blob: 34e7db3da6545f7b65922a1a825888fb2e222bd5 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0
*
* Copyright (C) 2020 Marvell International Ltd.
*
* https://spdx.org/licenses
*/
#ifndef __CSRS_CGX_H__
#define __CSRS_CGX_H__
/**
* @file
*
* Configuration and status register (CSR) address and type definitions for
* CGX.
*
* This file is auto generated. Do not edit.
*
*/
/**
* Enumeration cgx_bar_e
*
* CGX Base Address Register Enumeration Enumerates the base address
* registers.
*/
#define CGX_BAR_E_CGXX_PF_BAR0(a) (0x87e0e0000000ll + 0x1000000ll * (a))
#define CGX_BAR_E_CGXX_PF_BAR0_SIZE 0x100000ull
#define CGX_BAR_E_CGXX_PF_BAR4(a) (0x87e0e0400000ll + 0x1000000ll * (a))
#define CGX_BAR_E_CGXX_PF_BAR4_SIZE 0x100000ull
/**
* Enumeration cgx_int_vec_e
*
* CGX MSI-X Vector Enumeration Enumeration the MSI-X interrupt vectors.
*/
#define CGX_INT_VEC_E_CMRX_INT(a) (0 + 9 * (a))
#define CGX_INT_VEC_E_CMRX_SW(a) (0x26 + (a))
#define CGX_INT_VEC_E_CMR_MEM_INT (0x24)
#define CGX_INT_VEC_E_GMPX_GMI_RX_INT(a) (5 + 9 * (a))
#define CGX_INT_VEC_E_GMPX_GMI_TX_INT(a) (6 + 9 * (a))
#define CGX_INT_VEC_E_GMPX_GMI_WOL_INT(a) (7 + 9 * (a))
#define CGX_INT_VEC_E_GMPX_PCS_INT(a) (4 + 9 * (a))
#define CGX_INT_VEC_E_SMUX_RX_INT(a) (2 + 9 * (a))
#define CGX_INT_VEC_E_SMUX_RX_WOL_INT(a) (8 + 9 * (a))
#define CGX_INT_VEC_E_SMUX_TX_INT(a) (3 + 9 * (a))
#define CGX_INT_VEC_E_SPUX_INT(a) (1 + 9 * (a))
#define CGX_INT_VEC_E_SW (0x25)
/**
* Enumeration cgx_lmac_types_e
*
* CGX LMAC Type Enumeration Enumerates the LMAC Types that CGX supports.
*/
#define CGX_LMAC_TYPES_E_FIFTYG_R (8)
#define CGX_LMAC_TYPES_E_FORTYG_R (4)
#define CGX_LMAC_TYPES_E_HUNDREDG_R (9)
#define CGX_LMAC_TYPES_E_QSGMII (6)
#define CGX_LMAC_TYPES_E_RGMII (5)
#define CGX_LMAC_TYPES_E_RXAUI (2)
#define CGX_LMAC_TYPES_E_SGMII (0)
#define CGX_LMAC_TYPES_E_TENG_R (3)
#define CGX_LMAC_TYPES_E_TWENTYFIVEG_R (7)
#define CGX_LMAC_TYPES_E_USXGMII (0xa)
#define CGX_LMAC_TYPES_E_XAUI (1)
/**
* Enumeration cgx_opcode_e
*
* INTERNAL: CGX Error Opcode Enumeration Enumerates the error opcodes
* created by CGX and presented to NCSI/NIX.
*/
#define CGX_OPCODE_E_RE_FCS (7)
#define CGX_OPCODE_E_RE_FCS_RCV (8)
#define CGX_OPCODE_E_RE_JABBER (2)
#define CGX_OPCODE_E_RE_NONE (0)
#define CGX_OPCODE_E_RE_PARTIAL (1)
#define CGX_OPCODE_E_RE_RX_CTL (0xb)
#define CGX_OPCODE_E_RE_SKIP (0xc)
#define CGX_OPCODE_E_RE_TERMINATE (9)
/**
* Enumeration cgx_spu_br_train_cst_e
*
* INTERNAL: CGX Training Coefficient Status Enumeration 2-bit status
* for each coefficient as defined in IEEE 802.3, Table 72-5.
*/
#define CGX_SPU_BR_TRAIN_CST_E_MAXIMUM (3)
#define CGX_SPU_BR_TRAIN_CST_E_MINIMUM (2)
#define CGX_SPU_BR_TRAIN_CST_E_NOT_UPDATED (0)
#define CGX_SPU_BR_TRAIN_CST_E_UPDATED (1)
/**
* Enumeration cgx_spu_br_train_cup_e
*
* INTERNAL:CGX Training Coefficient Enumeration 2-bit command for each
* coefficient as defined in IEEE 802.3, Table 72-4.
*/
#define CGX_SPU_BR_TRAIN_CUP_E_DECREMENT (1)
#define CGX_SPU_BR_TRAIN_CUP_E_HOLD (0)
#define CGX_SPU_BR_TRAIN_CUP_E_INCREMENT (2)
#define CGX_SPU_BR_TRAIN_CUP_E_RSV_CMD (3)
/**
* Enumeration cgx_usxgmii_rate_e
*
* CGX USXGMII Rate Enumeration Enumerates the USXGMII sub-port type
* rate, CGX()_SPU()_CONTROL1[USXGMII_RATE]. Selecting a rate higher
* than the maximum allowed for a given port sub-type (specified by
* CGX()_SPU()_CONTROL1[USXGMII_TYPE]), e.g., selecting ::RATE_2HG (2.5
* Gbps) for CGX_USXGMII_TYPE_E::SXGMII_2G, will cause unpredictable
* behavior. USXGMII hardware-based autonegotiation may change this
* setting.
*/
#define CGX_USXGMII_RATE_E_RATE_100M (1)
#define CGX_USXGMII_RATE_E_RATE_10G (5)
#define CGX_USXGMII_RATE_E_RATE_10M (0)
#define CGX_USXGMII_RATE_E_RATE_1G (2)
#define CGX_USXGMII_RATE_E_RATE_20G (6)
#define CGX_USXGMII_RATE_E_RATE_2HG (3)
#define CGX_USXGMII_RATE_E_RATE_5G (4)
#define CGX_USXGMII_RATE_E_RSV_RATE (7)
/**
* Enumeration cgx_usxgmii_type_e
*
* CGX USXGMII Port Sub-Type Enumeration Enumerates the USXGMII sub-port
* type, CGX()_SPU()_CONTROL1[USXGMII_TYPE]. The description indicates
* the maximum rate and the maximum number of ports (LMACs) for each sub-
* type. The minimum rate for any port is 10M. The rate selection for
* each LMAC is made using CGX()_SPU()_CONTROL1[USXGMII_RATE] and the
* number of active ports/LMACs is implicitly determined by the value
* given to CGX()_CMR()_CONFIG[ENABLE] for each LMAC. Selecting a rate
* higher than the maximum allowed for a given port sub-type or enabling
* more LMACs than the maximum allowed for a given port sub-type will
* cause unpredictable behavior.
*/
#define CGX_USXGMII_TYPE_E_DXGMII_10G (3)
#define CGX_USXGMII_TYPE_E_DXGMII_20G (5)
#define CGX_USXGMII_TYPE_E_DXGMII_5G (4)
#define CGX_USXGMII_TYPE_E_QXGMII_10G (7)
#define CGX_USXGMII_TYPE_E_QXGMII_20G (6)
#define CGX_USXGMII_TYPE_E_SXGMII_10G (0)
#define CGX_USXGMII_TYPE_E_SXGMII_2G (2)
#define CGX_USXGMII_TYPE_E_SXGMII_5G (1)
/**
* Structure cgx_spu_br_lane_train_status_s
*
* INTERNAL:CGX Lane Training Status Structure This is the group of lane
* status bits for a single lane in the BASE-R PMD status register (MDIO
* address 1.151) as defined in IEEE 802.3ba-2010, Table 45-55.
*/
union cgx_spu_br_lane_train_status_s {
u32 u;
struct cgx_spu_br_lane_train_status_s_s {
u32 rx_trained : 1;
u32 frame_lock : 1;
u32 training : 1;
u32 training_failure : 1;
u32 reserved_4_31 : 28;
} s;
/* struct cgx_spu_br_lane_train_status_s_s cn; */
};
/**
* Structure cgx_spu_br_train_cup_s
*
* INTERNAL:CGX Lane Training Coefficient Structure This is the
* coefficient update field of the BASE-R link training packet as defined
* in IEEE 802.3, Table 72-4.
*/
union cgx_spu_br_train_cup_s {
u32 u;
struct cgx_spu_br_train_cup_s_s {
u32 pre_cup : 2;
u32 main_cup : 2;
u32 post_cup : 2;
u32 reserved_6_11 : 6;
u32 init : 1;
u32 preset : 1;
u32 reserved_14_31 : 18;
} s;
struct cgx_spu_br_train_cup_s_cn {
u32 pre_cup : 2;
u32 main_cup : 2;
u32 post_cup : 2;
u32 reserved_6_11 : 6;
u32 init : 1;
u32 preset : 1;
u32 reserved_14_15 : 2;
u32 reserved_16_31 : 16;
} cn;
};
/**
* Structure cgx_spu_br_train_rep_s
*
* INTERNAL:CGX Training Report Structure This is the status report
* field of the BASE-R link training packet as defined in IEEE 802.3,
* Table 72-5.
*/
union cgx_spu_br_train_rep_s {
u32 u;
struct cgx_spu_br_train_rep_s_s {
u32 pre_cst : 2;
u32 main_cst : 2;
u32 post_cst : 2;
u32 reserved_6_14 : 9;
u32 rx_ready : 1;
u32 reserved_16_31 : 16;
} s;
/* struct cgx_spu_br_train_rep_s_s cn; */
};
/**
* Structure cgx_spu_sds_cu_s
*
* INTERNAL: CGX Training Coeffiecient Structure This structure is
* similar to CGX_SPU_BR_TRAIN_CUP_S format, but with reserved fields
* removed and [RCVR_READY] field added.
*/
union cgx_spu_sds_cu_s {
u32 u;
struct cgx_spu_sds_cu_s_s {
u32 pre_cu : 2;
u32 main_cu : 2;
u32 post_cu : 2;
u32 initialize : 1;
u32 preset : 1;
u32 rcvr_ready : 1;
u32 reserved_9_31 : 23;
} s;
/* struct cgx_spu_sds_cu_s_s cn; */
};
/**
* Structure cgx_spu_sds_skew_status_s
*
* CGX Skew Status Structure Provides receive skew information detected
* for a physical SerDes lane when it is assigned to a multilane
* LMAC/LPCS. Contents are valid when RX deskew is done for the
* associated LMAC/LPCS.
*/
union cgx_spu_sds_skew_status_s {
u32 u;
struct cgx_spu_sds_skew_status_s_s {
u32 am_timestamp : 12;
u32 reserved_12_15 : 4;
u32 am_lane_id : 5;
u32 reserved_21_22 : 2;
u32 lane_skew : 7;
u32 reserved_30_31 : 2;
} s;
/* struct cgx_spu_sds_skew_status_s_s cn; */
};
/**
* Structure cgx_spu_sds_sr_s
*
* INTERNAL: CGX Lane Training Coefficient Structure Similar to
* CGX_SPU_BR_TRAIN_REP_S format, but with reserved and RX ready fields
* removed.
*/
union cgx_spu_sds_sr_s {
u32 u;
struct cgx_spu_sds_sr_s_s {
u32 pre_status : 2;
u32 main_status : 2;
u32 post_status : 2;
u32 reserved_6_31 : 26;
} s;
/* struct cgx_spu_sds_sr_s_s cn; */
};
/**
* Register (RSL) cgx#_active_pc
*
* CGX ACTIVE PC Register This register counts the conditional clocks for
* power management.
*/
union cgxx_active_pc {
u64 u;
struct cgxx_active_pc_s {
u64 cnt : 64;
} s;
/* struct cgxx_active_pc_s cn; */
};
static inline u64 CGXX_ACTIVE_PC(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_ACTIVE_PC(void)
{
return 0x2010;
}
/**
* Register (RSL) cgx#_cmr#_activity
*
* CGX CMR Activity Registers
*/
union cgxx_cmrx_activity {
u64 u;
struct cgxx_cmrx_activity_s {
u64 act_tx_lo : 1;
u64 act_tx_hi : 1;
u64 pause_tx : 1;
u64 act_rx_lo : 1;
u64 act_rx_hi : 1;
u64 pause_rx : 1;
u64 reserved_6_63 : 58;
} s;
/* struct cgxx_cmrx_activity_s cn; */
};
static inline u64 CGXX_CMRX_ACTIVITY(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_ACTIVITY(u64 a)
{
return 0x5f8 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_config
*
* CGX CMR Configuration Registers Logical MAC/PCS configuration
* registers; one per LMAC. The maximum number of LMACs (and maximum LMAC
* ID) that can be enabled by these registers is limited by
* CGX()_CMR_RX_LMACS[LMACS] and CGX()_CMR_TX_LMACS[LMACS]. Internal:
* \<pre\> Example configurations: ------------------------------------
* --------------------------------------- Configuration
* LMACS Register [ENABLE] [LMAC_TYPE] ----------------
* -----------------------------------------------------------
* 1x50G+1x25G+1xSGMII 4 CGXn_CMR0_CONFIG 1 8
* CGXn_CMR1_CONFIG 0 --
* CGXn_CMR2_CONFIG 1 7
* CGXn_CMR3_CONFIG 1 0 ---------------------------------
* ------------------------------------------ USXGMII
* 1-4 CGXn_CMR0_CONFIG 1 a
* CGXn_CMR1_CONFIG 1 a
* CGXn_CMR2_CONFIG 1 a
* CGXn_CMR3_CONFIG 1 a ---------------------------------
* ------------------------------------------ 1x100GBASE-R4 1
* CGXn_CMR0_CONFIG 1 9
* CGXn_CMR1_CONFIG 0 --
* CGXn_CMR2_CONFIG 0 --
* CGXn_CMR3_CONFIG 0 -- --------------------------------
* ------------------------------------------- 2x50GBASE-R2
* 2 CGXn_CMR0_CONFIG 1 8
* CGXn_CMR1_CONFIG 1 8
* CGXn_CMR2_CONFIG 0 --
* CGXn_CMR3_CONFIG 0 -- --------------------------------
* ------------------------------------------- 4x25GBASE-R
* 4 CGXn_CMR0_CONFIG 1 7
* CGXn_CMR1_CONFIG 1 7
* CGXn_CMR2_CONFIG 1 7
* CGXn_CMR3_CONFIG 1 7 ---------------------------------
* ------------------------------------------ QSGMII 4
* CGXn_CMR0_CONFIG 1 6
* CGXn_CMR1_CONFIG 1 6
* CGXn_CMR2_CONFIG 1 6
* CGXn_CMR3_CONFIG 1 6 ---------------------------------
* ------------------------------------------ 1x40GBASE-R4 1
* CGXn_CMR0_CONFIG 1 4
* CGXn_CMR1_CONFIG 0 --
* CGXn_CMR2_CONFIG 0 --
* CGXn_CMR3_CONFIG 0 -- --------------------------------
* ------------------------------------------- 4x10GBASE-R
* 4 CGXn_CMR0_CONFIG 1 3
* CGXn_CMR1_CONFIG 1 3
* CGXn_CMR2_CONFIG 1 3
* CGXn_CMR3_CONFIG 1 3 ---------------------------------
* ------------------------------------------ 2xRXAUI 2
* CGXn_CMR0_CONFIG 1 2
* CGXn_CMR1_CONFIG 1 2
* CGXn_CMR2_CONFIG 0 --
* CGXn_CMR3_CONFIG 0 -- --------------------------------
* ------------------------------------------- 1x10GBASE-X/XAUI/DXAUI
* 1 CGXn_CMR0_CONFIG 1 1
* CGXn_CMR1_CONFIG 0 --
* CGXn_CMR2_CONFIG 0 --
* CGXn_CMR3_CONFIG 0 -- --------------------------------
* ------------------------------------------- 4xSGMII/1000BASE-X
* 4 CGXn_CMR0_CONFIG 1 0
* CGXn_CMR1_CONFIG 1 0
* CGXn_CMR2_CONFIG 1 0
* CGXn_CMR3_CONFIG 1 0 ---------------------------------
* ------------------------------------------ \</pre\>
*/
union cgxx_cmrx_config {
u64 u;
struct cgxx_cmrx_config_s {
u64 lane_to_sds : 8;
u64 reserved_8_39 : 32;
u64 lmac_type : 4;
u64 unused : 8;
u64 int_beat_gen : 1;
u64 data_pkt_tx_en : 1;
u64 data_pkt_rx_en : 1;
u64 enable : 1;
u64 x2p_select : 3;
u64 p2x_select : 3;
u64 reserved_62_63 : 2;
} s;
/* struct cgxx_cmrx_config_s cn; */
};
static inline u64 CGXX_CMRX_CONFIG(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_CONFIG(u64 a)
{
return 0 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_int
*
* CGX CMR Interrupt Register
*/
union cgxx_cmrx_int {
u64 u;
struct cgxx_cmrx_int_s {
u64 pause_drp : 1;
u64 overflw : 1;
u64 nic_nxc : 1;
u64 nix0_nxc : 1;
u64 nix1_nxc : 1;
u64 nix0_e_nxc : 1;
u64 nix1_e_nxc : 1;
u64 reserved_7_63 : 57;
} s;
/* struct cgxx_cmrx_int_s cn; */
};
static inline u64 CGXX_CMRX_INT(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_INT(u64 a)
{
return 0x40 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_int_ena_w1c
*
* CGX CMR Interrupt Enable Clear Register This register clears interrupt
* enable bits.
