blob: 7a81497bc92b1c2e2fdb5bb8b29d3b7bf60e0c7f [file] [log] [blame]
// SPDX-License-Identifier: BSD-2-Clause
/*
* RZ/N1 DDR Controller initialisation
*
* The DDR Controller register values for a specific DDR device, mode and
* frequency are generated using a Cadence tool.
*
* Copyright (C) 2015 Renesas Electronics Europe Ltd
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <dm/device_compat.h>
#include <ram.h>
#include <regmap.h>
#include <syscon.h>
#include <asm/io.h>
#include <linux/delay.h>
#include <wait_bit.h>
#include <renesas/ddr_ctrl.h>
void clk_rzn1_reset_state(struct clk *clk, int on);
DECLARE_GLOBAL_DATA_PTR;
struct cadence_ddr_info {
struct udevice *dev;
void __iomem *ddrc;
void __iomem *phy;
struct clk clk_ddrc;
struct clk hclk_ddrc;
struct regmap *syscon;
bool enable_ecc;
bool enable_8bit;
u32 ddr_size;
/* These two used only during .probe */
u32 *reg0;
u32 *reg350;
};
static inline u32 cadence_readl(void __iomem *addr, unsigned int offset)
{
return readl(addr + offset);
}
static inline void cadence_writel(void __iomem *addr, unsigned int offset,
u32 data)
{
debug("%s: addr = 0x%p, value = 0x%08x\n", __func__, addr + offset, data);
writel(data, addr + offset);
}
#define ddrc_readl(off) cadence_readl(priv->ddrc, off)
#define ddrc_writel(val, off) cadence_writel(priv->ddrc, off, val)
#define phy_readl(off) cadence_readl(priv->phy, off)
#define phy_writel(val, off) cadence_writel(priv->phy, off, val)
#define RZN1_DDR3_SINGLE_BANK 3
#define RZN1_DDR3_DUAL_BANK 32
#define FUNCCTRL 0x00
#define FUNCCTRL_MASKSDLOFS (0x18 << 16)
#define FUNCCTRL_DVDDQ_1_5V BIT(8)
#define FUNCCTRL_RESET_N BIT(0)
#define DLLCTRL 0x04
#define DLLCTRL_ASDLLOCK BIT(26)
#define DLLCTRL_MFSL_500MHz (2 << 1)
#define DLLCTRL_MDLLSTBY BIT(0)
#define ZQCALCTRL 0x08
#define ZQCALCTRL_ZQCALEND BIT(30)
#define ZQCALCTRL_ZQCALRSTB BIT(0)
#define ZQODTCTRL 0x0c
#define RDCTRL 0x10
#define RDTMG 0x14
#define FIFOINIT 0x18
#define FIFOINIT_RDPTINITEXE BIT(8)
#define FIFOINIT_WRPTINITEXE BIT(0)
#define OUTCTRL 0x1c
#define OUTCTRL_ADCMDOE BIT(0)
#define WLCTRL1 0x40
#define WLCTRL1_WLSTR BIT(24)
#define DQCALOFS1 0xe8
/* DDR PHY setup */
static void ddr_phy_init(struct cadence_ddr_info *priv, int ddr_type)
{
u32 val;
/* Disable DDR Controller clock and FlexWAY connection */
clk_disable(&priv->hclk_ddrc);
clk_disable(&priv->clk_ddrc);
clk_rzn1_reset_state(&priv->hclk_ddrc, 0);
clk_rzn1_reset_state(&priv->clk_ddrc, 0);
/* Enable DDR Controller clock and FlexWAY connection */
clk_enable(&priv->clk_ddrc);
clk_enable(&priv->hclk_ddrc);
/* DDR PHY Soft reset assert */
ddrc_writel(FUNCCTRL_MASKSDLOFS | FUNCCTRL_DVDDQ_1_5V, FUNCCTRL);
clk_rzn1_reset_state(&priv->hclk_ddrc, 1);
clk_rzn1_reset_state(&priv->clk_ddrc, 1);
/* DDR PHY setup */
phy_writel(DLLCTRL_MFSL_500MHz | DLLCTRL_MDLLSTBY, DLLCTRL);
phy_writel(0x00000182, ZQCALCTRL);
if (ddr_type == RZN1_DDR3_DUAL_BANK)
phy_writel(0xAB330031, ZQODTCTRL);
else if (ddr_type == RZN1_DDR3_SINGLE_BANK)
phy_writel(0xAB320051, ZQODTCTRL);
else /* DDR2 */
phy_writel(0xAB330071, ZQODTCTRL);
phy_writel(0xB545B544, RDCTRL);
phy_writel(0x000000B0, RDTMG);
phy_writel(0x020A0806, OUTCTRL);
if (ddr_type == RZN1_DDR3_DUAL_BANK)
phy_writel(0x80005556, WLCTRL1);
else
phy_writel(0x80005C5D, WLCTRL1);
phy_writel(0x00000101, FIFOINIT);
phy_writel(0x00004545, DQCALOFS1);
