blob: cc2554dfa947182806c37b31da292becc1c868a1 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Procedures for maintaining information about logical memory blocks.
*
* Peter Bergner, IBM Corp. June 2001.
* Copyright (C) 2001 Peter Bergner.
*/
#include <alist.h>
#include <efi_loader.h>
#include <event.h>
#include <image.h>
#include <mapmem.h>
#include <lmb.h>
#include <log.h>
#include <malloc.h>
#include <spl.h>
#include <asm/global_data.h>
#include <asm/sections.h>
#include <linux/kernel.h>
#include <linux/sizes.h>
DECLARE_GLOBAL_DATA_PTR;
#define MAP_OP_RESERVE (u8)0x1
#define MAP_OP_FREE (u8)0x2
#define MAP_OP_ADD (u8)0x3
static struct lmb lmb;
static bool lmb_should_notify(enum lmb_flags flags)
{
return !lmb.test && !(flags & LMB_NONOTIFY) &&
CONFIG_IS_ENABLED(EFI_LOADER);
}
static int lmb_map_update_notify(phys_addr_t addr, phys_size_t size, u8 op,
enum lmb_flags flags)
{
u64 efi_addr;
u64 pages;
efi_status_t status;
if (op != MAP_OP_RESERVE && op != MAP_OP_FREE && op != MAP_OP_ADD) {
log_err("Invalid map update op received (%d)\n", op);
return -1;
}
if (!lmb_should_notify(flags))
return 0;
efi_addr = (uintptr_t)map_sysmem(addr, 0);
pages = efi_size_in_pages(size + (efi_addr & EFI_PAGE_MASK));
efi_addr &= ~EFI_PAGE_MASK;
status = efi_add_memory_map_pg(efi_addr, pages,
op == MAP_OP_RESERVE ?
EFI_BOOT_SERVICES_DATA :
EFI_CONVENTIONAL_MEMORY,
false);
if (status != EFI_SUCCESS) {
log_err("%s: LMB Map notify failure %lu\n", __func__,
status & ~EFI_ERROR_MASK);
return -1;
}
unmap_sysmem((void *)(uintptr_t)efi_addr);
return 0;
}
static void lmb_print_region_flags(enum lmb_flags flags)
{
u64 bitpos;
const char *flag_str[] = { "none", "no-map", "no-overwrite", "no-notify" };
do {
bitpos = flags ? fls(flags) - 1 : 0;
assert_noisy(bitpos < ARRAY_SIZE(flag_str));
printf("%s", flag_str[bitpos]);
flags &= ~(1ull << bitpos);
puts(flags ? ", " : "\n");
} while (flags);
}
static void lmb_dump_region(struct alist *lmb_rgn_lst, char *name)
{
struct lmb_region *rgn = lmb_rgn_lst->data;
unsigned long long base, size, end;
enum lmb_flags flags;
int i;
printf(" %s.count = 0x%x\n", name, lmb_rgn_lst->count);
for (i = 0; i < lmb_rgn_lst->count; i++) {
base = rgn[i].base;
size = rgn[i].size;
end = base + size - 1;
flags = rgn[i].flags;
printf(" %s[%d]\t[0x%llx-0x%llx], 0x%08llx bytes flags: ",
name, i, base, end, size);
lmb_print_region_flags(flags);
}
}
void lmb_dump_all_force(void)
{
printf("lmb_dump_all:\n");
lmb_dump_region(&lmb.free_mem, "memory");
lmb_dump_region(&lmb.used_mem, "reserved");
}
void lmb_dump_all(void)
{
#ifdef DEBUG
lmb_dump_all_force();
#endif
}
static long lmb_addrs_overlap(phys_addr_t base1, phys_size_t size1,
phys_addr_t base2, phys_size_t size2)
{
const phys_addr_t base1_end = base1 + size1 - 1;
const phys_addr_t base2_end = base2 + size2 - 1;
return ((base1 <= base2_end) && (base2 <= base1_end));
}
static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
phys_addr_t base2, phys_size_t size2)
{
if (base2 == base1 + size1)
return 1;
else if (base1 == base2 + size2)
return -1;