*/
union cgxx_cmrx_int_ena_w1c {
u64 u;
struct cgxx_cmrx_int_ena_w1c_s {
u64 pause_drp : 1;
u64 overflw : 1;
u64 nic_nxc : 1;
u64 nix0_nxc : 1;
u64 nix1_nxc : 1;
u64 nix0_e_nxc : 1;
u64 nix1_e_nxc : 1;
u64 reserved_7_63 : 57;
} s;
/* struct cgxx_cmrx_int_ena_w1c_s cn; */
};
static inline u64 CGXX_CMRX_INT_ENA_W1C(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_INT_ENA_W1C(u64 a)
{
return 0x50 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_int_ena_w1s
*
* CGX CMR Interrupt Enable Set Register This register sets interrupt
* enable bits.
*/
union cgxx_cmrx_int_ena_w1s {
u64 u;
struct cgxx_cmrx_int_ena_w1s_s {
u64 pause_drp : 1;
u64 overflw : 1;
u64 nic_nxc : 1;
u64 nix0_nxc : 1;
u64 nix1_nxc : 1;
u64 nix0_e_nxc : 1;
u64 nix1_e_nxc : 1;
u64 reserved_7_63 : 57;
} s;
/* struct cgxx_cmrx_int_ena_w1s_s cn; */
};
static inline u64 CGXX_CMRX_INT_ENA_W1S(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_INT_ENA_W1S(u64 a)
{
return 0x58 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_int_w1s
*
* CGX CMR Interrupt Set Register This register sets interrupt bits.
*/
union cgxx_cmrx_int_w1s {
u64 u;
struct cgxx_cmrx_int_w1s_s {
u64 pause_drp : 1;
u64 overflw : 1;
u64 nic_nxc : 1;
u64 nix0_nxc : 1;
u64 nix1_nxc : 1;
u64 nix0_e_nxc : 1;
u64 nix1_e_nxc : 1;
u64 reserved_7_63 : 57;
} s;
/* struct cgxx_cmrx_int_w1s_s cn; */
};
static inline u64 CGXX_CMRX_INT_W1S(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_INT_W1S(u64 a)
{
return 0x48 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_led_timing
*
* CGX MAC LED Activity Timing Registers
*/
union cgxx_cmrx_led_timing {
u64 u;
struct cgxx_cmrx_led_timing_s {
u64 extension : 8;
u64 reserved_8_63 : 56;
} s;
/* struct cgxx_cmrx_led_timing_s cn; */
};
static inline u64 CGXX_CMRX_LED_TIMING(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_LED_TIMING(u64 a)
{
return 0x5f0 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_prt_cbfc_ctl
*
* CGX CMR LMAC PFC Control Registers See CGX()_CMR()_RX_LOGL_XOFF[XOFF].
*/
union cgxx_cmrx_prt_cbfc_ctl {
u64 u;
struct cgxx_cmrx_prt_cbfc_ctl_s {
u64 reserved_0_15 : 16;
u64 phys_bp : 16;
u64 reserved_32_63 : 32;
} s;
/* struct cgxx_cmrx_prt_cbfc_ctl_s cn; */
};
static inline u64 CGXX_CMRX_PRT_CBFC_CTL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_PRT_CBFC_CTL(u64 a)
{
return 0x608 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_bp_drop
*
* CGX Receive Backpressure Drop Register
*/
union cgxx_cmrx_rx_bp_drop {
u64 u;
struct cgxx_cmrx_rx_bp_drop_s {
u64 mark : 7;
u64 reserved_7_63 : 57;
} s;
/* struct cgxx_cmrx_rx_bp_drop_s cn; */
};
static inline u64 CGXX_CMRX_RX_BP_DROP(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_BP_DROP(u64 a)
{
return 0xd8 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_bp_off
*
* CGX Receive Backpressure Off Register
*/
union cgxx_cmrx_rx_bp_off {
u64 u;
struct cgxx_cmrx_rx_bp_off_s {
u64 mark : 7;
u64 reserved_7_63 : 57;
} s;
/* struct cgxx_cmrx_rx_bp_off_s cn; */
};
static inline u64 CGXX_CMRX_RX_BP_OFF(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_BP_OFF(u64 a)
{
return 0xe8 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_bp_on
*
* CGX Receive Backpressure On Register
*/
union cgxx_cmrx_rx_bp_on {
u64 u;
struct cgxx_cmrx_rx_bp_on_s {
u64 mark : 13;
u64 reserved_13_63 : 51;
} s;
/* struct cgxx_cmrx_rx_bp_on_s cn; */
};
static inline u64 CGXX_CMRX_RX_BP_ON(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_BP_ON(u64 a)
{
return 0xe0 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_bp_status
*
* CGX CMR Receive Backpressure Status Registers
*/
union cgxx_cmrx_rx_bp_status {
u64 u;
struct cgxx_cmrx_rx_bp_status_s {
u64 bp : 1;
u64 reserved_1_63 : 63;
} s;
/* struct cgxx_cmrx_rx_bp_status_s cn; */
};
static inline u64 CGXX_CMRX_RX_BP_STATUS(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_BP_STATUS(u64 a)
{
return 0xf0 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_dmac_ctl0
*
* CGX CMR Receive DMAC Address-Control0 Register DMAC CAM control
* register for use by X2P/NIX bound traffic. Received packets are only
* passed to X2P/NIX when the DMAC0 filter result is ACCEPT and STEERING0
* filter result is PASS. See also CGX()_CMR_RX_DMAC()_CAM0 and
* CGX()_CMR_RX_STEERING0(). Internal: "* ALGORITHM Here is some pseudo
* code that represents the address filter behavior. \<pre\>
* dmac_addr_filter(uint8 prt, uint48 dmac) { for (lmac=0, lmac\<4,
* lmac++) { if (is_bcst(dmac)) //
* broadcast accept return (CGX()_CMR(lmac)_RX_DMAC_CTL0[BCST_ACCEPT]
* ? ACCEPT : REJECT); if (is_mcst(dmac) &&
* CGX()_CMR(lmac)_RX_DMAC_CTL0[MCST_MODE] == 0) // multicast reject
* return REJECT; if (is_mcst(dmac) &&
* CGX()_CMR(lmac)_RX_DMAC_CTL0[MCST_MODE] == 1) // multicast accept
* return ACCEPT; else // DMAC CAM filter cam_hit = 0; for
* (i=0; i\<32; i++) { cam = CGX()_CMR_RX_DMAC(i)_CAM0; if
* (cam[EN] && cam[ID] == lmac && cam[ADR] == dmac) { cam_hit = 1;
* break; } } if (cam_hit) { return
* (CGX()_CMR(lmac)_RX_DMAC_CTL0[CAM_ACCEPT] ? ACCEPT : REJECT); else
* return (CGX()_CMR(lmac)_RX_DMAC_CTL0[CAM_ACCEPT] ? REJECT : ACCEPT);
* } } \</pre\>"
*/
union cgxx_cmrx_rx_dmac_ctl0 {
u64 u;
struct cgxx_cmrx_rx_dmac_ctl0_s {
u64 bcst_accept : 1;
u64 mcst_mode : 2;
u64 cam_accept : 1;
u64 reserved_4_63 : 60;
} s;
/* struct cgxx_cmrx_rx_dmac_ctl0_s cn; */
};
static inline u64 CGXX_CMRX_RX_DMAC_CTL0(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_DMAC_CTL0(u64 a)
{
return 0x1f8 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_dmac_ctl1
*
* CGX CMR Receive DMAC Address-Control1 Register DMAC CAM control
* register for use by NCSI bound traffic. Received packets are only
* passed to NCSI when the DMAC1 filter result is ACCEPT and STEERING1
* filter result is PASS. See also CGX()_CMR_RX_DMAC()_CAM1 and
* CGX()_CMR_RX_STEERING1(). For use with the LMAC associated with NCSI;
* see CGX()_CMR_GLOBAL_CONFIG[NCSI_LMAC_ID]. Internal: ALGORITHM: See
* CGX()_CMR()_RX_DMAC_CTL0.
*/
union cgxx_cmrx_rx_dmac_ctl1 {
u64 u;
struct cgxx_cmrx_rx_dmac_ctl1_s {
u64 bcst_accept : 1;
u64 mcst_mode : 2;
u64 cam_accept : 1;
u64 reserved_4_63 : 60;
} s;
/* struct cgxx_cmrx_rx_dmac_ctl1_s cn; */
};
static inline u64 CGXX_CMRX_RX_DMAC_CTL1(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_DMAC_CTL1(u64 a)
{
return 0x3f8 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_fifo_len
*
* CGX CMR Receive Fifo Length Registers
*/
union cgxx_cmrx_rx_fifo_len {
u64 u;
struct cgxx_cmrx_rx_fifo_len_s {
u64 fifo_len : 14;
u64 busy : 1;
u64 fifo_len_e : 14;
u64 busy_e : 1;
u64 reserved_30_63 : 34;
} s;
/* struct cgxx_cmrx_rx_fifo_len_s cn; */
};
static inline u64 CGXX_CMRX_RX_FIFO_LEN(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_FIFO_LEN(u64 a)
{
return 0x108 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_id_map
*
* CGX CMR Receive ID Map Register These registers set the RX LMAC ID
* mapping for X2P/NIX.
*/
union cgxx_cmrx_rx_id_map {
u64 u;
struct cgxx_cmrx_rx_id_map_s {
u64 pknd : 6;
u64 unused : 2;
u64 rid : 7;
u64 reserved_15_63 : 49;
} s;
/* struct cgxx_cmrx_rx_id_map_s cn; */
};
static inline u64 CGXX_CMRX_RX_ID_MAP(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_ID_MAP(u64 a)
{
return 0x60 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_logl_xoff
*
* CGX CMR Receive Logical XOFF Registers
*/
union cgxx_cmrx_rx_logl_xoff {
u64 u;
struct cgxx_cmrx_rx_logl_xoff_s {
u64 xoff : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_cmrx_rx_logl_xoff_s cn; */
};
static inline u64 CGXX_CMRX_RX_LOGL_XOFF(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_LOGL_XOFF(u64 a)
{
return 0xf8 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_logl_xon
*
* CGX CMR Receive Logical XON Registers
*/
union cgxx_cmrx_rx_logl_xon {
u64 u;
struct cgxx_cmrx_rx_logl_xon_s {
u64 xon : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_cmrx_rx_logl_xon_s cn; */
};
static inline u64 CGXX_CMRX_RX_LOGL_XON(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_LOGL_XON(u64 a)
{
return 0x100 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_merge_stat0
*
* CGX RX Preemption Status Register 0
*/
union cgxx_cmrx_rx_merge_stat0 {
u64 u;
struct cgxx_cmrx_rx_merge_stat0_s {
u64 fa_err_cnt : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_rx_merge_stat0_s cn; */
};
static inline u64 CGXX_CMRX_RX_MERGE_STAT0(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_MERGE_STAT0(u64 a)
{
return 0x138 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_merge_stat1
*
* CGX RX Preemption Status Register 1
*/
union cgxx_cmrx_rx_merge_stat1 {
u64 u;
struct cgxx_cmrx_rx_merge_stat1_s {
u64 fs_err_cnt : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_rx_merge_stat1_s cn; */
};
static inline u64 CGXX_CMRX_RX_MERGE_STAT1(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_MERGE_STAT1(u64 a)
{
return 0x140 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_merge_stat2
*
* CGX RX Preemption Status Register 2
*/
union cgxx_cmrx_rx_merge_stat2 {
u64 u;
struct cgxx_cmrx_rx_merge_stat2_s {
u64 fa_ok_cnt : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_rx_merge_stat2_s cn; */
};
static inline u64 CGXX_CMRX_RX_MERGE_STAT2(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_MERGE_STAT2(u64 a)
{
return 0x148 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_merge_stat3
*
* CGX RX Preemption Status Register 3
*/
union cgxx_cmrx_rx_merge_stat3 {
u64 u;
struct cgxx_cmrx_rx_merge_stat3_s {
u64 ff_cnt : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_rx_merge_stat3_s cn; */
};
static inline u64 CGXX_CMRX_RX_MERGE_STAT3(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_MERGE_STAT3(u64 a)
{
return 0x150 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_merge_stat4
*
* CGX RX Preemption Status Register 4
*/
union cgxx_cmrx_rx_merge_stat4 {
u64 u;
struct cgxx_cmrx_rx_merge_stat4_s {
u64 cnt : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_rx_merge_stat4_s cn; */
};
static inline u64 CGXX_CMRX_RX_MERGE_STAT4(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_MERGE_STAT4(u64 a)
{
return 0x158 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_pause_drop_time
*
* CGX CMR Receive Pause Drop-Time Register
*/
union cgxx_cmrx_rx_pause_drop_time {
u64 u;
struct cgxx_cmrx_rx_pause_drop_time_s {
u64 pause_time : 16;
u64 pause_time_e : 16;
u64 reserved_32_63 : 32;
} s;
/* struct cgxx_cmrx_rx_pause_drop_time_s cn; */
};
static inline u64 CGXX_CMRX_RX_PAUSE_DROP_TIME(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_PAUSE_DROP_TIME(u64 a)
{
return 0x68 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_stat0
*
* CGX Receive Status Register 0 These registers provide a count of
* received packets that meet the following conditions: * are not
* recognized as ERROR packets(any OPCODE). * are not recognized as PAUSE
* packets. * are not dropped due FIFO full status. * are not dropped due
* DMAC0 or STEERING0 filtering. Internal: "This pseudo code represents
* the RX STAT0 through STAT8 accounting: \<pre\> If (errored) incr
* RX_STAT8 else if (ctrl packet, i.e. Pause/PFC) incr RX_STAT2,3 else
* if (fifo full drop) incr RX_STAT6,7 else if (DMAC0/VLAN0 filter
* drop) incr RX_STAT4,5 if not a filter+decision else incr
* RX_STAT0,1 end \</pre\>"
*/
union cgxx_cmrx_rx_stat0 {
u64 u;
struct cgxx_cmrx_rx_stat0_s {
u64 cnt : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_rx_stat0_s cn; */
};
static inline u64 CGXX_CMRX_RX_STAT0(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_STAT0(u64 a)
{
return 0x70 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_stat1
*
* CGX Receive Status Register 1 These registers provide a count of
* octets of received packets.
