| * negative on errors. |
| */ |
| int stm_is_locked(struct spi_flash *flash, u32 ofs, size_t len) |
| { |
| int status; |
| u8 sr; |
| |
| status = read_sr(flash, &sr); |
| if (status < 0) |
| return status; |
| |
| return stm_is_locked_sr(flash, ofs, len, sr); |
| } |
| |
| /* |
| * Lock a region of the flash. Compatible with ST Micro and similar flash. |
| * Supports only the block protection bits BP{0,1,2} in the status register |
| * (SR). Does not support these features found in newer SR bitfields: |
| * - TB: top/bottom protect - only handle TB=0 (top protect) |
| * - SEC: sector/block protect - only handle SEC=0 (block protect) |
| * - CMP: complement protect - only support CMP=0 (range is not complemented) |
| * |
| * Sample table portion for 8MB flash (Winbond w25q64fw): |
| * |
| * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion |
| * -------------------------------------------------------------------------- |
| * X | X | 0 | 0 | 0 | NONE | NONE |
| * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64 |
| * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32 |
| * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16 |
| * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8 |
| * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4 |
| * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2 |
| * X | X | 1 | 1 | 1 | 8 MB | ALL |
| * |
| * Returns negative on errors, 0 on success. |
| */ |
| int stm_lock(struct spi_flash *flash, u32 ofs, size_t len) |
| { |
| u8 status_old, status_new; |
| u8 mask = SR_BP2 | SR_BP1 | SR_BP0; |
| u8 shift = ffs(mask) - 1, pow, val; |
| int ret; |
| |
| ret = read_sr(flash, &status_old); |
| if (ret < 0) |
| return ret; |
| |
| /* SPI NOR always locks to the end */ |
| if (ofs + len != flash->size) { |
| /* Does combined region extend to end? */ |
| if (!stm_is_locked_sr(flash, ofs + len, flash->size - ofs - len, |
| status_old)) |
| return -EINVAL; |
| len = flash->size - ofs; |
| } |
| |
| /* |
| * Need smallest pow such that: |
| * |
| * 1 / (2^pow) <= (len / size) |
| * |
| * so (assuming power-of-2 size) we do: |
| * |
| * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len)) |
| */ |
| pow = ilog2(flash->size) - ilog2(len); |
| val = mask - (pow << shift); |
| if (val & ~mask) |
| return -EINVAL; |
| |
| /* Don't "lock" with no region! */ |
| if (!(val & mask)) |
| return -EINVAL; |
| |
| status_new = (status_old & ~mask) | val; |
| |
| /* Only modify protection if it will not unlock other areas */ |
| if ((status_new & mask) <= (status_old & mask)) |
| return -EINVAL; |
| |
| write_sr(flash, status_new); |
| |
| return 0; |
| } |
| |
| /* |
| * Unlock a region of the flash. See stm_lock() for more info |
| * |
| * Returns negative on errors, 0 on success. |
| */ |
| int stm_unlock(struct spi_flash *flash, u32 ofs, size_t len) |
| { |
| uint8_t status_old, status_new; |
| u8 mask = SR_BP2 | SR_BP1 | SR_BP0; |
| u8 shift = ffs(mask) - 1, pow, val; |
| int ret; |
| |
| ret = read_sr(flash, &status_old); |
| if (ret < 0) |
| return ret; |
| |
| /* Cannot unlock; would unlock larger region than requested */ |
| if (stm_is_locked_sr(flash, status_old, ofs - flash->erase_size, |
| flash->erase_size)) |
| return -EINVAL; |
| /* |