return 0;
}
static long lmb_regions_overlap(struct alist *lmb_rgn_lst, unsigned long r1,
unsigned long r2)
{
struct lmb_region *rgn = lmb_rgn_lst->data;
phys_addr_t base1 = rgn[r1].base;
phys_size_t size1 = rgn[r1].size;
phys_addr_t base2 = rgn[r2].base;
phys_size_t size2 = rgn[r2].size;
return lmb_addrs_overlap(base1, size1, base2, size2);
}
static long lmb_regions_adjacent(struct alist *lmb_rgn_lst, unsigned long r1,
unsigned long r2)
{
struct lmb_region *rgn = lmb_rgn_lst->data;
phys_addr_t base1 = rgn[r1].base;
phys_size_t size1 = rgn[r1].size;
phys_addr_t base2 = rgn[r2].base;
phys_size_t size2 = rgn[r2].size;
return lmb_addrs_adjacent(base1, size1, base2, size2);
}
static void lmb_remove_region(struct alist *lmb_rgn_lst, unsigned long r)
{
unsigned long i;
struct lmb_region *rgn = lmb_rgn_lst->data;
for (i = r; i < lmb_rgn_lst->count - 1; i++) {
rgn[i].base = rgn[i + 1].base;
rgn[i].size = rgn[i + 1].size;
rgn[i].flags = rgn[i + 1].flags;
}
lmb_rgn_lst->count--;
}
/* Assumption: base addr of region 1 < base addr of region 2 */
static void lmb_coalesce_regions(struct alist *lmb_rgn_lst, unsigned long r1,
unsigned long r2)
{
struct lmb_region *rgn = lmb_rgn_lst->data;
rgn[r1].size += rgn[r2].size;
lmb_remove_region(lmb_rgn_lst, r2);
}
/*Assumption : base addr of region 1 < base addr of region 2*/
static void lmb_fix_over_lap_regions(struct alist *lmb_rgn_lst,
unsigned long r1, unsigned long r2)
{
struct lmb_region *rgn = lmb_rgn_lst->data;
phys_addr_t base1 = rgn[r1].base;
phys_size_t size1 = rgn[r1].size;
phys_addr_t base2 = rgn[r2].base;
phys_size_t size2 = rgn[r2].size;
if (base1 + size1 > base2 + size2) {
printf("This will not be a case any time\n");
return;
}
rgn[r1].size = base2 + size2 - base1;
lmb_remove_region(lmb_rgn_lst, r2);
}
static void lmb_reserve_uboot_region(void)
{
int bank;
ulong end, bank_end;
phys_addr_t rsv_start;
rsv_start = gd->start_addr_sp - CONFIG_STACK_SIZE;
end = gd->ram_top;
/*
* Reserve memory from aligned address below the bottom of U-Boot stack
* until end of RAM area to prevent LMB from overwriting that memory.
*/
debug("## Current stack ends at 0x%08lx ", (ulong)rsv_start);
for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
if (!gd->bd->bi_dram[bank].size ||
rsv_start < gd->bd->bi_dram[bank].start)
continue;
/* Watch out for RAM at end of address space! */
bank_end = gd->bd->bi_dram[bank].start +
gd->bd->bi_dram[bank].size - 1;
if (rsv_start > bank_end)
continue;
if (bank_end > end)
bank_end = end - 1;
lmb_reserve_flags(rsv_start, bank_end - rsv_start + 1,
LMB_NOOVERWRITE);
if (gd->flags & GD_FLG_SKIP_RELOC)
lmb_reserve_flags((phys_addr_t)(uintptr_t)_start,
gd->mon_len, LMB_NOOVERWRITE);
break;
}
}
static void lmb_reserve_common(void *fdt_blob)
{
lmb_reserve_uboot_region();
if (CONFIG_IS_ENABLED(OF_LIBFDT) && fdt_blob)
boot_fdt_add_mem_rsv_regions(fdt_blob);
}
static __maybe_unused void lmb_reserve_common_spl(void)
{
phys_addr_t rsv_start;
phys_size_t rsv_size;
/*
* Assume a SPL stack of 16KB. This must be
* more than enough for the SPL stage.