*/
union cgxx_cmrx_rx_stat1 {
u64 u;
struct cgxx_cmrx_rx_stat1_s {
u64 cnt : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_rx_stat1_s cn; */
};
static inline u64 CGXX_CMRX_RX_STAT1(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_STAT1(u64 a)
{
return 0x78 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_stat2
*
* CGX Receive Status Register 2 These registers provide a count of
* received packets that meet the following conditions: * are not
* recognized as ERROR packets(any OPCODE). * are recognized as PAUSE
* packets. Pause packets can be optionally dropped or forwarded based
* on
* CGX()_SMU()_RX_FRM_CTL[CTL_DRP]/CGX()_GMP_GMI_RX()_FRM_CTL[CTL_DRP].
* This count increments regardless of whether the packet is dropped.
*/
union cgxx_cmrx_rx_stat2 {
u64 u;
struct cgxx_cmrx_rx_stat2_s {
u64 cnt : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_rx_stat2_s cn; */
};
static inline u64 CGXX_CMRX_RX_STAT2(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_STAT2(u64 a)
{
return 0x80 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_stat3
*
* CGX Receive Status Register 3 These registers provide a count of
* octets of received PAUSE and control packets.
*/
union cgxx_cmrx_rx_stat3 {
u64 u;
struct cgxx_cmrx_rx_stat3_s {
u64 cnt : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_rx_stat3_s cn; */
};
static inline u64 CGXX_CMRX_RX_STAT3(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_STAT3(u64 a)
{
return 0x88 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_stat4
*
* CGX Receive Status Register 4 These registers provide a count of
* received packets that meet the following conditions: * are not
* recognized as ERROR packets(any OPCODE). * are not recognized as PAUSE
* packets. * are not dropped due FIFO full status. * are dropped due
* DMAC0 or STEERING0 filtering. 16B packets or smaller (20B in case of
* FCS strip) as the result of truncation or other means are not dropped
* by CGX (unless filter and decision is also asserted) and will never
* appear in this count. Should the MAC signal to the CMR that the packet
* be filtered upon decision before the end of packet, then STAT4 and
* STAT5 will not be updated.
*/
union cgxx_cmrx_rx_stat4 {
u64 u;
struct cgxx_cmrx_rx_stat4_s {
u64 cnt : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_rx_stat4_s cn; */
};
static inline u64 CGXX_CMRX_RX_STAT4(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_STAT4(u64 a)
{
return 0x90 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_stat5
*
* CGX Receive Status Register 5 These registers provide a count of
* octets of filtered DMAC0 or VLAN STEERING0 packets.
*/
union cgxx_cmrx_rx_stat5 {
u64 u;
struct cgxx_cmrx_rx_stat5_s {
u64 cnt : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_rx_stat5_s cn; */
};
static inline u64 CGXX_CMRX_RX_STAT5(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_STAT5(u64 a)
{
return 0x98 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_stat6
*
* CGX Receive Status Register 6 These registers provide a count of
* received packets that meet the following conditions: * are not
* recognized as ERROR packets(any OPCODE). * are not recognized as PAUSE
* packets. * are dropped due FIFO full status. They do not count any
* packet that is truncated at the point of overflow and sent on to the
* NIX. The truncated packet will be marked with error and increment
* STAT8. These registers count all entire packets dropped by the FIFO
* for a given LMAC.
*/
union cgxx_cmrx_rx_stat6 {
u64 u;
struct cgxx_cmrx_rx_stat6_s {
u64 cnt : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_rx_stat6_s cn; */
};
static inline u64 CGXX_CMRX_RX_STAT6(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_STAT6(u64 a)
{
return 0xa0 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_stat7
*
* CGX Receive Status Register 7 These registers provide a count of
* octets of received packets that were dropped due to a full receive
* FIFO.
*/
union cgxx_cmrx_rx_stat7 {
u64 u;
struct cgxx_cmrx_rx_stat7_s {
u64 cnt : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_rx_stat7_s cn; */
};
static inline u64 CGXX_CMRX_RX_STAT7(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_STAT7(u64 a)
{
return 0xa8 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_stat8
*
* CGX Receive Status Register 8 These registers provide a count of
* received packets that meet the following conditions: * are recognized
* as ERROR packets(any OPCODE).
*/
union cgxx_cmrx_rx_stat8 {
u64 u;
struct cgxx_cmrx_rx_stat8_s {
u64 cnt : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_rx_stat8_s cn; */
};
static inline u64 CGXX_CMRX_RX_STAT8(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_STAT8(u64 a)
{
return 0xb0 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_rx_stat_pri#_xoff
*
* CGX CMR RX XON to XOFF transition Registers
*/
union cgxx_cmrx_rx_stat_prix_xoff {
u64 u;
struct cgxx_cmrx_rx_stat_prix_xoff_s {
u64 cnt : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_rx_stat_prix_xoff_s cn; */
};
static inline u64 CGXX_CMRX_RX_STAT_PRIX_XOFF(u64 a, u64 b)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_RX_STAT_PRIX_XOFF(u64 a, u64 b)
{
return 0x7c0 + 0x40000 * a + 8 * b;
}
/**
* Register (RSL) cgx#_cmr#_scratch#
*
* CGX CMR Scratch Registers
*/
union cgxx_cmrx_scratchx {
u64 u;
struct cgxx_cmrx_scratchx_s {
u64 scratch : 64;
} s;
/* struct cgxx_cmrx_scratchx_s cn; */
};
static inline u64 CGXX_CMRX_SCRATCHX(u64 a, u64 b)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_SCRATCHX(u64 a, u64 b)
{
return 0x1050 + 0x40000 * a + 8 * b;
}
/**
* Register (RSL) cgx#_cmr#_sw_int
*
* CGX CMR Interrupt Register
*/
union cgxx_cmrx_sw_int {
u64 u;
struct cgxx_cmrx_sw_int_s {
u64 sw_set : 1;
u64 reserved_1_63 : 63;
} s;
/* struct cgxx_cmrx_sw_int_s cn; */
};
static inline u64 CGXX_CMRX_SW_INT(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_SW_INT(u64 a)
{
return 0x180 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_sw_int_ena_w1c
*
* CGX CMR Interrupt Enable Clear Register This register clears interrupt
* enable bits.
*/
union cgxx_cmrx_sw_int_ena_w1c {
u64 u;
struct cgxx_cmrx_sw_int_ena_w1c_s {
u64 sw_set : 1;
u64 reserved_1_63 : 63;
} s;
/* struct cgxx_cmrx_sw_int_ena_w1c_s cn; */
};
static inline u64 CGXX_CMRX_SW_INT_ENA_W1C(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_SW_INT_ENA_W1C(u64 a)
{
return 0x190 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_sw_int_ena_w1s
*
* CGX CMR Interrupt Enable Set Register This register sets interrupt
* enable bits.
*/
union cgxx_cmrx_sw_int_ena_w1s {
u64 u;
struct cgxx_cmrx_sw_int_ena_w1s_s {
u64 sw_set : 1;
u64 reserved_1_63 : 63;
} s;
/* struct cgxx_cmrx_sw_int_ena_w1s_s cn; */
};
static inline u64 CGXX_CMRX_SW_INT_ENA_W1S(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_SW_INT_ENA_W1S(u64 a)
{
return 0x198 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_sw_int_w1s
*
* CGX CMR Interrupt Set Register This register sets interrupt bits.
*/
union cgxx_cmrx_sw_int_w1s {
u64 u;
struct cgxx_cmrx_sw_int_w1s_s {
u64 sw_set : 1;
u64 reserved_1_63 : 63;
} s;
/* struct cgxx_cmrx_sw_int_w1s_s cn; */
};
static inline u64 CGXX_CMRX_SW_INT_W1S(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_SW_INT_W1S(u64 a)
{
return 0x188 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_channel
*
* CGX CMR Transmit-Channels Registers
*/
union cgxx_cmrx_tx_channel {
u64 u;
struct cgxx_cmrx_tx_channel_s {
u64 msk : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_cmrx_tx_channel_s cn; */
};
static inline u64 CGXX_CMRX_TX_CHANNEL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_CHANNEL(u64 a)
{
return 0x600 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_fifo_len
*
* CGX CMR Transmit Fifo Length Registers
*/
union cgxx_cmrx_tx_fifo_len {
u64 u;
struct cgxx_cmrx_tx_fifo_len_s {
u64 fifo_len : 14;
u64 lmac_idle : 1;
u64 fifo_e_len : 14;
u64 lmac_e_idle : 1;
u64 reserved_30_63 : 34;
} s;
/* struct cgxx_cmrx_tx_fifo_len_s cn; */
};
static inline u64 CGXX_CMRX_TX_FIFO_LEN(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_FIFO_LEN(u64 a)
{
return 0x618 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_hg2_status
*
* CGX CMR Transmit HiGig2 Status Registers
*/
union cgxx_cmrx_tx_hg2_status {
u64 u;
struct cgxx_cmrx_tx_hg2_status_s {
u64 lgtim2go : 16;
u64 xof : 16;
u64 reserved_32_63 : 32;
} s;
/* struct cgxx_cmrx_tx_hg2_status_s cn; */
};
static inline u64 CGXX_CMRX_TX_HG2_STATUS(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_HG2_STATUS(u64 a)
{
return 0x610 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_merge_stat0
*
* CGX TX Preemption Status Register 0
*/
union cgxx_cmrx_tx_merge_stat0 {
u64 u;
struct cgxx_cmrx_tx_merge_stat0_s {
u64 ff_cnt : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_tx_merge_stat0_s cn; */
};
static inline u64 CGXX_CMRX_TX_MERGE_STAT0(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_MERGE_STAT0(u64 a)
{
return 0x160 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_ovr_bp
*
* CGX CMR Transmit-Channels Backpressure Override Registers
*/
union cgxx_cmrx_tx_ovr_bp {
u64 u;
struct cgxx_cmrx_tx_ovr_bp_s {
u64 tx_chan_bp : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_cmrx_tx_ovr_bp_s cn; */
};
static inline u64 CGXX_CMRX_TX_OVR_BP(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_OVR_BP(u64 a)
{
return 0x620 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_stat0
*
* CGX CMR Transmit Statistics Registers 0
*/
union cgxx_cmrx_tx_stat0 {
u64 u;
struct cgxx_cmrx_tx_stat0_s {
u64 xscol : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_tx_stat0_s cn; */
};
static inline u64 CGXX_CMRX_TX_STAT0(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_STAT0(u64 a)
{
return 0x700 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_stat1
*
* CGX CMR Transmit Statistics Registers 1
*/
union cgxx_cmrx_tx_stat1 {
u64 u;
struct cgxx_cmrx_tx_stat1_s {
u64 xsdef : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_tx_stat1_s cn; */
};
static inline u64 CGXX_CMRX_TX_STAT1(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_STAT1(u64 a)
{
return 0x708 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_stat10
*
* CGX CMR Transmit Statistics Registers 10
*/
union cgxx_cmrx_tx_stat10 {
u64 u;
struct cgxx_cmrx_tx_stat10_s {
u64 hist4 : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_tx_stat10_s cn; */
};
static inline u64 CGXX_CMRX_TX_STAT10(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_STAT10(u64 a)
{
return 0x750 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_stat11
*
* CGX CMR Transmit Statistics Registers 11
*/
union cgxx_cmrx_tx_stat11 {
u64 u;
struct cgxx_cmrx_tx_stat11_s {
u64 hist5 : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_tx_stat11_s cn; */
};
static inline u64 CGXX_CMRX_TX_STAT11(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_STAT11(u64 a)
{
return 0x758 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_stat12
*
* CGX CMR Transmit Statistics Registers 12
*/
union cgxx_cmrx_tx_stat12 {
u64 u;
struct cgxx_cmrx_tx_stat12_s {
u64 hist6 : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_tx_stat12_s cn; */
};
static inline u64 CGXX_CMRX_TX_STAT12(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_STAT12(u64 a)
{
return 0x760 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_stat13
*
* CGX CMR Transmit Statistics Registers 13
*/
union cgxx_cmrx_tx_stat13 {
u64 u;
struct cgxx_cmrx_tx_stat13_s {
u64 hist7 : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_tx_stat13_s cn; */
};
static inline u64 CGXX_CMRX_TX_STAT13(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_STAT13(u64 a)
{
return 0x768 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_stat14
*
* CGX CMR Transmit Statistics Registers 14
*/
union cgxx_cmrx_tx_stat14 {
u64 u;
struct cgxx_cmrx_tx_stat14_s {
u64 bcst : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_tx_stat14_s cn; */
};
static inline u64 CGXX_CMRX_TX_STAT14(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_STAT14(u64 a)
{
return 0x770 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_stat15
*
* CGX CMR Transmit Statistics Registers 15
*/
union cgxx_cmrx_tx_stat15 {
u64 u;
struct cgxx_cmrx_tx_stat15_s {
u64 mcst : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_tx_stat15_s cn; */
};