| * Need largest pow such that: |
| * |
| * 1 / (2^pow) >= (len / size) |
| * |
| * so (assuming power-of-2 size) we do: |
| * |
| * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len)) |
| */ |
| pow = ilog2(flash->size) - order_base_2(flash->size - (ofs + len)); |
| if (ofs + len == flash->size) { |
| val = 0; /* fully unlocked */ |
| } else { |
| val = mask - (pow << shift); |
| /* Some power-of-two sizes are not supported */ |
| if (val & ~mask) |
| return -EINVAL; |
| } |
| |
| status_new = (status_old & ~mask) | val; |
| |
| /* Only modify protection if it will not lock other areas */ |
| if ((status_new & mask) >= (status_old & mask)) |
| return -EINVAL; |
| |
| write_sr(flash, status_new); |
| |
| return 0; |
| } |
| #endif |
| |
| |
| #ifdef CONFIG_SPI_FLASH_MACRONIX |
| static int spi_flash_set_qeb_mxic(struct spi_flash *flash) |
| { |
| u8 qeb_status; |
| int ret; |
| |
| ret = read_sr(flash, &qeb_status); |
| if (ret < 0) |
| return ret; |
| |
| if (qeb_status & STATUS_QEB_MXIC) { |
| debug("SF: mxic: QEB is already set\n"); |
| } else { |
| ret = write_sr(flash, STATUS_QEB_MXIC); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return ret; |
| } |
| #endif |
| |
| #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) |
| static int spi_flash_set_qeb_winspan(struct spi_flash *flash) |
| { |
| u8 qeb_status; |
| int ret; |
| |
| ret = read_cr(flash, &qeb_status); |
| if (ret < 0) |
| return ret; |
| |
| if (qeb_status & STATUS_QEB_WINSPAN) { |
| debug("SF: winspan: QEB is already set\n"); |
| } else { |
| ret = write_cr(flash, STATUS_QEB_WINSPAN); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return ret; |
| } |
| #endif |
| |
| static int spi_flash_set_qeb(struct spi_flash *flash, u8 idcode0) |
| { |
| switch (idcode0) { |
| #ifdef CONFIG_SPI_FLASH_MACRONIX |
| case SPI_FLASH_CFI_MFR_MACRONIX: |
| return spi_flash_set_qeb_mxic(flash); |
| #endif |
| #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) |
| case SPI_FLASH_CFI_MFR_SPANSION: |
| case SPI_FLASH_CFI_MFR_WINBOND: |
| return spi_flash_set_qeb_winspan(flash); |
| #endif |
| #ifdef CONFIG_SPI_FLASH_STMICRO |
| case SPI_FLASH_CFI_MFR_STMICRO: |
| debug("SF: QEB is volatile for %02x flash\n", idcode0); |
| return 0; |
| #endif |
| default: |
| printf("SF: Need set QEB func for %02x flash\n", idcode0); |
| return -1; |
| } |
| } |
| |
| #if CONFIG_IS_ENABLED(OF_CONTROL) |
| int spi_flash_decode_fdt(const void *blob, struct spi_flash *flash) |
| { |
| fdt_addr_t addr; |
| fdt_size_t size; |
| int node; |
| |
| /* If there is no node, do nothing */ |
| node = fdtdec_next_compatible(blob, 0, COMPAT_GENERIC_SPI_FLASH); |
| if (node < 0) |
| return 0; |
| |
| addr = fdtdec_get_addr_size(blob, node, "memory-map", &size); |
| if (addr == FDT_ADDR_T_NONE) { |
| debug("%s: Cannot decode address\n", __func__); |
| return 0; |
| } |
| |
| if (flash->size != size) { |
| debug("%s: Memory map must cover entire device\n", __func__); |
| return -1; |
| } |
| flash->memory_map = map_sysmem(addr, size); |
| |
| return 0; |
| } |
| #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */ |
| |
| int spi_flash_scan(struct spi_slave *spi, struct spi_flash *flash) |
| { |
| const struct spi_flash_params *params; |