*/
if (IS_ENABLED(CONFIG_SPL_STACK_R_ADDR)) {
rsv_start = gd->start_addr_sp - 16384;
rsv_size = 16384;
lmb_reserve_flags(rsv_start, rsv_size, LMB_NOOVERWRITE);
}
if (IS_ENABLED(CONFIG_SPL_SEPARATE_BSS)) {
/* Reserve the bss region */
rsv_start = (phys_addr_t)(uintptr_t)__bss_start;
rsv_size = (phys_addr_t)(uintptr_t)__bss_end -
(phys_addr_t)(uintptr_t)__bss_start;
lmb_reserve_flags(rsv_start, rsv_size, LMB_NOOVERWRITE);
}
}
/**
* lmb_add_memory() - Add memory range for LMB allocations
*
* Add the entire available memory range to the pool of memory that
* can be used by the LMB module for allocations.
*
* Return: None
*/
void lmb_add_memory(void)
{
int i;
phys_size_t size;
u64 ram_top = gd->ram_top;
struct bd_info *bd = gd->bd;
if (CONFIG_IS_ENABLED(LMB_ARCH_MEM_MAP))
return lmb_arch_add_memory();
/* Assume a 4GB ram_top if not defined */
if (!ram_top)
ram_top = 0x100000000ULL;
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
size = bd->bi_dram[i].size;
if (size) {
lmb_add(bd->bi_dram[i].start, size);
/*
* Reserve memory above ram_top as
* no-overwrite so that it cannot be
* allocated
*/
if (bd->bi_dram[i].start >= ram_top)
lmb_reserve_flags(bd->bi_dram[i].start, size,
LMB_NOOVERWRITE);
}
}
}
static long lmb_resize_regions(struct alist *lmb_rgn_lst,
unsigned long idx_start,
phys_addr_t base, phys_size_t size)
{
phys_size_t rgnsize;
unsigned long rgn_cnt, idx, idx_end;
phys_addr_t rgnbase, rgnend;
phys_addr_t mergebase, mergeend;
struct lmb_region *rgn = lmb_rgn_lst->data;
rgn_cnt = 0;
idx = idx_start;
idx_end = idx_start;
/*
* First thing to do is to identify how many regions
* the requested region overlaps.
* If the flags match, combine all these overlapping
* regions into a single region, and remove the merged
* regions.
*/
while (idx <= lmb_rgn_lst->count - 1) {
rgnbase = rgn[idx].base;
rgnsize = rgn[idx].size;
if (lmb_addrs_overlap(base, size, rgnbase,
rgnsize)) {
if (rgn[idx].flags != LMB_NONE)
return -1;
rgn_cnt++;
idx_end = idx;
}
idx++;
}
/* The merged region's base and size */
rgnbase = rgn[idx_start].base;
mergebase = min(base, rgnbase);
rgnend = rgn[idx_end].base + rgn[idx_end].size;
mergeend = max(rgnend, (base + size));
rgn[idx_start].base = mergebase;
rgn[idx_start].size = mergeend - mergebase;
/* Now remove the merged regions */
while (--rgn_cnt)
lmb_remove_region(lmb_rgn_lst, idx_start + 1);
return 0;
}
/**
* lmb_add_region_flags() - Add an lmb region to the given list
* @lmb_rgn_lst: LMB list to which region is to be added(free/used)
* @base: Start address of the region
* @size: Size of the region to be added
* @flags: Attributes of the LMB region
*
* Add a region of memory to the list. If the region does not exist, add
* it to the list. Depending on the attributes of the region to be added,
* the function might resize an already existing region or coalesce two
* adjacent regions.