static inline u64 CGXX_CMRX_TX_STAT15(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_STAT15(u64 a)
{
return 0x778 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_stat16
*
* CGX CMR Transmit Statistics Registers 16
*/
union cgxx_cmrx_tx_stat16 {
u64 u;
struct cgxx_cmrx_tx_stat16_s {
u64 undflw : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_tx_stat16_s cn; */
};
static inline u64 CGXX_CMRX_TX_STAT16(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_STAT16(u64 a)
{
return 0x780 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_stat17
*
* CGX CMR Transmit Statistics Registers 17
*/
union cgxx_cmrx_tx_stat17 {
u64 u;
struct cgxx_cmrx_tx_stat17_s {
u64 ctl : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_tx_stat17_s cn; */
};
static inline u64 CGXX_CMRX_TX_STAT17(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_STAT17(u64 a)
{
return 0x788 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_stat2
*
* CGX CMR Transmit Statistics Registers 2
*/
union cgxx_cmrx_tx_stat2 {
u64 u;
struct cgxx_cmrx_tx_stat2_s {
u64 mcol : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_tx_stat2_s cn; */
};
static inline u64 CGXX_CMRX_TX_STAT2(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_STAT2(u64 a)
{
return 0x710 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_stat3
*
* CGX CMR Transmit Statistics Registers 3
*/
union cgxx_cmrx_tx_stat3 {
u64 u;
struct cgxx_cmrx_tx_stat3_s {
u64 scol : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_tx_stat3_s cn; */
};
static inline u64 CGXX_CMRX_TX_STAT3(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_STAT3(u64 a)
{
return 0x718 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_stat4
*
* CGX CMR Transmit Statistics Registers 4
*/
union cgxx_cmrx_tx_stat4 {
u64 u;
struct cgxx_cmrx_tx_stat4_s {
u64 octs : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_tx_stat4_s cn; */
};
static inline u64 CGXX_CMRX_TX_STAT4(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_STAT4(u64 a)
{
return 0x720 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_stat5
*
* CGX CMR Transmit Statistics Registers 5
*/
union cgxx_cmrx_tx_stat5 {
u64 u;
struct cgxx_cmrx_tx_stat5_s {
u64 pkts : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_tx_stat5_s cn; */
};
static inline u64 CGXX_CMRX_TX_STAT5(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_STAT5(u64 a)
{
return 0x728 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_stat6
*
* CGX CMR Transmit Statistics Registers 6
*/
union cgxx_cmrx_tx_stat6 {
u64 u;
struct cgxx_cmrx_tx_stat6_s {
u64 hist0 : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_tx_stat6_s cn; */
};
static inline u64 CGXX_CMRX_TX_STAT6(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_STAT6(u64 a)
{
return 0x730 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_stat7
*
* CGX CMR Transmit Statistics Registers 7
*/
union cgxx_cmrx_tx_stat7 {
u64 u;
struct cgxx_cmrx_tx_stat7_s {
u64 hist1 : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_tx_stat7_s cn; */
};
static inline u64 CGXX_CMRX_TX_STAT7(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_STAT7(u64 a)
{
return 0x738 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_stat8
*
* CGX CMR Transmit Statistics Registers 8
*/
union cgxx_cmrx_tx_stat8 {
u64 u;
struct cgxx_cmrx_tx_stat8_s {
u64 hist2 : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_tx_stat8_s cn; */
};
static inline u64 CGXX_CMRX_TX_STAT8(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_STAT8(u64 a)
{
return 0x740 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_stat9
*
* CGX CMR Transmit Statistics Registers 9
*/
union cgxx_cmrx_tx_stat9 {
u64 u;
struct cgxx_cmrx_tx_stat9_s {
u64 hist3 : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_tx_stat9_s cn; */
};
static inline u64 CGXX_CMRX_TX_STAT9(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_STAT9(u64 a)
{
return 0x748 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_cmr#_tx_stat_pri#_xoff
*
* CGX CMR TX XON to XOFF transition Registers
*/
union cgxx_cmrx_tx_stat_prix_xoff {
u64 u;
struct cgxx_cmrx_tx_stat_prix_xoff_s {
u64 cnt : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmrx_tx_stat_prix_xoff_s cn; */
};
static inline u64 CGXX_CMRX_TX_STAT_PRIX_XOFF(u64 a, u64 b)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMRX_TX_STAT_PRIX_XOFF(u64 a, u64 b)
{
return 0x800 + 0x40000 * a + 8 * b;
}
/**
* Register (RSL) cgx#_cmr_bad
*
* CGX CMR Bad Registers
*/
union cgxx_cmr_bad {
u64 u;
struct cgxx_cmr_bad_s {
u64 rxb_nxl : 1;
u64 reserved_1_63 : 63;
} s;
/* struct cgxx_cmr_bad_s cn; */
};
static inline u64 CGXX_CMR_BAD(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_BAD(void)
{
return 0x1020;
}
/**
* Register (RSL) cgx#_cmr_chan_msk_and
*
* CGX CMR Backpressure Channel Mask AND Registers
*/
union cgxx_cmr_chan_msk_and {
u64 u;
struct cgxx_cmr_chan_msk_and_s {
u64 msk_and : 64;
} s;
/* struct cgxx_cmr_chan_msk_and_s cn; */
};
static inline u64 CGXX_CMR_CHAN_MSK_AND(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_CHAN_MSK_AND(void)
{
return 0x110;
}
/**
* Register (RSL) cgx#_cmr_chan_msk_or
*
* CGX Backpressure Channel Mask OR Registers
*/
union cgxx_cmr_chan_msk_or {
u64 u;
struct cgxx_cmr_chan_msk_or_s {
u64 msk_or : 64;
} s;
/* struct cgxx_cmr_chan_msk_or_s cn; */
};
static inline u64 CGXX_CMR_CHAN_MSK_OR(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_CHAN_MSK_OR(void)
{
return 0x118;
}
/**
* Register (RSL) cgx#_cmr_eco
*
* INTERNAL: CGX ECO Registers
*/
union cgxx_cmr_eco {
u64 u;
struct cgxx_cmr_eco_s {
u64 eco_rw : 32;
u64 eco_ro : 32;
} s;
/* struct cgxx_cmr_eco_s cn; */
};
static inline u64 CGXX_CMR_ECO(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_ECO(void)
{
return 0x1028;
}
/**
* Register (RSL) cgx#_cmr_global_config
*
* CGX CMR Global Configuration Register These registers configure the
* global CMR, PCS, and MAC.
*/
union cgxx_cmr_global_config {
u64 u;
struct cgxx_cmr_global_config_s {
u64 pmux_sds_sel : 1;
u64 cgx_clk_enable : 1;
u64 cmr_x2p_reset : 3;
u64 interleave_mode : 1;
u64 fcs_strip : 1;
u64 ncsi_lmac_id : 2;
u64 cmr_ncsi_drop : 1;
u64 cmr_ncsi_reset : 1;
u64 cmr_ncsi_tag_cnt : 13;
u64 cmr_clken_ovrd : 1;
u64 reserved_25_63 : 39;
} s;
/* struct cgxx_cmr_global_config_s cn; */
};
static inline u64 CGXX_CMR_GLOBAL_CONFIG(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_GLOBAL_CONFIG(void)
{
return 8;
}
/**
* Register (RSL) cgx#_cmr_mem_int
*
* CGX CMR Memory Interrupt Register
*/
union cgxx_cmr_mem_int {
u64 u;
struct cgxx_cmr_mem_int_s {
u64 gmp_in_overfl : 1;
u64 smu_in_overfl : 1;
u64 reserved_2_63 : 62;
} s;
/* struct cgxx_cmr_mem_int_s cn; */
};
static inline u64 CGXX_CMR_MEM_INT(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_MEM_INT(void)
{
return 0x10;
}
/**
* Register (RSL) cgx#_cmr_mem_int_ena_w1c
*
* CGX CMR Memory Interrupt Enable Clear Register This register clears
* interrupt enable bits.
*/
union cgxx_cmr_mem_int_ena_w1c {
u64 u;
struct cgxx_cmr_mem_int_ena_w1c_s {
u64 gmp_in_overfl : 1;
u64 smu_in_overfl : 1;
u64 reserved_2_63 : 62;
} s;
/* struct cgxx_cmr_mem_int_ena_w1c_s cn; */
};
static inline u64 CGXX_CMR_MEM_INT_ENA_W1C(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_MEM_INT_ENA_W1C(void)
{
return 0x20;
}
/**
* Register (RSL) cgx#_cmr_mem_int_ena_w1s
*
* CGX CMR Memory Interrupt Enable Set Register This register sets
* interrupt enable bits.
*/
union cgxx_cmr_mem_int_ena_w1s {
u64 u;
struct cgxx_cmr_mem_int_ena_w1s_s {
u64 gmp_in_overfl : 1;
u64 smu_in_overfl : 1;
u64 reserved_2_63 : 62;
} s;
/* struct cgxx_cmr_mem_int_ena_w1s_s cn; */
};
static inline u64 CGXX_CMR_MEM_INT_ENA_W1S(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_MEM_INT_ENA_W1S(void)
{
return 0x28;
}
/**
* Register (RSL) cgx#_cmr_mem_int_w1s
*
* CGX CMR Memory Interrupt Set Register This register sets interrupt
* bits.
*/
union cgxx_cmr_mem_int_w1s {
u64 u;
struct cgxx_cmr_mem_int_w1s_s {
u64 gmp_in_overfl : 1;
u64 smu_in_overfl : 1;
u64 reserved_2_63 : 62;
} s;
/* struct cgxx_cmr_mem_int_w1s_s cn; */
};
static inline u64 CGXX_CMR_MEM_INT_W1S(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_MEM_INT_W1S(void)
{
return 0x18;
}
/**
* Register (RSL) cgx#_cmr_nic_nxc_adr
*
* CGX CMR NIC NXC Exception Registers
*/
union cgxx_cmr_nic_nxc_adr {
u64 u;
struct cgxx_cmr_nic_nxc_adr_s {
u64 channel : 12;
u64 lmac_id : 4;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_cmr_nic_nxc_adr_s cn; */
};
static inline u64 CGXX_CMR_NIC_NXC_ADR(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_NIC_NXC_ADR(void)
{
return 0x1030;
}
/**
* Register (RSL) cgx#_cmr_nix0_nxc_adr
*
* CGX CMR NIX0 NXC Exception Registers
*/
union cgxx_cmr_nix0_nxc_adr {
u64 u;
struct cgxx_cmr_nix0_nxc_adr_s {
u64 channel : 12;
u64 lmac_id : 4;
u64 channel_e : 12;
u64 lmac_e_id : 4;
u64 reserved_32_63 : 32;
} s;
/* struct cgxx_cmr_nix0_nxc_adr_s cn; */
};
static inline u64 CGXX_CMR_NIX0_NXC_ADR(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_NIX0_NXC_ADR(void)
{
return 0x1038;
}
/**
* Register (RSL) cgx#_cmr_nix1_nxc_adr
*
* CGX CMR NIX1 NXC Exception Registers
*/
union cgxx_cmr_nix1_nxc_adr {
u64 u;
struct cgxx_cmr_nix1_nxc_adr_s {
u64 channel : 12;
u64 lmac_id : 4;
u64 channel_e : 12;
u64 lmac_e_id : 4;
u64 reserved_32_63 : 32;
} s;
/* struct cgxx_cmr_nix1_nxc_adr_s cn; */
};
static inline u64 CGXX_CMR_NIX1_NXC_ADR(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_NIX1_NXC_ADR(void)
{
return 0x1040;
}
/**
* Register (RSL) cgx#_cmr_p2x#_count
*
* CGX P2X Activity Register
*/
union cgxx_cmr_p2xx_count {
u64 u;
struct cgxx_cmr_p2xx_count_s {
u64 p2x_cnt : 64;
} s;
/* struct cgxx_cmr_p2xx_count_s cn; */
};
static inline u64 CGXX_CMR_P2XX_COUNT(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_P2XX_COUNT(u64 a)
{
return 0x168 + 0x1000 * a;
}
/**
* Register (RSL) cgx#_cmr_rx_dmac#_cam0
*
* CGX CMR Receive CAM Registers These registers provide access to the 32
* DMAC CAM0 entries in CGX, for use by X2P/NIX bound traffic.
*/
union cgxx_cmr_rx_dmacx_cam0 {
u64 u;
struct cgxx_cmr_rx_dmacx_cam0_s {
u64 adr : 48;
u64 en : 1;
u64 id : 2;
u64 reserved_51_63 : 13;
} s;
/* struct cgxx_cmr_rx_dmacx_cam0_s cn; */
};
static inline u64 CGXX_CMR_RX_DMACX_CAM0(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_RX_DMACX_CAM0(u64 a)
{
return 0x200 + 8 * a;
}
/**
* Register (RSL) cgx#_cmr_rx_dmac#_cam1
*
* CGX CMR Receive CAM Registers These registers provide access to the 32
* DMAC CAM entries in CGX for use by NCSI bound traffic. See
* CGX()_CMR_GLOBAL_CONFIG[NCSI_LMAC_ID] and CGX()_CMR_RX_STEERING1()
* registers.
*/
union cgxx_cmr_rx_dmacx_cam1 {
u64 u;
struct cgxx_cmr_rx_dmacx_cam1_s {
u64 adr : 48;
u64 en : 1;
u64 id : 2;
u64 reserved_51_63 : 13;
} s;
/* struct cgxx_cmr_rx_dmacx_cam1_s cn; */
};
static inline u64 CGXX_CMR_RX_DMACX_CAM1(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_RX_DMACX_CAM1(u64 a)
{
return 0x400 + 8 * a;
}
/**
* Register (RSL) cgx#_cmr_rx_lmacs
*
* CGX CMR Receive Logical MACs Registers
*/
union cgxx_cmr_rx_lmacs {
u64 u;
struct cgxx_cmr_rx_lmacs_s {
u64 lmacs : 3;
u64 reserved_3_63 : 61;
} s;
/* struct cgxx_cmr_rx_lmacs_s cn; */
};
static inline u64 CGXX_CMR_RX_LMACS(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_RX_LMACS(void)
{
return 0x128;
}
/**
* Register (RSL) cgx#_cmr_rx_ovr_bp
*
* CGX CMR Receive-Ports Backpressure Override Registers Per-LMAC
* backpressure override register. For SMU, CGX()_CMR_RX_OVR_BP[EN]\<0\>
* must be set to one and CGX()_CMR_RX_OVR_BP[BP]\<0\> must be cleared to
* zero (to forcibly disable hardware-automatic 802.3 PAUSE packet
* generation) with the HiGig2 Protocol when
* CGX()_SMU()_HG2_CONTROL[HG2TX_EN]=0. (The HiGig2 protocol is indicated
* by CGX()_SMU()_TX_CTL[HG_EN]=1 and CGX()_SMU()_RX_UDD_SKP[LEN]=16).
* Hardware can only auto-generate backpressure through HiGig2 messages
* (optionally, when CGX()_SMU()_HG2_CONTROL[HG2TX_EN]=1) with the HiGig2
* protocol.
*/
union cgxx_cmr_rx_ovr_bp {
u64 u;
struct cgxx_cmr_rx_ovr_bp_s {
u64 ign_fifo_bp : 4;
u64 bp : 4;
u64 en : 4;
u64 reserved_12_63 : 52;
} s;
/* struct cgxx_cmr_rx_ovr_bp_s cn; */
};
static inline u64 CGXX_CMR_RX_OVR_BP(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_RX_OVR_BP(void)
{
return 0x130;
}
/**
* Register (RSL) cgx#_cmr_rx_stat10
*
* CGX Receive Status Register 10 These registers provide a count of
* octets of filtered DMAC1 or VLAN STEERING1 packets.