/* Step 9 MDLL reset release */
val = phy_readl(DLLCTRL);
val &= ~DLLCTRL_MDLLSTBY;
phy_writel(val, DLLCTRL);
/* Step 12 Soft reset release */
val = phy_readl(FUNCCTRL);
val |= FUNCCTRL_RESET_N;
phy_writel(val, FUNCCTRL);
/* Step 13 FIFO pointer initialize */
phy_writel(FIFOINIT_RDPTINITEXE | FIFOINIT_WRPTINITEXE, FIFOINIT);
/* Step 14 Execute ZQ Calibration */
val = phy_readl(ZQCALCTRL);
val |= ZQCALCTRL_ZQCALRSTB;
phy_writel(val, ZQCALCTRL);
/* Step 15 Wait for 200us or more, or wait for DFIINITCOMPLETE to be "1" */
wait_for_bit_le32(priv->phy + DLLCTRL, DLLCTRL_ASDLLOCK, true, 1, false);
wait_for_bit_le32(priv->phy + ZQCALCTRL, ZQCALCTRL_ZQCALEND, true, 1, false);
/* Step 16 Enable Address and Command output */
val = phy_readl(OUTCTRL);
val |= OUTCTRL_ADCMDOE;
phy_writel(val, OUTCTRL);
/* Step 17 Wait for 200us or more(from MRESETB=0) */
udelay(200);
}
static void ddr_phy_enable_wl(struct cadence_ddr_info *priv)
{
u32 val;
/* Step 26 (Set Write Leveling) */
val = phy_readl(WLCTRL1);
val |= WLCTRL1_WLSTR;
phy_writel(val, WLCTRL1);
}
#define RZN1_V_DDR_BASE 0x80000000 /* RZ/N1D only */
static void rzn1_ddr3_single_bank(void *ddr_ctrl_base)
{
/* CS0 */
cdns_ddr_set_mr1(ddr_ctrl_base, 0,
MR1_ODT_IMPEDANCE_60_OHMS,
MR1_DRIVE_STRENGTH_40_OHMS);
cdns_ddr_set_mr2(ddr_ctrl_base, 0,
MR2_DYNAMIC_ODT_OFF,
MR2_SELF_REFRESH_TEMP_EXT);
/* ODT_WR_MAP_CS0 = 1, ODT_RD_MAP_CS0 = 0 */
cdns_ddr_set_odt_map(ddr_ctrl_base, 0, 0x0100);
}
static int rzn1_dram_init(struct cadence_ddr_info *priv)
{
u32 version;
u32 ddr_start_addr = 0;
ddr_phy_init(priv, RZN1_DDR3_SINGLE_BANK);
/*
* Override DDR PHY Interface (DFI) related settings
* DFI is the internal interface between the DDR controller and the DDR PHY.
* These settings are specific to the board and can't be known by the settings
* provided for each DDR model within the generated include.
*/
priv->reg350[351 - 350] = 0x001e0000;
priv->reg350[352 - 350] = 0x1e680000;
priv->reg350[353 - 350] = 0x02000020;
priv->reg350[354 - 350] = 0x02000200;
priv->reg350[355 - 350] = 0x00000c30;
priv->reg350[356 - 350] = 0x00009808;
priv->reg350[357 - 350] = 0x020a0706;
priv->reg350[372 - 350] = 0x01000000;
/*
* On ES1.0 devices, the DDR start address that the DDR Controller sees
* is the physical address of the DDR. However, later devices changed it
* to be 0 in order to fix an issue with DDR out-of-range detection.
*/
#define RZN1_SYSCTRL_REG_VERSION 412
regmap_read(priv->syscon, RZN1_SYSCTRL_REG_VERSION, &version);
if (version == 0x10)
ddr_start_addr = RZN1_V_DDR_BASE;
if (priv->enable_ecc)
priv->ddr_size = priv->ddr_size / 2;
/* DDR Controller is always in ASYNC mode */
cdns_ddr_ctrl_init(priv->ddrc, 1,
priv->reg0, priv->reg350,
ddr_start_addr, priv->ddr_size,
priv->enable_ecc, priv->enable_8bit);
rzn1_ddr3_single_bank(priv->ddrc);
cdns_ddr_set_diff_cs_delays(priv->ddrc, 2, 7, 2, 2);
cdns_ddr_set_same_cs_delays(priv->ddrc, 0, 7, 0, 0);
cdns_ddr_set_odt_times(priv->ddrc, 5, 6, 6, 0, 4);
cdns_ddr_ctrl_start(priv->ddrc);
ddr_phy_enable_wl(priv);
if (priv->enable_ecc) {
/*
* Any read before a write will trigger an ECC un-correctable error,
* causing a data abort. However, this is also true for any read with a
* size less than the AXI bus width. So, the only sensible solution is
* to write to all of DDR now and take the hit...