*
*
* Returns: 0 if the region addition successful, -1 on failure
*/
static long lmb_add_region_flags(struct alist *lmb_rgn_lst, phys_addr_t base,
phys_size_t size, enum lmb_flags flags)
{
unsigned long coalesced = 0;
long ret, i;
struct lmb_region *rgn = lmb_rgn_lst->data;
if (alist_err(lmb_rgn_lst))
return -1;
/* First try and coalesce this LMB with another. */
for (i = 0; i < lmb_rgn_lst->count; i++) {
phys_addr_t rgnbase = rgn[i].base;
phys_size_t rgnsize = rgn[i].size;
phys_size_t rgnflags = rgn[i].flags;
phys_addr_t end = base + size - 1;
phys_addr_t rgnend = rgnbase + rgnsize - 1;
if (rgnbase <= base && end <= rgnend) {
if (flags == rgnflags)
/* Already have this region, so we're done */
return 0;
else
return -1; /* regions with new flags */
}
ret = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
if (ret > 0) {
if (flags != rgnflags)
break;
rgn[i].base -= size;
rgn[i].size += size;
coalesced++;
break;
} else if (ret < 0) {
if (flags != rgnflags)
break;
rgn[i].size += size;
coalesced++;
break;
} else if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) {
if (flags == LMB_NONE) {
ret = lmb_resize_regions(lmb_rgn_lst, i, base,
size);
if (ret < 0)
return -1;
coalesced++;
break;
} else {
return -1;
}
}
}
if (lmb_rgn_lst->count && i < lmb_rgn_lst->count - 1) {
rgn = lmb_rgn_lst->data;
if (rgn[i].flags == rgn[i + 1].flags) {
if (lmb_regions_adjacent(lmb_rgn_lst, i, i + 1)) {
lmb_coalesce_regions(lmb_rgn_lst, i, i + 1);
coalesced++;
} else if (lmb_regions_overlap(lmb_rgn_lst, i, i + 1)) {
/* fix overlapping area */
lmb_fix_over_lap_regions(lmb_rgn_lst, i, i + 1);
coalesced++;
}
}
}
if (coalesced)
return 0;
if (alist_full(lmb_rgn_lst) &&
!alist_expand_by(lmb_rgn_lst, lmb_rgn_lst->alloc))
return -1;
rgn = lmb_rgn_lst->data;
/* Couldn't coalesce the LMB, so add it to the sorted table. */
for (i = lmb_rgn_lst->count; i >= 0; i--) {
if (i && base < rgn[i - 1].base) {
rgn[i] = rgn[i - 1];
} else {
rgn[i].base = base;
rgn[i].size = size;
rgn[i].flags = flags;
break;
}
}
lmb_rgn_lst->count++;
return 0;
}
static long lmb_add_region(struct alist *lmb_rgn_lst, phys_addr_t base,
phys_size_t size)
{
return lmb_add_region_flags(lmb_rgn_lst, base, size, LMB_NONE);
}
/* This routine may be called with relocation disabled. */
long lmb_add(phys_addr_t base, phys_size_t size)
{
long ret;
struct alist *lmb_rgn_lst = &lmb.free_mem;
ret = lmb_add_region(lmb_rgn_lst, base, size);
if (ret)
return ret;
return lmb_map_update_notify(base, size, MAP_OP_ADD, LMB_NONE);
}
static long _lmb_free(struct alist *lmb_rgn_lst, phys_addr_t base,
phys_size_t size)
{
struct lmb_region *rgn;
phys_addr_t rgnbegin, rgnend;
phys_addr_t end = base + size - 1;
int i;
rgnbegin = rgnend = 0; /* supress gcc warnings */
rgn = lmb_rgn_lst->data;
/* Find the region where (base, size) belongs to */
for (i = 0; i < lmb_rgn_lst->count; i++) {
rgnbegin = rgn[i].base;
rgnend = rgnbegin + rgn[i].size - 1;
if ((rgnbegin <= base) && (end <= rgnend))
break;
}
/* Didn't find the region */
if (i == lmb_rgn_lst->count)
return -1;
/* Check to see if we are removing entire region */
if ((rgnbegin == base) && (rgnend == end)) {
lmb_remove_region(lmb_rgn_lst, i);
return 0;
}
/* Check to see if region is matching at the front */
if (rgnbegin == base) {
rgn[i].base = end + 1;
rgn[i].size -= size;
return 0;
}
/* Check to see if the region is matching at the end */
if (rgnend == end) {
rgn[i].size -= size;
return 0;
}
/*
* We need to split the entry - adjust the current one to the
* beginging of the hole and add the region after hole.
*/
rgn[i].size = base - rgn[i].base;
return lmb_add_region_flags(lmb_rgn_lst, end + 1, rgnend - end,
rgn[i].flags);
}
/**
* lmb_free_flags() - Free up a region of memory
* @base: Base Address of region to be freed
* @size: Size of the region to be freed
* @flags: Memory region attributes
*
* Free up a region of memory.