*/
union cgxx_cmr_rx_stat10 {
u64 u;
struct cgxx_cmr_rx_stat10_s {
u64 cnt : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmr_rx_stat10_s cn; */
};
static inline u64 CGXX_CMR_RX_STAT10(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_RX_STAT10(void)
{
return 0xc0;
}
/**
* Register (RSL) cgx#_cmr_rx_stat11
*
* CGX Receive Status Register 11 This registers provides a count of
* packets dropped at the NCSI interface. This includes drops due to
* CGX()_CMR_GLOBAL_CONFIG[CMR_NCSI_DROP] or NCSI FIFO full. The count of
* dropped NCSI packets is not accounted for in any other stats
* registers.
*/
union cgxx_cmr_rx_stat11 {
u64 u;
struct cgxx_cmr_rx_stat11_s {
u64 cnt : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmr_rx_stat11_s cn; */
};
static inline u64 CGXX_CMR_RX_STAT11(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_RX_STAT11(void)
{
return 0xc8;
}
/**
* Register (RSL) cgx#_cmr_rx_stat12
*
* CGX Receive Status Register 12 This register provide a count of octets
* of dropped at the NCSI interface.
*/
union cgxx_cmr_rx_stat12 {
u64 u;
struct cgxx_cmr_rx_stat12_s {
u64 cnt : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmr_rx_stat12_s cn; */
};
static inline u64 CGXX_CMR_RX_STAT12(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_RX_STAT12(void)
{
return 0xd0;
}
/**
* Register (RSL) cgx#_cmr_rx_stat9
*
* CGX Receive Status Register 9 These registers provide a count of all
* received packets that were dropped by the DMAC1 or VLAN STEERING1
* filter. Packets that are dropped by the DMAC1 or VLAN STEERING1
* filters are counted here regardless of whether they were ERR packets,
* but does not include those reported in CGX()_CMR()_RX_STAT6. 16B
* packets or smaller (20B in case of FCS strip) as the result of
* truncation or other means are not dropped by CGX (unless filter and
* decision is also asserted) and will never appear in this count. Should
* the MAC signal to the CMR that the packet be filtered upon decision
* before the end of packet, then STAT9 and STAT10 will not be updated.
*/
union cgxx_cmr_rx_stat9 {
u64 u;
struct cgxx_cmr_rx_stat9_s {
u64 cnt : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_cmr_rx_stat9_s cn; */
};
static inline u64 CGXX_CMR_RX_STAT9(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_RX_STAT9(void)
{
return 0xb8;
}
/**
* Register (RSL) cgx#_cmr_rx_steering0#
*
* CGX CMR Receive Steering0 Registers These registers, along with
* CGX()_CMR_RX_STEERING_VETYPE0(), provide eight filters for identifying
* and steering receive traffic to X2P/NIX. Received packets are only
* passed to X2P/NIX when the DMAC0 filter result is ACCEPT and STEERING0
* filter result is PASS. See also CGX()_CMR()_RX_DMAC_CTL0. Internal:
* "* ALGORITHM \<pre\> rx_steering(uint48 pkt_dmac, uint16 pkt_etype,
* uint16 pkt_vlan_id) { for (int i = 0; i \< 8; i++) { steer =
* CGX()_CMR_RX_STEERING0(i); vetype =
* CGX()_CMR_RX_STEERING_VETYPE0(i); if (steer[MCST_EN] ||
* steer[DMAC_EN] || vetype[VLAN_EN] || vetype[VLAN_TAG_EN]) {
* // Filter is enabled. if ( (!steer[MCST_EN] ||
* is_mcst(pkt_dmac)) && (!steer[DMAC_EN] || pkt_dmac ==
* steer[DMAC]) && (!vetype[VLAN_EN] || pkt_vlan_id ==
* vetype[VLAN_ID]) && (!vetype[VLAN_TAG_EN] || pkt_etype ==
* vetype[VLAN_ETYPE]) ) { // Filter match (all
* enabled matching criteria are met). return steer[PASS];
* } } } return CGX()_CMR_RX_STEERING_DEFAULT0[PASS]; // No
* match } \</pre\>"
*/
union cgxx_cmr_rx_steering0x {
u64 u;
struct cgxx_cmr_rx_steering0x_s {
u64 dmac : 48;
u64 dmac_en : 1;
u64 mcst_en : 1;
u64 pass : 1;
u64 reserved_51_63 : 13;
} s;
/* struct cgxx_cmr_rx_steering0x_s cn; */
};
static inline u64 CGXX_CMR_RX_STEERING0X(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_RX_STEERING0X(u64 a)
{
return 0x300 + 8 * a;
}
/**
* Register (RSL) cgx#_cmr_rx_steering1#
*
* CGX CMR Receive Steering1 Registers These registers, along with
* CGX()_CMR_RX_STEERING_VETYPE1(), provide eight filters for identifying
* and steering NCSI receive traffic. Received packets are only passed to
* NCSI when the DMAC1 filter result is ACCEPT and STEERING1 filter
* result is PASS. See also CGX()_CMR_RX_DMAC()_CAM1 and
* CGX()_CMR_RX_STEERING1(). For use with the LMAC associated with NCSI.
* See CGX()_CMR_GLOBAL_CONFIG[NCSI_LMAC_ID]. Internal: ALGORITHM: See
* CGX()_CMR_RX_STEERING0().
*/
union cgxx_cmr_rx_steering1x {
u64 u;
struct cgxx_cmr_rx_steering1x_s {
u64 dmac : 48;
u64 dmac_en : 1;
u64 mcst_en : 1;
u64 pass : 1;
u64 reserved_51_63 : 13;
} s;
/* struct cgxx_cmr_rx_steering1x_s cn; */
};
static inline u64 CGXX_CMR_RX_STEERING1X(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_RX_STEERING1X(u64 a)
{
return 0x500 + 8 * a;
}
/**
* Register (RSL) cgx#_cmr_rx_steering_default0
*
* CGX CMR Receive Steering Default0 Destination Register For determining
* destination of traffic that does not meet matching algorithm described
* in registers CGX()_CMR_RX_STEERING0() and
* CGX()_CMR_RX_STEERING_VETYPE0(). All 16B packets or smaller (20B in
* case of FCS strip) as the result of truncation will steer to default
* destination
*/
union cgxx_cmr_rx_steering_default0 {
u64 u;
struct cgxx_cmr_rx_steering_default0_s {
u64 pass : 1;
u64 reserved_1_63 : 63;
} s;
/* struct cgxx_cmr_rx_steering_default0_s cn; */
};
static inline u64 CGXX_CMR_RX_STEERING_DEFAULT0(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_RX_STEERING_DEFAULT0(void)
{
return 0x3f0;
}
/**
* Register (RSL) cgx#_cmr_rx_steering_default1
*
* CGX CMR Receive Steering Default1 Destination Register For use with
* the lmac_id associated with NCSI. See
* CGX()_CMR_GLOBAL_CONFIG[NCSI_LMAC_ID]. For determining destination of
* traffic that does not meet matching algorithm described in registers
* CGX()_CMR_RX_STEERING1() and CGX()_CMR_RX_STEERING_VETYPE1(). All 16B
* packets or smaller (20B in case of FCS strip) as the result of
* truncation will steer to default destination
*/
union cgxx_cmr_rx_steering_default1 {
u64 u;
struct cgxx_cmr_rx_steering_default1_s {
u64 pass : 1;
u64 reserved_1_63 : 63;
} s;
/* struct cgxx_cmr_rx_steering_default1_s cn; */
};
static inline u64 CGXX_CMR_RX_STEERING_DEFAULT1(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_RX_STEERING_DEFAULT1(void)
{
return 0x5e0;
}
/**
* Register (RSL) cgx#_cmr_rx_steering_vetype0#
*
* CGX CMR Receive VLAN Ethertype1 Register These registers, along with
* CGX()_CMR_RX_STEERING0(), provide eight filters for identifying and
* steering X2P/NIX receive traffic.
*/
union cgxx_cmr_rx_steering_vetype0x {
u64 u;
struct cgxx_cmr_rx_steering_vetype0x_s {
u64 vlan_etype : 16;
u64 vlan_tag_en : 1;
u64 vlan_id : 12;
u64 vlan_en : 1;
u64 reserved_30_63 : 34;
} s;
/* struct cgxx_cmr_rx_steering_vetype0x_s cn; */
};
static inline u64 CGXX_CMR_RX_STEERING_VETYPE0X(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_RX_STEERING_VETYPE0X(u64 a)
{
return 0x380 + 8 * a;
}
/**
* Register (RSL) cgx#_cmr_rx_steering_vetype1#
*
* CGX CMR Receive VLAN Ethertype1 Register For use with the lmac_id
* associated with NCSI. See CGX()_CMR_GLOBAL_CONFIG[NCSI_LMAC_ID]. These
* registers, along with CGX()_CMR_RX_STEERING1(), provide eight filters
* for identifying and steering NCSI receive traffic.
*/
union cgxx_cmr_rx_steering_vetype1x {
u64 u;
struct cgxx_cmr_rx_steering_vetype1x_s {
u64 vlan_etype : 16;
u64 vlan_tag_en : 1;
u64 vlan_id : 12;
u64 vlan_en : 1;
u64 reserved_30_63 : 34;
} s;
/* struct cgxx_cmr_rx_steering_vetype1x_s cn; */
};
static inline u64 CGXX_CMR_RX_STEERING_VETYPE1X(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_RX_STEERING_VETYPE1X(u64 a)
{
return 0x580 + 8 * a;
}
/**
* Register (RSL) cgx#_cmr_tx_lmacs
*
* CGX CMR Transmit Logical MACs Registers This register sets the number
* of LMACs allowed on the TX interface. The value is important for
* defining the partitioning of the transmit FIFO.
*/
union cgxx_cmr_tx_lmacs {
u64 u;
struct cgxx_cmr_tx_lmacs_s {
u64 lmacs : 3;
u64 reserved_3_63 : 61;
} s;
/* struct cgxx_cmr_tx_lmacs_s cn; */
};
static inline u64 CGXX_CMR_TX_LMACS(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_TX_LMACS(void)
{
return 0x1000;
}
/**
* Register (RSL) cgx#_cmr_x2p#_count
*
* CGX X2P Activity Register
*/
union cgxx_cmr_x2px_count {
u64 u;
struct cgxx_cmr_x2px_count_s {
u64 x2p_cnt : 64;
} s;
/* struct cgxx_cmr_x2px_count_s cn; */
};
static inline u64 CGXX_CMR_X2PX_COUNT(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CMR_X2PX_COUNT(u64 a)
{
return 0x170 + 0x1000 * a;
}
/**
* Register (RSL) cgx#_const
*
* CGX CONST Registers This register contains constants for software
* discovery.
*/
union cgxx_const {
u64 u;
struct cgxx_const_s {
u64 tx_fifosz : 24;
u64 lmacs : 8;
u64 rx_fifosz : 24;
u64 reserved_56_63 : 8;
} s;
/* struct cgxx_const_s cn; */
};
static inline u64 CGXX_CONST(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CONST(void)
{
return 0x2000;
}
/**
* Register (RSL) cgx#_const1
*
* CGX CONST1 Registers This register contains constants for software
* discovery.
*/
union cgxx_const1 {
u64 u;
struct cgxx_const1_s {
u64 types : 11;
u64 res_types : 21;
u64 reserved_32_63 : 32;
} s;
/* struct cgxx_const1_s cn; */
};
static inline u64 CGXX_CONST1(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_CONST1(void)
{
return 0x2008;
}
/**
* Register (RSL) cgx#_gmp_gmi#_rx_wol_ctrl0
*
* CGX GMP GMI RX Wake-on-LAN Control 0 Registers
*/
union cgxx_gmp_gmix_rx_wol_ctrl0 {
u64 u;
struct cgxx_gmp_gmix_rx_wol_ctrl0_s {
u64 dmac : 48;
u64 pswd_len : 4;
u64 reserved_52_63 : 12;
} s;
/* struct cgxx_gmp_gmix_rx_wol_ctrl0_s cn; */
};
static inline u64 CGXX_GMP_GMIX_RX_WOL_CTRL0(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMIX_RX_WOL_CTRL0(u64 a)
{
return 0x38a00 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi#_rx_wol_ctrl1
*
* CGX GMP GMI RX Wake-on-LAN Control 1 Registers
*/
union cgxx_gmp_gmix_rx_wol_ctrl1 {
u64 u;
struct cgxx_gmp_gmix_rx_wol_ctrl1_s {
u64 pswd : 64;
} s;
/* struct cgxx_gmp_gmix_rx_wol_ctrl1_s cn; */
};
static inline u64 CGXX_GMP_GMIX_RX_WOL_CTRL1(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMIX_RX_WOL_CTRL1(u64 a)
{
return 0x38a08 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi#_tx_eee
*
* INTERNAL: CGX GMP GMI TX EEE Configure Registers Reserved. Internal:
* These registers control when GMP GMI TX requests to enter or exist
* LPI. Those registers take effect only when EEE is supported and
* enabled for a given LMAC.
*/
union cgxx_gmp_gmix_tx_eee {
u64 u;
struct cgxx_gmp_gmix_tx_eee_s {
u64 idle_thresh : 28;
u64 reserved_28 : 1;
u64 force_lpi : 1;
u64 wakeup : 1;
u64 auto_lpi : 1;
u64 idle_cnt : 28;
u64 tx_lpi : 1;
u64 tx_lpi_wait : 1;
u64 sync_status_lpi_enable : 1;
u64 reserved_63 : 1;
} s;
/* struct cgxx_gmp_gmix_tx_eee_s cn; */
};
static inline u64 CGXX_GMP_GMIX_TX_EEE(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMIX_TX_EEE(u64 a)
{
return 0x38800 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi#_tx_eee_cfg1
*
* INTERNAL: CGX GMP GMI TX EEE Configure More Configuration Registers
* Reserved. Internal: Controls the GMP exiting of LPI and starting to
* send data.
*/
union cgxx_gmp_gmix_tx_eee_cfg1 {
u64 u;
struct cgxx_gmp_gmix_tx_eee_cfg1_s {
u64 wake2data_time : 24;
u64 reserved_24_35 : 12;
u64 tx_eee_enable : 1;
u64 reserved_37_39 : 3;
u64 sync2lpi_time : 21;
u64 reserved_61_63 : 3;
} s;
struct cgxx_gmp_gmix_tx_eee_cfg1_cn {
u64 wake2data_time : 24;
u64 reserved_24_31 : 8;
u64 reserved_32_35 : 4;
u64 tx_eee_enable : 1;
u64 reserved_37_39 : 3;
u64 sync2lpi_time : 21;
u64 reserved_61_63 : 3;
} cn;
};
static inline u64 CGXX_GMP_GMIX_TX_EEE_CFG1(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMIX_TX_EEE_CFG1(u64 a)
{
return 0x38808 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi#_wol_int
*
* CGX GMP GMI RX WOL Interrupt Registers These registers allow WOL
* interrupts to be sent to the control processor.