| u16 jedec, ext_jedec; |
| u8 idcode[5]; |
| u8 cmd; |
| int ret; |
| |
| /* Read the ID codes */ |
| ret = spi_flash_cmd(spi, CMD_READ_ID, idcode, sizeof(idcode)); |
| if (ret) { |
| printf("SF: Failed to get idcodes\n"); |
| return -EINVAL; |
| } |
| |
| #ifdef DEBUG |
| printf("SF: Got idcodes\n"); |
| print_buffer(0, idcode, 1, sizeof(idcode), 0); |
| #endif |
| |
| jedec = idcode[1] << 8 | idcode[2]; |
| ext_jedec = idcode[3] << 8 | idcode[4]; |
| |
| /* Validate params from spi_flash_params table */ |
| params = spi_flash_params_table; |
| for (; params->name != NULL; params++) { |
| if ((params->jedec >> 16) == idcode[0]) { |
| if ((params->jedec & 0xFFFF) == jedec) { |
| if (params->ext_jedec == 0) |
| break; |
| else if (params->ext_jedec == ext_jedec) |
| break; |
| } |
| } |
| } |
| |
| if (!params->name) { |
| printf("SF: Unsupported flash IDs: "); |
| printf("manuf %02x, jedec %04x, ext_jedec %04x\n", |
| idcode[0], jedec, ext_jedec); |
| return -EPROTONOSUPPORT; |
| } |
| |
| /* Flash powers up read-only, so clear BP# bits */ |
| #if defined(CONFIG_SPI_FLASH_ATMEL) || \ |
| defined(CONFIG_SPI_FLASH_MACRONIX) || \ |
| defined(CONFIG_SPI_FLASH_SST) |
| write_sr(flash, 0); |
| #endif |
| |
| /* Assign spi data */ |
| flash->spi = spi; |
| flash->name = params->name; |
| flash->memory_map = spi->memory_map; |
| flash->dual_flash = flash->spi->option; |
| |
| /* Assign spi flash flags */ |
| if (params->flags & SST_WR) |
| flash->flags |= SNOR_F_SST_WR; |
| |
| /* Assign spi_flash ops */ |
| #ifndef CONFIG_DM_SPI_FLASH |
| flash->write = spi_flash_cmd_write_ops; |
| #if defined(CONFIG_SPI_FLASH_SST) |
| if (flash->flags & SNOR_F_SST_WR) { |
| if (flash->spi->op_mode_tx & SPI_OPM_TX_BP) |
| flash->write = sst_write_bp; |
| else |
| flash->write = sst_write_wp; |
| } |
| #endif |
| flash->erase = spi_flash_cmd_erase_ops; |
| flash->read = spi_flash_cmd_read_ops; |
| #endif |
| |
| /* lock hooks are flash specific - assign them based on idcode0 */ |
| switch (idcode[0]) { |
| #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST) |
| case SPI_FLASH_CFI_MFR_STMICRO: |
| case SPI_FLASH_CFI_MFR_SST: |
| flash->flash_lock = stm_lock; |
| flash->flash_unlock = stm_unlock; |
| flash->flash_is_locked = stm_is_locked; |
| #endif |
| break; |
| default: |
| debug("SF: Lock ops not supported for %02x flash\n", idcode[0]); |
| } |
| |
| /* Compute the flash size */ |
| flash->shift = (flash->dual_flash & SF_DUAL_PARALLEL_FLASH) ? 1 : 0; |
| /* |
| * The Spansion S25FL032P and S25FL064P have 256b pages, yet use the |
| * 0x4d00 Extended JEDEC code. The rest of the Spansion flashes with |
| * the 0x4d00 Extended JEDEC code have 512b pages. All of the others |
| * have 256b pages. |
| */ |
| if (ext_jedec == 0x4d00) { |
| if ((jedec == 0x0215) || (jedec == 0x216)) |
| flash->page_size = 256; |
| else |
| flash->page_size = 512; |
| } else { |
| flash->page_size = 256; |
| } |
| flash->page_size <<= flash->shift; |
| flash->sector_size = params->sector_size << flash->shift; |
| flash->size = flash->sector_size * params->nr_sectors << flash->shift; |
| #ifdef CONFIG_SF_DUAL_FLASH |
| if (flash->dual_flash & SF_DUAL_STACKED_FLASH) |
| flash->size <<= 1; |
| #endif |
| |
| /* Compute erase sector and command */ |