*
* Return: 0 if successful, -1 on failure
*/
long lmb_free_flags(phys_addr_t base, phys_size_t size,
uint flags)
{
long ret;
ret = _lmb_free(&lmb.used_mem, base, size);
if (ret < 0)
return ret;
return lmb_map_update_notify(base, size, MAP_OP_FREE, flags);
}
long lmb_free(phys_addr_t base, phys_size_t size)
{
return lmb_free_flags(base, size, LMB_NONE);
}
long lmb_reserve_flags(phys_addr_t base, phys_size_t size, enum lmb_flags flags)
{
long ret = 0;
struct alist *lmb_rgn_lst = &lmb.used_mem;
ret = lmb_add_region_flags(lmb_rgn_lst, base, size, flags);
if (ret)
return ret;
return lmb_map_update_notify(base, size, MAP_OP_RESERVE, flags);
}
long lmb_reserve(phys_addr_t base, phys_size_t size)
{
return lmb_reserve_flags(base, size, LMB_NONE);
}
static long lmb_overlaps_region(struct alist *lmb_rgn_lst, phys_addr_t base,
phys_size_t size)
{
unsigned long i;
struct lmb_region *rgn = lmb_rgn_lst->data;
for (i = 0; i < lmb_rgn_lst->count; i++) {
phys_addr_t rgnbase = rgn[i].base;
phys_size_t rgnsize = rgn[i].size;
if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
break;
}
return (i < lmb_rgn_lst->count) ? i : -1;
}
static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size)
{
return addr & ~(size - 1);
}
static phys_addr_t _lmb_alloc_base(phys_size_t size, ulong align,
phys_addr_t max_addr, enum lmb_flags flags)
{
int ret;
long i, rgn;
phys_addr_t base = 0;
phys_addr_t res_base;
struct lmb_region *lmb_used = lmb.used_mem.data;
struct lmb_region *lmb_memory = lmb.free_mem.data;
for (i = lmb.free_mem.count - 1; i >= 0; i--) {
phys_addr_t lmbbase = lmb_memory[i].base;
phys_size_t lmbsize = lmb_memory[i].size;
if (lmbsize < size)
continue;
if (max_addr == LMB_ALLOC_ANYWHERE)
base = lmb_align_down(lmbbase + lmbsize - size, align);
else if (lmbbase < max_addr) {
base = lmbbase + lmbsize;
if (base < lmbbase)
base = -1;
base = min(base, max_addr);
base = lmb_align_down(base - size, align);
} else
continue;
while (base && lmbbase <= base) {
rgn = lmb_overlaps_region(&lmb.used_mem, base, size);
if (rgn < 0) {
/* This area isn't reserved, take it */
if (lmb_add_region_flags(&lmb.used_mem, base,
size, flags))
return 0;
ret = lmb_map_update_notify(base, size,
MAP_OP_RESERVE,
flags);
if (ret)
return ret;
return base;
}
res_base = lmb_used[rgn].base;
if (res_base < size)
break;
base = lmb_align_down(res_base - size, align);
}
}
return 0;
}
phys_addr_t lmb_alloc(phys_size_t size, ulong align)
{
return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE);
}
phys_addr_t lmb_alloc_base(phys_size_t size, ulong align, phys_addr_t max_addr)
{
phys_addr_t alloc;
alloc = _lmb_alloc_base(size, align, max_addr, LMB_NONE);
if (alloc == 0)
printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
(ulong)size, (ulong)max_addr);
return alloc;
}
/**
* lmb_alloc_base_flags() - Allocate specified memory region with specified attributes
* @size: Size of the region requested
* @align: Alignment of the memory region requested
* @max_addr: Maximum address of the requested region
* @flags: Memory region attributes to be set
*
* Allocate a region of memory with the attributes specified through the
* parameter. The max_addr parameter is used to specify the maximum address
* below which the requested region should be allocated.
*
* Return: base address on success, 0 on error
*/
phys_addr_t lmb_alloc_base_flags(phys_size_t size, ulong align,
phys_addr_t max_addr, uint flags)
{
phys_addr_t alloc;
alloc = _lmb_alloc_base(size, align, max_addr, flags);
if (alloc == 0)
printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
(ulong)size, (ulong)max_addr);
return alloc;
}
static phys_addr_t _lmb_alloc_addr(phys_addr_t base, phys_size_t size,
enum lmb_flags flags)
{
long rgn;
struct lmb_region *lmb_memory = lmb.free_mem.data;
/* Check if the requested address is in one of the memory regions */
rgn = lmb_overlaps_region(&lmb.free_mem, base, size);
if (rgn >= 0) {
/*
* Check if the requested end address is in the same memory
* region we found.