*/
union cgxx_gmp_gmix_wol_int {
u64 u;
struct cgxx_gmp_gmix_wol_int_s {
u64 wol_rcvd : 1;
u64 reserved_1_63 : 63;
} s;
/* struct cgxx_gmp_gmix_wol_int_s cn; */
};
static inline u64 CGXX_GMP_GMIX_WOL_INT(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMIX_WOL_INT(u64 a)
{
return 0x38a80 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi#_wol_int_ena_w1c
*
* CGX GMP GMI RX WOL Interrupt Enable Clear Registers This register
* clears interrupt enable bits.
*/
union cgxx_gmp_gmix_wol_int_ena_w1c {
u64 u;
struct cgxx_gmp_gmix_wol_int_ena_w1c_s {
u64 wol_rcvd : 1;
u64 reserved_1_63 : 63;
} s;
/* struct cgxx_gmp_gmix_wol_int_ena_w1c_s cn; */
};
static inline u64 CGXX_GMP_GMIX_WOL_INT_ENA_W1C(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMIX_WOL_INT_ENA_W1C(u64 a)
{
return 0x38a90 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi#_wol_int_ena_w1s
*
* CGX GMP GMI RX WOL Interrupt Enable Set Registers This register sets
* interrupt enable bits.
*/
union cgxx_gmp_gmix_wol_int_ena_w1s {
u64 u;
struct cgxx_gmp_gmix_wol_int_ena_w1s_s {
u64 wol_rcvd : 1;
u64 reserved_1_63 : 63;
} s;
/* struct cgxx_gmp_gmix_wol_int_ena_w1s_s cn; */
};
static inline u64 CGXX_GMP_GMIX_WOL_INT_ENA_W1S(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMIX_WOL_INT_ENA_W1S(u64 a)
{
return 0x38a98 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi#_wol_int_w1s
*
* CGX GMP GMI RX WOL Interrupt Set Registers This register sets
* interrupt bits.
*/
union cgxx_gmp_gmix_wol_int_w1s {
u64 u;
struct cgxx_gmp_gmix_wol_int_w1s_s {
u64 wol_rcvd : 1;
u64 reserved_1_63 : 63;
} s;
/* struct cgxx_gmp_gmix_wol_int_w1s_s cn; */
};
static inline u64 CGXX_GMP_GMIX_WOL_INT_W1S(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMIX_WOL_INT_W1S(u64 a)
{
return 0x38a88 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_prt#_cfg
*
* CGX GMP GMI LMAC Configuration Registers This register controls the
* configuration of the LMAC.
*/
union cgxx_gmp_gmi_prtx_cfg {
u64 u;
struct cgxx_gmp_gmi_prtx_cfg_s {
u64 reserved_0 : 1;
u64 speed : 1;
u64 duplex : 1;
u64 slottime : 1;
u64 reserved_4_7 : 4;
u64 speed_msb : 1;
u64 reserved_9_11 : 3;
u64 rx_idle : 1;
u64 tx_idle : 1;
u64 reserved_14_63 : 50;
} s;
/* struct cgxx_gmp_gmi_prtx_cfg_s cn; */
};
static inline u64 CGXX_GMP_GMI_PRTX_CFG(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_PRTX_CFG(u64 a)
{
return 0x38020 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_rx#_decision
*
* CGX GMP Packet-Decision Registers This register specifies the byte
* count used to determine when to accept or to filter a packet. As each
* byte in a packet is received by GMI, the L2 byte count is compared
* against [CNT]. In normal operation, the L2 header begins after the
* PREAMBLE + SFD (CGX()_GMP_GMI_RX()_FRM_CTL[PRE_CHK] = 1) and any
* optional UDD skip data (CGX()_GMP_GMI_RX()_UDD_SKP[LEN]). Internal:
* Notes: As each byte in a packet is received by GMI, the L2 byte count
* is compared against the [CNT]. The L2 byte count is the number of
* bytes from the beginning of the L2 header (DMAC). In normal
* operation, the L2 header begins after the PREAMBLE+SFD
* (CGX()_GMP_GMI_RX()_FRM_CTL[PRE_CHK]=1) and any optional UDD skip data
* (CGX()_GMP_GMI_RX()_UDD_SKP[LEN]). When
* CGX()_GMP_GMI_RX()_FRM_CTL[PRE_CHK] is clear, PREAMBLE+SFD are
* prepended to the packet and would require UDD skip length to account
* for them. Full Duplex: _ L2 Size \< [CNT] - Accept packet. No
* filtering is applied. _ L2 Size \>= [CNT] - Apply filter. Accept
* packet based on PAUSE packet filter. Half Duplex: _ L2 Size \<
* [CNT] - Drop packet. Packet is unconditionally dropped. _ L2 Size
* \>= [CNT] - Accept packet. where L2_size = MAX(0, total_packet_size -
* CGX()_GMP_GMI_RX()_UDD_SKP[LEN] -
* ((CGX()_GMP_GMI_RX()_FRM_CTL[PRE_CHK]==1)*8)).
*/
union cgxx_gmp_gmi_rxx_decision {
u64 u;
struct cgxx_gmp_gmi_rxx_decision_s {
u64 cnt : 5;
u64 reserved_5_63 : 59;
} s;
/* struct cgxx_gmp_gmi_rxx_decision_s cn; */
};
static inline u64 CGXX_GMP_GMI_RXX_DECISION(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_RXX_DECISION(u64 a)
{
return 0x38040 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_rx#_frm_chk
*
* CGX GMP Frame Check Registers
*/
union cgxx_gmp_gmi_rxx_frm_chk {
u64 u;
struct cgxx_gmp_gmi_rxx_frm_chk_s {
u64 minerr : 1;
u64 carext : 1;
u64 reserved_2 : 1;
u64 jabber : 1;
u64 fcserr : 1;
u64 reserved_5_6 : 2;
u64 rcverr : 1;
u64 skperr : 1;
u64 reserved_9_63 : 55;
} s;
/* struct cgxx_gmp_gmi_rxx_frm_chk_s cn; */
};
static inline u64 CGXX_GMP_GMI_RXX_FRM_CHK(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_RXX_FRM_CHK(u64 a)
{
return 0x38030 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_rx#_frm_ctl
*
* CGX GMP Frame Control Registers This register controls the handling of
* the frames. The [CTL_BCK] and [CTL_DRP] bits control how the hardware
* handles incoming PAUSE packets. The most common modes of operation: _
* [CTL_BCK] = 1, [CTL_DRP] = 1: hardware handles everything. _ [CTL_BCK]
* = 0, [CTL_DRP] = 0: software sees all PAUSE frames. _ [CTL_BCK] = 0,
* [CTL_DRP] = 1: all PAUSE frames are completely ignored. These control
* bits should be set to [CTL_BCK] = 0, [CTL_DRP] = 0 in half-duplex
* mode. Since PAUSE packets only apply to full duplex operation, any
* PAUSE packet would constitute an exception which should be handled by
* the processing cores. PAUSE packets should not be forwarded.
* Internal: Notes: [PRE_STRP]: When [PRE_CHK] is set (indicating that
* the PREAMBLE will be sent), [PRE_STRP] determines if the PREAMBLE+SFD
* bytes are thrown away or sent to the Octane core as part of the
* packet. In either mode, the PREAMBLE+SFD bytes are not counted toward
* the packet size when checking against the MIN and MAX bounds.
* Furthermore, the bytes are skipped when locating the start of the L2
* header for DMAC and Control frame recognition.
*/
union cgxx_gmp_gmi_rxx_frm_ctl {
u64 u;
struct cgxx_gmp_gmi_rxx_frm_ctl_s {
u64 pre_chk : 1;
u64 pre_strp : 1;
u64 ctl_drp : 1;
u64 ctl_bck : 1;
u64 ctl_mcst : 1;
u64 ctl_smac : 1;
u64 pre_free : 1;
u64 reserved_7_8 : 2;
u64 pre_align : 1;
u64 null_dis : 1;
u64 reserved_11 : 1;
u64 ptp_mode : 1;
u64 rx_fc_type : 1;
u64 reserved_14_63 : 50;
} s;
struct cgxx_gmp_gmi_rxx_frm_ctl_cn {
u64 pre_chk : 1;
u64 pre_strp : 1;
u64 ctl_drp : 1;
u64 ctl_bck : 1;
u64 ctl_mcst : 1;
u64 ctl_smac : 1;
u64 pre_free : 1;
u64 reserved_7 : 1;
u64 reserved_8 : 1;
u64 pre_align : 1;
u64 null_dis : 1;
u64 reserved_11 : 1;
u64 ptp_mode : 1;
u64 rx_fc_type : 1;
u64 reserved_14_63 : 50;
} cn;
};
static inline u64 CGXX_GMP_GMI_RXX_FRM_CTL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_RXX_FRM_CTL(u64 a)
{
return 0x38028 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_rx#_ifg
*
* CGX GMI Minimum Interframe-Gap Cycles Registers This register
* specifies the minimum number of interframe-gap (IFG) cycles between
* packets.
*/
union cgxx_gmp_gmi_rxx_ifg {
u64 u;
struct cgxx_gmp_gmi_rxx_ifg_s {
u64 ifg : 4;
u64 reserved_4_63 : 60;
} s;
/* struct cgxx_gmp_gmi_rxx_ifg_s cn; */
};
static inline u64 CGXX_GMP_GMI_RXX_IFG(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_RXX_IFG(u64 a)
{
return 0x38058 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_rx#_int
*
* CGX GMP GMI RX Interrupt Registers These registers allow interrupts to
* be sent to the control processor. * Exception conditions \<10:0\> can
* also set the rcv/opcode in the received packet's work-queue entry.
* CGX()_GMP_GMI_RX()_FRM_CHK provides a bit mask for configuring which
* conditions set the error. In half duplex operation, the expectation is
* that collisions will appear as either MINERR or CAREXT errors.
* Internal: Notes: (1) exception conditions 10:0 can also set the
* rcv/opcode in the received packet's workQ entry. The
* CGX()_GMP_GMI_RX()_FRM_CHK register provides a bit mask for
* configuring which conditions set the error. (2) in half duplex
* operation, the expectation is that collisions will appear as either
* MINERR o r CAREXT errors. (3) JABBER An RX jabber error indicates
* that a packet was received which is longer than the maximum allowed
* packet as defined by the system. GMI will truncate the packet at the
* JABBER count. Failure to do so could lead to system instabilty. (4)
* NIBERR This error is illegal at 1000Mbs speeds
* (CGX()_GMP_GMI_PRT()_CFG[SPEED]==0) and will never assert. (5) MINERR
* total frame DA+SA+TL+DATA+PAD+FCS \< 64 (6) ALNERR Indicates that the
* packet received was not an integer number of bytes. If FCS checking
* is enabled, ALNERR will only assert if the FCS is bad. If FCS
* checking is disabled, ALNERR will assert in all non-integer frame
* cases. (7) Collisions Collisions can only occur in half-duplex mode.
* A collision is assumed by the receiver when the slottime
* (CGX()_GMP_GMI_PRT()_CFG[SLOTTIME]) is not satisfied. In 10/100 mode,
* this will result in a frame \< SLOTTIME. In 1000 mode, it could
* result either in frame \< SLOTTIME or a carrier extend error with the
* SLOTTIME. These conditions are visible by... . transfer ended before
* slottime COLDET . carrier extend error CAREXT (A) LENERR
* Length errors occur when the received packet does not match the length
* field. LENERR is only checked for packets between 64 and 1500 bytes.
* For untagged frames, the length must exact match. For tagged frames
* the length or length+4 must match. (B) PCTERR checks that the frame
* begins with a valid PREAMBLE sequence. Does not check the number of
* PREAMBLE cycles. (C) OVRERR *DON'T PUT IN HRM* OVRERR is an
* architectural assertion check internal to GMI to make sure no
* assumption was violated. In a correctly operating system, this
* interrupt can never fire. GMI has an internal arbiter which selects
* which of four ports to buffer in the main RX FIFO. If we normally
* buffer eight bytes, then each port will typically push a tick every
* eight cycles if the packet interface is going as fast as possible. If
* there are four ports, they push every two cycles. So that's the
* assumption. That the inbound module will always be able to consume
* the tick before another is produced. If that doesn't happen that's
* when OVRERR will assert."
*/
union cgxx_gmp_gmi_rxx_int {
u64 u;
struct cgxx_gmp_gmi_rxx_int_s {
u64 minerr : 1;
u64 carext : 1;
u64 jabber : 1;
u64 fcserr : 1;
u64 rcverr : 1;
u64 skperr : 1;
u64 ovrerr : 1;
u64 pcterr : 1;
u64 rsverr : 1;
u64 falerr : 1;
u64 coldet : 1;
u64 ifgerr : 1;
u64 reserved_12_63 : 52;
} s;
struct cgxx_gmp_gmi_rxx_int_cn {
u64 minerr : 1;
u64 carext : 1;
u64 jabber : 1;
u64 fcserr : 1;
u64 rcverr : 1;
u64 skperr : 1;
u64 ovrerr : 1;
u64 pcterr : 1;
u64 rsverr : 1;
u64 falerr : 1;
u64 coldet : 1;
u64 ifgerr : 1;
u64 reserved_12_15 : 4;
u64 reserved_16_63 : 48;
} cn;
};
static inline u64 CGXX_GMP_GMI_RXX_INT(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_RXX_INT(u64 a)
{
return 0x38000 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_rx#_int_ena_w1c
*
* CGX GMP GMI RX Interrupt Enable Clear Registers This register clears
* interrupt enable bits.
*/
union cgxx_gmp_gmi_rxx_int_ena_w1c {
u64 u;
struct cgxx_gmp_gmi_rxx_int_ena_w1c_s {
u64 minerr : 1;
u64 carext : 1;
u64 jabber : 1;
u64 fcserr : 1;
u64 rcverr : 1;
u64 skperr : 1;
u64 ovrerr : 1;
u64 pcterr : 1;
u64 rsverr : 1;
u64 falerr : 1;
u64 coldet : 1;
u64 ifgerr : 1;
u64 reserved_12_63 : 52;
} s;
struct cgxx_gmp_gmi_rxx_int_ena_w1c_cn {
u64 minerr : 1;
u64 carext : 1;
u64 jabber : 1;
u64 fcserr : 1;
u64 rcverr : 1;
u64 skperr : 1;
u64 ovrerr : 1;
u64 pcterr : 1;
u64 rsverr : 1;
u64 falerr : 1;
u64 coldet : 1;
u64 ifgerr : 1;
u64 reserved_12_15 : 4;
u64 reserved_16_63 : 48;
} cn;
};
static inline u64 CGXX_GMP_GMI_RXX_INT_ENA_W1C(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_RXX_INT_ENA_W1C(u64 a)
{
return 0x38010 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_rx#_int_ena_w1s
*
* CGX GMP GMI RX Interrupt Enable Set Registers This register sets
* interrupt enable bits.