*/
memset((void *)RZN1_V_DDR_BASE, 0xff, priv->ddr_size);
}
return 0;
}
static int cadence_ddr_get_info(struct udevice *udev, struct ram_info *info)
{
info->base = 0;
info->size = gd->ram_size;
return 0;
}
static struct ram_ops cadence_ddr_ops = {
.get_info = cadence_ddr_get_info,
};
static int cadence_ddr_test(long *base, long maxsize)
{
volatile long *addr = base;
long cnt;
maxsize /= sizeof(long);
for (cnt = 1; cnt <= maxsize; cnt <<= 1) {
addr[cnt - 1] = ~cnt;
}
for (cnt = 1; cnt <= maxsize; cnt <<= 1) {
if (addr[cnt - 1] != ~cnt) {
return 0;
}
}
return 1;
}
static int cadence_ddr_probe(struct udevice *dev)
{
struct cadence_ddr_info *priv = dev_get_priv(dev);
ofnode subnode;
int ret;
priv->dev = dev;
priv->ddrc = dev_remap_addr_name(dev, "ddrc");
if (!priv->ddrc) {
dev_err(dev, "No reg property for Cadence DDR CTRL\n");
return -EINVAL;
}
priv->phy = dev_remap_addr_name(dev, "phy");
if (!priv->phy) {
dev_err(dev, "No reg property for Cadence DDR PHY\n");
return -EINVAL;
}
ret = clk_get_by_name(dev, "clk_ddrc", &priv->clk_ddrc);
if (ret) {
dev_err(dev, "No clock for Cadence DDR\n");
return ret;
}
ret = clk_get_by_name(dev, "hclk_ddrc", &priv->hclk_ddrc);
if (ret) {
dev_err(dev, "No HCLK for Cadence DDR\n");
return ret;
}
priv->syscon = syscon_regmap_lookup_by_phandle(dev, "syscon");
if (IS_ERR(priv->syscon)) {
dev_err(dev, "No syscon node found\n");
return PTR_ERR(priv->syscon);
}
priv->enable_ecc = dev_read_bool(dev, "enable-ecc");
priv->enable_8bit = dev_read_bool(dev, "enable-8bit");
priv->reg0 = malloc(88 * sizeof(u32));
priv->reg350 = malloc(25 * sizeof(u32));
if (!priv->reg0 || !priv->reg350)
panic("malloc failure\n");
/* There may be multiple DDR configurations to try */
dev_for_each_subnode(subnode, dev) {
ret = ofnode_read_u32(subnode, "size", &priv->ddr_size);
if (ret) {
dev_err(dev, "No size for Cadence DDR\n");
continue;
}
ret = ofnode_read_u32_array(subnode, "cadence,ctl-000", priv->reg0, 88);
if (ret) {
dev_err(dev, "No cadence,ctl-000\n");
continue;
}
ret = ofnode_read_u32_array(subnode, "cadence,ctl-350", priv->reg350, 25);
if (ret) {
dev_err(dev, "No cadence,ctl-350\n");
continue;
}
if (rzn1_dram_init(priv))
continue;
if (cadence_ddr_test((long *)RZN1_V_DDR_BASE, priv->ddr_size)) {
gd->ram_base = RZN1_V_DDR_BASE;
gd->ram_size = priv->ddr_size;
break;
}
}
if (!priv->ddr_size)
panic("No valid DDR to start");
free(priv->reg350);
free(priv->reg0);
return 0;
}
static const struct udevice_id cadence_ddr_ids[] = {
{ .compatible = "cadence,ddr-ctrl" },
{ }
};
U_BOOT_DRIVER(cadence_ddr) = {
.name = "cadence_ddr",
.id = UCLASS_RAM,
.of_match = cadence_ddr_ids,
.ops = &cadence_ddr_ops,
.probe = cadence_ddr_probe,
.priv_auto = sizeof(struct cadence_ddr_info),
.flags = DM_FLAG_PRE_RELOC,
};