*/
if (lmb_addrs_overlap(lmb_memory[rgn].base,
lmb_memory[rgn].size,
base + size - 1, 1)) {
/* ok, reserve the memory */
if (lmb_reserve_flags(base, size, flags) >= 0)
return base;
}
}
return 0;
}
/*
* Try to allocate a specific address range: must be in defined memory but not
* reserved
*/
phys_addr_t lmb_alloc_addr(phys_addr_t base, phys_size_t size)
{
return _lmb_alloc_addr(base, size, LMB_NONE);
}
/**
* lmb_alloc_addr_flags() - Allocate specified memory address with specified attributes
* @base: Base Address requested
* @size: Size of the region requested
* @flags: Memory region attributes to be set
*
* Allocate a region of memory with the attributes specified through the
* parameter. The base parameter is used to specify the base address
* of the requested region.
*
* Return: base address on success, 0 on error
*/
phys_addr_t lmb_alloc_addr_flags(phys_addr_t base, phys_size_t size,
uint flags)
{
return _lmb_alloc_addr(base, size, flags);
}
/* Return number of bytes from a given address that are free */
phys_size_t lmb_get_free_size(phys_addr_t addr)
{
int i;
long rgn;
struct lmb_region *lmb_used = lmb.used_mem.data;
struct lmb_region *lmb_memory = lmb.free_mem.data;
/* check if the requested address is in the memory regions */
rgn = lmb_overlaps_region(&lmb.free_mem, addr, 1);
if (rgn >= 0) {
for (i = 0; i < lmb.used_mem.count; i++) {
if (addr < lmb_used[i].base) {
/* first reserved range > requested address */
return lmb_used[i].base - addr;
}
if (lmb_used[i].base +
lmb_used[i].size > addr) {
/* requested addr is in this reserved range */
return 0;
}
}
/* if we come here: no reserved ranges above requested addr */
return lmb_memory[lmb.free_mem.count - 1].base +
lmb_memory[lmb.free_mem.count - 1].size - addr;
}
return 0;
}
int lmb_is_reserved_flags(phys_addr_t addr, int flags)
{
int i;
struct lmb_region *lmb_used = lmb.used_mem.data;
for (i = 0; i < lmb.used_mem.count; i++) {
phys_addr_t upper = lmb_used[i].base +
lmb_used[i].size - 1;
if (addr >= lmb_used[i].base && addr <= upper)
return (lmb_used[i].flags & flags) == flags;
}
return 0;
}
static int lmb_setup(bool test)
{
bool ret;
ret = alist_init(&lmb.free_mem, sizeof(struct lmb_region),
(uint)LMB_ALIST_INITIAL_SIZE);
if (!ret) {
log_debug("Unable to initialise the list for LMB free memory\n");
return -ENOMEM;
}
ret = alist_init(&lmb.used_mem, sizeof(struct lmb_region),
(uint)LMB_ALIST_INITIAL_SIZE);
if (!ret) {
log_debug("Unable to initialise the list for LMB used memory\n");
return -ENOMEM;
}
lmb.test = test;
return 0;
}
/**
* lmb_init() - Initialise the LMB module
*
* Initialise the LMB lists needed for keeping the memory map. There
* are two lists, in form of alloced list data structure. One for the
* available memory, and one for the used memory. Initialise the two
* lists as part of board init. Add memory to the available memory
* list and reserve common areas by adding them to the used memory
* list.
*
* Return: 0 on success, -ve on error
*/
int lmb_init(void)
{
int ret;
ret = lmb_setup(false);
if (ret) {
log_info("Unable to init LMB\n");
return ret;
}
lmb_add_memory();
/* Reserve the U-Boot image region once U-Boot has relocated */
if (xpl_phase() == PHASE_SPL)
lmb_reserve_common_spl();
else if (xpl_phase() == PHASE_BOARD_R)
lmb_reserve_common((void *)gd->fdt_blob);
return 0;
}
struct lmb *lmb_get(void)
{
return &lmb;
}
#if CONFIG_IS_ENABLED(UNIT_TEST)
int lmb_push(struct lmb *store)
{
int ret;
*store = lmb;
ret = lmb_setup(true);
if (ret)
return ret;
return 0;
}
void lmb_pop(struct lmb *store)
{
alist_uninit(&lmb.free_mem);
alist_uninit(&lmb.used_mem);
lmb = *store;
}
#endif /* UNIT_TEST */