*/
union cgxx_gmp_gmi_rxx_int_ena_w1s {
u64 u;
struct cgxx_gmp_gmi_rxx_int_ena_w1s_s {
u64 minerr : 1;
u64 carext : 1;
u64 jabber : 1;
u64 fcserr : 1;
u64 rcverr : 1;
u64 skperr : 1;
u64 ovrerr : 1;
u64 pcterr : 1;
u64 rsverr : 1;
u64 falerr : 1;
u64 coldet : 1;
u64 ifgerr : 1;
u64 reserved_12_63 : 52;
} s;
struct cgxx_gmp_gmi_rxx_int_ena_w1s_cn {
u64 minerr : 1;
u64 carext : 1;
u64 jabber : 1;
u64 fcserr : 1;
u64 rcverr : 1;
u64 skperr : 1;
u64 ovrerr : 1;
u64 pcterr : 1;
u64 rsverr : 1;
u64 falerr : 1;
u64 coldet : 1;
u64 ifgerr : 1;
u64 reserved_12_15 : 4;
u64 reserved_16_63 : 48;
} cn;
};
static inline u64 CGXX_GMP_GMI_RXX_INT_ENA_W1S(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_RXX_INT_ENA_W1S(u64 a)
{
return 0x38018 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_rx#_int_w1s
*
* CGX GMP GMI RX Interrupt Set Registers This register sets interrupt
* bits.
*/
union cgxx_gmp_gmi_rxx_int_w1s {
u64 u;
struct cgxx_gmp_gmi_rxx_int_w1s_s {
u64 minerr : 1;
u64 carext : 1;
u64 jabber : 1;
u64 fcserr : 1;
u64 rcverr : 1;
u64 skperr : 1;
u64 ovrerr : 1;
u64 pcterr : 1;
u64 rsverr : 1;
u64 falerr : 1;
u64 coldet : 1;
u64 ifgerr : 1;
u64 reserved_12_63 : 52;
} s;
struct cgxx_gmp_gmi_rxx_int_w1s_cn {
u64 minerr : 1;
u64 carext : 1;
u64 jabber : 1;
u64 fcserr : 1;
u64 rcverr : 1;
u64 skperr : 1;
u64 ovrerr : 1;
u64 pcterr : 1;
u64 rsverr : 1;
u64 falerr : 1;
u64 coldet : 1;
u64 ifgerr : 1;
u64 reserved_12_15 : 4;
u64 reserved_16_63 : 48;
} cn;
};
static inline u64 CGXX_GMP_GMI_RXX_INT_W1S(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_RXX_INT_W1S(u64 a)
{
return 0x38008 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_rx#_jabber
*
* CGX GMP Maximum Packet-Size Registers This register specifies the
* maximum size for packets, beyond which the GMI truncates.
*/
union cgxx_gmp_gmi_rxx_jabber {
u64 u;
struct cgxx_gmp_gmi_rxx_jabber_s {
u64 cnt : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_gmp_gmi_rxx_jabber_s cn; */
};
static inline u64 CGXX_GMP_GMI_RXX_JABBER(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_RXX_JABBER(u64 a)
{
return 0x38038 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_rx#_udd_skp
*
* CGX GMP GMI User-Defined Data Skip Registers This register specifies
* the amount of user-defined data (UDD) added before the start of the
* L2C data. Internal: Notes: (1) The skip bytes are part of the packet
* and will be handled by NIX. (2) The system can determine if the UDD
* bytes are included in the FCS check by using the FCSSEL field - if the
* FCS check is enabled. (3) Assume that the preamble/sfd is always at
* the start of the frame - even before UDD bytes. In most cases, there
* will be no preamble in these cases since it will be packet interface
* in direct communication to another packet interface (MAC to MAC)
* without a PHY involved. (4) We can still do address filtering and
* control packet filtering is the user desires. (5)
* CGX()_GMP_GMI_RX()_UDD_SKP[LEN] must be 0 in half-duplex operation
* unless CGX()_GMP_GMI_RX()_FRM_CTL[PRE_CHK] is clear. If
* CGX()_GMP_GMI_RX()_FRM_CTL[PRE_CHK] is clear, then
* CGX()_GMP_GMI_RX()_UDD_SKP[LEN] will normally be 8. (6) In all cases,
* the UDD bytes will be sent down the packet interface as part of the
* packet. The UDD bytes are never stripped from the actual packet.
*/
union cgxx_gmp_gmi_rxx_udd_skp {
u64 u;
struct cgxx_gmp_gmi_rxx_udd_skp_s {
u64 len : 7;
u64 reserved_7 : 1;
u64 fcssel : 1;
u64 reserved_9_63 : 55;
} s;
/* struct cgxx_gmp_gmi_rxx_udd_skp_s cn; */
};
static inline u64 CGXX_GMP_GMI_RXX_UDD_SKP(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_RXX_UDD_SKP(u64 a)
{
return 0x38048 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_smac#
*
* CGX GMI SMAC Registers
*/
union cgxx_gmp_gmi_smacx {
u64 u;
struct cgxx_gmp_gmi_smacx_s {
u64 smac : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_gmp_gmi_smacx_s cn; */
};
static inline u64 CGXX_GMP_GMI_SMACX(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_SMACX(u64 a)
{
return 0x38230 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_tx#_append
*
* CGX GMI TX Append Control Registers
*/
union cgxx_gmp_gmi_txx_append {
u64 u;
struct cgxx_gmp_gmi_txx_append_s {
u64 preamble : 1;
u64 pad : 1;
u64 fcs : 1;
u64 force_fcs : 1;
u64 reserved_4_63 : 60;
} s;
/* struct cgxx_gmp_gmi_txx_append_s cn; */
};
static inline u64 CGXX_GMP_GMI_TXX_APPEND(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_TXX_APPEND(u64 a)
{
return 0x38218 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_tx#_burst
*
* CGX GMI TX Burst-Counter Registers
*/
union cgxx_gmp_gmi_txx_burst {
u64 u;
struct cgxx_gmp_gmi_txx_burst_s {
u64 burst : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_gmp_gmi_txx_burst_s cn; */
};
static inline u64 CGXX_GMP_GMI_TXX_BURST(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_TXX_BURST(u64 a)
{
return 0x38228 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_tx#_ctl
*
* CGX GMI Transmit Control Registers
*/
union cgxx_gmp_gmi_txx_ctl {
u64 u;
struct cgxx_gmp_gmi_txx_ctl_s {
u64 xscol_en : 1;
u64 xsdef_en : 1;
u64 tx_fc_type : 1;
u64 link_drain : 1;
u64 reserved_4_63 : 60;
} s;
/* struct cgxx_gmp_gmi_txx_ctl_s cn; */
};
static inline u64 CGXX_GMP_GMI_TXX_CTL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_TXX_CTL(u64 a)
{
return 0x38270 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_tx#_int
*
* CGX GMI TX Interrupt Registers
*/
union cgxx_gmp_gmi_txx_int {
u64 u;
struct cgxx_gmp_gmi_txx_int_s {
u64 undflw : 1;
u64 xscol : 1;
u64 xsdef : 1;
u64 late_col : 1;
u64 ptp_lost : 1;
u64 reserved_5_63 : 59;
} s;
struct cgxx_gmp_gmi_txx_int_cn {
u64 undflw : 1;
u64 xscol : 1;
u64 xsdef : 1;
u64 late_col : 1;
u64 ptp_lost : 1;
u64 reserved_5_7 : 3;
u64 reserved_8 : 1;
u64 reserved_9_63 : 55;
} cn;
};
static inline u64 CGXX_GMP_GMI_TXX_INT(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_TXX_INT(u64 a)
{
return 0x38500 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_tx#_int_ena_w1c
*
* CGX GMI TX Interrupt Enable Clear Registers This register clears
* interrupt enable bits.
*/
union cgxx_gmp_gmi_txx_int_ena_w1c {
u64 u;
struct cgxx_gmp_gmi_txx_int_ena_w1c_s {
u64 undflw : 1;
u64 xscol : 1;
u64 xsdef : 1;
u64 late_col : 1;
u64 ptp_lost : 1;
u64 reserved_5_63 : 59;
} s;
struct cgxx_gmp_gmi_txx_int_ena_w1c_cn {
u64 undflw : 1;
u64 xscol : 1;
u64 xsdef : 1;
u64 late_col : 1;
u64 ptp_lost : 1;
u64 reserved_5_7 : 3;
u64 reserved_8 : 1;
u64 reserved_9_63 : 55;
} cn;
};
static inline u64 CGXX_GMP_GMI_TXX_INT_ENA_W1C(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_TXX_INT_ENA_W1C(u64 a)
{
return 0x38510 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_tx#_int_ena_w1s
*
* CGX GMI TX Interrupt Enable Set Registers This register sets interrupt
* enable bits.
*/
union cgxx_gmp_gmi_txx_int_ena_w1s {
u64 u;
struct cgxx_gmp_gmi_txx_int_ena_w1s_s {
u64 undflw : 1;
u64 xscol : 1;
u64 xsdef : 1;
u64 late_col : 1;
u64 ptp_lost : 1;
u64 reserved_5_63 : 59;
} s;
struct cgxx_gmp_gmi_txx_int_ena_w1s_cn {
u64 undflw : 1;
u64 xscol : 1;
u64 xsdef : 1;
u64 late_col : 1;
u64 ptp_lost : 1;
u64 reserved_5_7 : 3;
u64 reserved_8 : 1;
u64 reserved_9_63 : 55;
} cn;
};
static inline u64 CGXX_GMP_GMI_TXX_INT_ENA_W1S(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_TXX_INT_ENA_W1S(u64 a)
{
return 0x38518 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_tx#_int_w1s
*
* CGX GMI TX Interrupt Set Registers This register sets interrupt bits.
*/
union cgxx_gmp_gmi_txx_int_w1s {
u64 u;
struct cgxx_gmp_gmi_txx_int_w1s_s {
u64 undflw : 1;
u64 xscol : 1;
u64 xsdef : 1;
u64 late_col : 1;
u64 ptp_lost : 1;
u64 reserved_5_63 : 59;
} s;
struct cgxx_gmp_gmi_txx_int_w1s_cn {
u64 undflw : 1;
u64 xscol : 1;
u64 xsdef : 1;
u64 late_col : 1;
u64 ptp_lost : 1;
u64 reserved_5_7 : 3;
u64 reserved_8 : 1;
u64 reserved_9_63 : 55;
} cn;
};
static inline u64 CGXX_GMP_GMI_TXX_INT_W1S(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_TXX_INT_W1S(u64 a)
{
return 0x38508 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_tx#_min_pkt
*
* CGX GMI TX Minimum-Size-Packet Registers
*/
union cgxx_gmp_gmi_txx_min_pkt {
u64 u;
struct cgxx_gmp_gmi_txx_min_pkt_s {
u64 min_size : 8;
u64 reserved_8_63 : 56;
} s;
/* struct cgxx_gmp_gmi_txx_min_pkt_s cn; */
};
static inline u64 CGXX_GMP_GMI_TXX_MIN_PKT(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_TXX_MIN_PKT(u64 a)
{
return 0x38240 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_tx#_pause_pkt_interval
*
* CGX GMI TX PAUSE-Packet Transmission-Interval Registers This register
* specifies how often PAUSE packets are sent. Internal: Notes: Choosing
* proper values of CGX()_GMP_GMI_TX()_PAUSE_PKT_TIME[PTIME] and
* CGX()_GMP_GMI_TX()_PAUSE_PKT_INTERVAL[INTERVAL] can be challenging to
* the system designer. It is suggested that TIME be much greater than
* INTERVAL and CGX()_GMP_GMI_TX()_PAUSE_ZERO[SEND] be set. This allows
* a periodic refresh of the PAUSE count and then when the backpressure
* condition is lifted, a PAUSE packet with TIME==0 will be sent
* indicating that Octane is ready for additional data. If the system
* chooses to not set CGX()_GMP_GMI_TX()_PAUSE_ZERO[SEND], then it is
* suggested that TIME and INTERVAL are programmed such that they
* satisify the following rule: _ INTERVAL \<= TIME - (largest_pkt_size
* + IFG + pause_pkt_size) where largest_pkt_size is that largest packet
* that the system can send (normally 1518B), IFG is the interframe gap
* and pause_pkt_size is the size of the PAUSE packet (normally 64B).
*/
union cgxx_gmp_gmi_txx_pause_pkt_interval {
u64 u;
struct cgxx_gmp_gmi_txx_pause_pkt_interval_s {
u64 interval : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_gmp_gmi_txx_pause_pkt_interval_s cn; */
};
static inline u64 CGXX_GMP_GMI_TXX_PAUSE_PKT_INTERVAL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_TXX_PAUSE_PKT_INTERVAL(u64 a)
{
return 0x38248 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_tx#_pause_pkt_time
*
* CGX GMI TX PAUSE Packet PAUSE-Time Registers
*/
union cgxx_gmp_gmi_txx_pause_pkt_time {
u64 u;
struct cgxx_gmp_gmi_txx_pause_pkt_time_s {
u64 ptime : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_gmp_gmi_txx_pause_pkt_time_s cn; */
};
static inline u64 CGXX_GMP_GMI_TXX_PAUSE_PKT_TIME(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_TXX_PAUSE_PKT_TIME(u64 a)
{
return 0x38238 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_tx#_pause_togo
*
* CGX GMI TX Time-to-Backpressure Registers
*/
union cgxx_gmp_gmi_txx_pause_togo {
u64 u;
struct cgxx_gmp_gmi_txx_pause_togo_s {
u64 ptime : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_gmp_gmi_txx_pause_togo_s cn; */
};
static inline u64 CGXX_GMP_GMI_TXX_PAUSE_TOGO(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_TXX_PAUSE_TOGO(u64 a)
{
return 0x38258 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_tx#_pause_zero
*
* CGX GMI TX PAUSE-Zero-Enable Registers
*/
union cgxx_gmp_gmi_txx_pause_zero {
u64 u;
struct cgxx_gmp_gmi_txx_pause_zero_s {
u64 send : 1;
u64 reserved_1_63 : 63;
} s;
/* struct cgxx_gmp_gmi_txx_pause_zero_s cn; */
};
static inline u64 CGXX_GMP_GMI_TXX_PAUSE_ZERO(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_TXX_PAUSE_ZERO(u64 a)
{
return 0x38260 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_tx#_sgmii_ctl
*
* CGX SGMII Control Registers
*/
union cgxx_gmp_gmi_txx_sgmii_ctl {
u64 u;
struct cgxx_gmp_gmi_txx_sgmii_ctl_s {
u64 align : 1;
u64 reserved_1_63 : 63;
} s;
/* struct cgxx_gmp_gmi_txx_sgmii_ctl_s cn; */
};
static inline u64 CGXX_GMP_GMI_TXX_SGMII_CTL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_TXX_SGMII_CTL(u64 a)
{
return 0x38300 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_tx#_slot
*
* CGX GMI TX Slottime Counter Registers
*/
union cgxx_gmp_gmi_txx_slot {
u64 u;
struct cgxx_gmp_gmi_txx_slot_s {
u64 slot : 10;
u64 reserved_10_63 : 54;
} s;
/* struct cgxx_gmp_gmi_txx_slot_s cn; */
};
static inline u64 CGXX_GMP_GMI_TXX_SLOT(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_TXX_SLOT(u64 a)
{
return 0x38220 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_tx#_soft_pause
*
* CGX GMI TX Software PAUSE Registers
*/
union cgxx_gmp_gmi_txx_soft_pause {
u64 u;
struct cgxx_gmp_gmi_txx_soft_pause_s {
u64 ptime : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_gmp_gmi_txx_soft_pause_s cn; */
};
static inline u64 CGXX_GMP_GMI_TXX_SOFT_PAUSE(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_TXX_SOFT_PAUSE(u64 a)
{
return 0x38250 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_tx#_thresh
*
* CGX GMI TX Threshold Registers
*/
union cgxx_gmp_gmi_txx_thresh {
u64 u;
struct cgxx_gmp_gmi_txx_thresh_s {
u64 cnt : 11;
u64 reserved_11_63 : 53;
} s;
/* struct cgxx_gmp_gmi_txx_thresh_s cn; */
};
static inline u64 CGXX_GMP_GMI_TXX_THRESH(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_TXX_THRESH(u64 a)
{
return 0x38210 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_gmi_tx_col_attempt
*
* CGX TX Collision Attempts Before Dropping Frame Registers
*/
union cgxx_gmp_gmi_tx_col_attempt {
u64 u;
struct cgxx_gmp_gmi_tx_col_attempt_s {
u64 limit : 5;
u64 reserved_5_63 : 59;
} s;
/* struct cgxx_gmp_gmi_tx_col_attempt_s cn; */
};
static inline u64 CGXX_GMP_GMI_TX_COL_ATTEMPT(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_TX_COL_ATTEMPT(void)
{
return 0x39010;
}
/**
* Register (RSL) cgx#_gmp_gmi_tx_ifg
*
* CGX GMI TX Interframe-Gap Cycles Registers Consider the following when
* programming IFG1 and IFG2: * For 10/100/1000 Mb/s half-duplex systems
* that require IEEE 802.3 compatibility, IFG1 must be in the range of
* 1-8, [IFG2] must be in the range of 4-12, and the [IFG1] + [IFG2] sum
* must be 12. * For 10/100/1000 Mb/s full-duplex systems that require
* IEEE 802.3 compatibility, IFG1 must be in the range of 1-11, [IFG2]
* must be in the range of 1-11, and the [IFG1] + [IFG2] sum must be 12.