| if (params->flags & SECT_4K) { |
| flash->erase_cmd = CMD_ERASE_4K; |
| flash->erase_size = 4096 << flash->shift; |
| } else if (params->flags & SECT_32K) { |
| flash->erase_cmd = CMD_ERASE_32K; |
| flash->erase_size = 32768 << flash->shift; |
| } else { |
| flash->erase_cmd = CMD_ERASE_64K; |
| flash->erase_size = flash->sector_size; |
| } |
| |
| /* Now erase size becomes valid sector size */ |
| flash->sector_size = flash->erase_size; |
| |
| /* Look for the fastest read cmd */ |
| cmd = fls(params->e_rd_cmd & flash->spi->op_mode_rx); |
| if (cmd) { |
| cmd = spi_read_cmds_array[cmd - 1]; |
| flash->read_cmd = cmd; |
| } else { |
| /* Go for default supported read cmd */ |
| flash->read_cmd = CMD_READ_ARRAY_FAST; |
| } |
| |
| /* Not require to look for fastest only two write cmds yet */ |
| if (params->flags & WR_QPP && flash->spi->op_mode_tx & SPI_OPM_TX_QPP) |
| flash->write_cmd = CMD_QUAD_PAGE_PROGRAM; |
| else |
| /* Go for default supported write cmd */ |
| flash->write_cmd = CMD_PAGE_PROGRAM; |
| |
| /* Set the quad enable bit - only for quad commands */ |
| if ((flash->read_cmd == CMD_READ_QUAD_OUTPUT_FAST) || |
| (flash->read_cmd == CMD_READ_QUAD_IO_FAST) || |
| (flash->write_cmd == CMD_QUAD_PAGE_PROGRAM)) { |
| ret = spi_flash_set_qeb(flash, idcode[0]); |
| if (ret) { |
| debug("SF: Fail to set QEB for %02x\n", idcode[0]); |
| return -EINVAL; |
| } |
| } |
| |
| /* Read dummy_byte: dummy byte is determined based on the |
| * dummy cycles of a particular command. |
| * Fast commands - dummy_byte = dummy_cycles/8 |
| * I/O commands- dummy_byte = (dummy_cycles * no.of lines)/8 |
| * For I/O commands except cmd[0] everything goes on no.of lines |
| * based on particular command but incase of fast commands except |
| * data all go on single line irrespective of command. |
| */ |
| switch (flash->read_cmd) { |
| case CMD_READ_QUAD_IO_FAST: |
| flash->dummy_byte = 2; |
| break; |
| case CMD_READ_ARRAY_SLOW: |
| flash->dummy_byte = 0; |
| break; |
| default: |
| flash->dummy_byte = 1; |
| } |
| |
| #ifdef CONFIG_SPI_FLASH_STMICRO |
| if (params->flags & E_FSR) |
| flash->flags |= SNOR_F_USE_FSR; |
| #endif |
| |
| /* Configure the BAR - discover bank cmds and read current bank */ |
| #ifdef CONFIG_SPI_FLASH_BAR |
| ret = spi_flash_read_bar(flash, idcode[0]); |
| if (ret < 0) |
| return ret; |
| #endif |
| |
| #if CONFIG_IS_ENABLED(OF_CONTROL) |
| ret = spi_flash_decode_fdt(gd->fdt_blob, flash); |
| if (ret) { |
| debug("SF: FDT decode error\n"); |
| return -EINVAL; |
| } |
| #endif |
| |
| #ifndef CONFIG_SPL_BUILD |
| printf("SF: Detected %s with page size ", flash->name); |
| print_size(flash->page_size, ", erase size "); |
| print_size(flash->erase_size, ", total "); |
| print_size(flash->size, ""); |
| if (flash->memory_map) |
| printf(", mapped at %p", flash->memory_map); |
| puts("\n"); |
| #endif |
| |
| #ifndef CONFIG_SPI_FLASH_BAR |
| if (((flash->dual_flash == SF_SINGLE_FLASH) && |
| (flash->size > SPI_FLASH_16MB_BOUN)) || |
| ((flash->dual_flash > SF_SINGLE_FLASH) && |
| (flash->size > SPI_FLASH_16MB_BOUN << 1))) { |
| puts("SF: Warning - Only lower 16MiB accessible,"); |
| puts(" Full access #define CONFIG_SPI_FLASH_BAR\n"); |
| } |
| #endif |
| |
| return ret; |
| } |