* For all other systems, IFG1 and IFG2 can be any value in the range of
* 1-15, allowing for a total possible IFG sum of 2-30.
*/
union cgxx_gmp_gmi_tx_ifg {
u64 u;
struct cgxx_gmp_gmi_tx_ifg_s {
u64 ifg1 : 4;
u64 ifg2 : 4;
u64 reserved_8_63 : 56;
} s;
/* struct cgxx_gmp_gmi_tx_ifg_s cn; */
};
static inline u64 CGXX_GMP_GMI_TX_IFG(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_TX_IFG(void)
{
return 0x39000;
}
/**
* Register (RSL) cgx#_gmp_gmi_tx_jam
*
* CGX GMI TX JAM Pattern Registers This register provides the pattern
* used in JAM bytes.
*/
union cgxx_gmp_gmi_tx_jam {
u64 u;
struct cgxx_gmp_gmi_tx_jam_s {
u64 jam : 8;
u64 reserved_8_63 : 56;
} s;
/* struct cgxx_gmp_gmi_tx_jam_s cn; */
};
static inline u64 CGXX_GMP_GMI_TX_JAM(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_TX_JAM(void)
{
return 0x39008;
}
/**
* Register (RSL) cgx#_gmp_gmi_tx_lfsr
*
* CGX GMI TX LFSR Registers This register shows the contents of the
* linear feedback shift register (LFSR), which is used to implement
* truncated binary exponential backoff.
*/
union cgxx_gmp_gmi_tx_lfsr {
u64 u;
struct cgxx_gmp_gmi_tx_lfsr_s {
u64 lfsr : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_gmp_gmi_tx_lfsr_s cn; */
};
static inline u64 CGXX_GMP_GMI_TX_LFSR(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_TX_LFSR(void)
{
return 0x39028;
}
/**
* Register (RSL) cgx#_gmp_gmi_tx_pause_pkt_dmac
*
* CGX TX PAUSE-Packet DMAC-Field Registers
*/
union cgxx_gmp_gmi_tx_pause_pkt_dmac {
u64 u;
struct cgxx_gmp_gmi_tx_pause_pkt_dmac_s {
u64 dmac : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_gmp_gmi_tx_pause_pkt_dmac_s cn; */
};
static inline u64 CGXX_GMP_GMI_TX_PAUSE_PKT_DMAC(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_TX_PAUSE_PKT_DMAC(void)
{
return 0x39018;
}
/**
* Register (RSL) cgx#_gmp_gmi_tx_pause_pkt_type
*
* CGX GMI TX PAUSE-Packet-PTYPE Field Registers This register provides
* the PTYPE field that is placed in outbound PAUSE packets.
*/
union cgxx_gmp_gmi_tx_pause_pkt_type {
u64 u;
struct cgxx_gmp_gmi_tx_pause_pkt_type_s {
u64 ptype : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_gmp_gmi_tx_pause_pkt_type_s cn; */
};
static inline u64 CGXX_GMP_GMI_TX_PAUSE_PKT_TYPE(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_GMI_TX_PAUSE_PKT_TYPE(void)
{
return 0x39020;
}
/**
* Register (RSL) cgx#_gmp_misc#_cfg
*
* CGX GMP PCS Miscellaneous Control Registers This register contains
* general configuration that should not need to be changed from reset
* settings. Internal: Per lmac diagnostic and chicken bits.
*/
union cgxx_gmp_miscx_cfg {
u64 u;
struct cgxx_gmp_miscx_cfg_s {
u64 tx_eee_quiet_credit_mode : 1;
u64 tx_eee_wait_gmi_fast_idle : 1;
u64 tx_qsgmii_port0_init : 1;
u64 tx_eee_rx_sync_status_enable : 1;
u64 pcs_alt_an : 1;
u64 reserved_5_7 : 3;
u64 rx_pcs_sync_signal_detect : 1;
u64 rx_pcs_sync_timeout : 1;
u64 rx_pcs_eee_mode_enable : 1;
u64 rx_pcs_lpi_enable : 1;
u64 rx_pcs_802_rx_k : 1;
u64 rx_pcs_alt_qlb2i : 1;
u64 reserved_14_15 : 2;
u64 rx_cgp_gser_throttle : 1;
u64 rx_cgp_edet_filter : 1;
u64 rx_cgp_edet_qlm_val : 1;
u64 reserved_19_63 : 45;
} s;
/* struct cgxx_gmp_miscx_cfg_s cn; */
};
static inline u64 CGXX_GMP_MISCX_CFG(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_MISCX_CFG(u64 a)
{
return 0x34000 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs#_an_expansion
*
* CGX GMP PCS AN Expansion register Register 6 AN status
*/
union cgxx_gmp_pcsx_an_expansion {
u64 u;
struct cgxx_gmp_pcsx_an_expansion_s {
u64 reserved_0 : 1;
u64 page_received : 1;
u64 next_page_able : 1;
u64 reserved_3_63 : 61;
} s;
/* struct cgxx_gmp_pcsx_an_expansion_s cn; */
};
static inline u64 CGXX_GMP_PCSX_AN_EXPANSION(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCSX_AN_EXPANSION(u64 a)
{
return 0x30a60 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs#_an_lp_abil_np
*
* CGX GMP PCS AN Link Partner Ability Next Page Register 8 This register
* contains the advertised ability of the link partners Next Page. The
* definition for this register is provided in 32.5.4.2 for changes to
* 28.2.4.1.4.
*/
union cgxx_gmp_pcsx_an_lp_abil_np {
u64 u;
struct cgxx_gmp_pcsx_an_lp_abil_np_s {
u64 m_u : 11;
u64 toggle : 1;
u64 ack2 : 1;
u64 mp : 1;
u64 ack : 1;
u64 np : 1;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_gmp_pcsx_an_lp_abil_np_s cn; */
};
static inline u64 CGXX_GMP_PCSX_AN_LP_ABIL_NP(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCSX_AN_LP_ABIL_NP(u64 a)
{
return 0x30a80 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs#_an_np_tx
*
* CGX GMP PCS AN Next Page Transmit Register 7 Software programs this
* register with the contents of the AN message next page or unformatted
* next page link code word to be transmitted during autonegotiation.
* Next page exchange occurs after the base link code words have been
* exchanged if either end of the link segment sets the NP bit to 1,
* indicating that it has at least one next page to send. Once initiated,
* next page exchange continues until both ends of the link segment set
* their NP bits to 0. Both sides must be NP capable to use NP exchanges.
*/
union cgxx_gmp_pcsx_an_np_tx {
u64 u;
struct cgxx_gmp_pcsx_an_np_tx_s {
u64 m_u : 11;
u64 toggle : 1;
u64 ack2 : 1;
u64 mp : 1;
u64 ack : 1;
u64 np : 1;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_gmp_pcsx_an_np_tx_s cn; */
};
static inline u64 CGXX_GMP_PCSX_AN_NP_TX(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCSX_AN_NP_TX(u64 a)
{
return 0x30a70 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs#_dbg_control
*
* CGX PCS Debug Control Registers
*/
union cgxx_gmp_pcsx_dbg_control {
u64 u;
struct cgxx_gmp_pcsx_dbg_control_s {
u64 us_clk_period : 7;
u64 reserved_7_63 : 57;
} s;
/* struct cgxx_gmp_pcsx_dbg_control_s cn; */
};
static inline u64 CGXX_GMP_PCSX_DBG_CONTROL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCSX_DBG_CONTROL(u64 a)
{
return 0x31000 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs#_rx_eee_wake
*
* INTERNAL: CGX GMP PCS RX EEE Wake Error Counter Registers Reserved.
* Internal: This register is used by PHY types that support EEE to count
* wake time faults where the PHY fails to complete its normal wake
* sequence within the time required for the specific PHY type. The
* definition of the fault event to be counted is defined for each PHY
* and may occur during a refresh or a wake-up as defined by the PHY.
* This 16-bit counter shall be reset to all zeros upon execution of the
* PCS reset. This counter shall be held at all ones in the case of
* overflow.
*/
union cgxx_gmp_pcsx_rx_eee_wake {
u64 u;
struct cgxx_gmp_pcsx_rx_eee_wake_s {
u64 error_counter : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_gmp_pcsx_rx_eee_wake_s cn; */
};
static inline u64 CGXX_GMP_PCSX_RX_EEE_WAKE(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCSX_RX_EEE_WAKE(u64 a)
{
return 0x30910 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs#_rx_lpi_timing
*
* INTERNAL: CGX GMP PCS RX EEE LPI Timing Parameters Registers
* Reserved. Internal: Receiver LPI timing parameters Tqr, Twr and Twtf.
*/
union cgxx_gmp_pcsx_rx_lpi_timing {
u64 u;
struct cgxx_gmp_pcsx_rx_lpi_timing_s {
u64 twtf : 18;
u64 reserved_18_19 : 2;
u64 twr : 12;
u64 tqr : 20;
u64 reserved_52_63 : 12;
} s;
/* struct cgxx_gmp_pcsx_rx_lpi_timing_s cn; */
};
static inline u64 CGXX_GMP_PCSX_RX_LPI_TIMING(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCSX_RX_LPI_TIMING(u64 a)
{
return 0x30900 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs#_status1
*
* CGX GMP PCS Status 1 Register PCS LPI Status, Link OK. Register 3.1
*/
union cgxx_gmp_pcsx_status1 {
u64 u;
struct cgxx_gmp_pcsx_status1_s {
u64 reserved_0_1 : 2;
u64 receive_link_status : 1;
u64 reserved_3_7 : 5;
u64 rx_lpi_indication : 1;
u64 tx_lpi_indication : 1;
u64 rx_lpi_received : 1;
u64 tx_lpi_received : 1;
u64 reserved_12_63 : 52;
} s;
/* struct cgxx_gmp_pcsx_status1_s cn; */
};
static inline u64 CGXX_GMP_PCSX_STATUS1(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCSX_STATUS1(u64 a)
{
return 0x30880 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs#_tx_lpi_timing
*
* INTERNAL: CGX GMP GMI TX EEE LPI Timing Parameters Registers
* Reserved. Internal: Transmitter LPI timing parameters Tsl, Tql and
* Tul.
*/
union cgxx_gmp_pcsx_tx_lpi_timing {
u64 u;
struct cgxx_gmp_pcsx_tx_lpi_timing_s {
u64 tql : 19;
u64 reserved_19_31 : 13;
u64 tul : 12;
u64 reserved_44_47 : 4;
u64 tsl : 12;
u64 reserved_60_63 : 4;
} s;
/* struct cgxx_gmp_pcsx_tx_lpi_timing_s cn; */
};
static inline u64 CGXX_GMP_PCSX_TX_LPI_TIMING(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCSX_TX_LPI_TIMING(u64 a)
{
return 0x30800 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs_an#_adv
*
* CGX GMP PCS Autonegotiation Advertisement Registers
*/
union cgxx_gmp_pcs_anx_adv {
u64 u;
struct cgxx_gmp_pcs_anx_adv_s {
u64 reserved_0_4 : 5;
u64 fd : 1;
u64 hfd : 1;
u64 pause : 2;
u64 reserved_9_11 : 3;
u64 rem_flt : 2;
u64 reserved_14 : 1;
u64 np : 1;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_gmp_pcs_anx_adv_s cn; */
};
static inline u64 CGXX_GMP_PCS_ANX_ADV(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCS_ANX_ADV(u64 a)
{
return 0x30010 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs_an#_ext_st
*
* CGX GMO PCS Autonegotiation Extended Status Registers
*/
union cgxx_gmp_pcs_anx_ext_st {
u64 u;
struct cgxx_gmp_pcs_anx_ext_st_s {
u64 reserved_0_11 : 12;
u64 thou_thd : 1;
u64 thou_tfd : 1;
u64 thou_xhd : 1;
u64 thou_xfd : 1;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_gmp_pcs_anx_ext_st_s cn; */
};
static inline u64 CGXX_GMP_PCS_ANX_EXT_ST(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCS_ANX_EXT_ST(u64 a)
{
return 0x30028 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs_an#_lp_abil
*
* CGX GMP PCS Autonegotiation Link Partner Ability Registers This is the
* autonegotiation link partner ability register 5 as per IEEE 802.3,
* Clause 37.
*/
union cgxx_gmp_pcs_anx_lp_abil {
u64 u;
struct cgxx_gmp_pcs_anx_lp_abil_s {
u64 reserved_0_4 : 5;
u64 fd : 1;
u64 hfd : 1;
u64 pause : 2;
u64 reserved_9_11 : 3;
u64 rem_flt : 2;
u64 ack : 1;
u64 np : 1;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_gmp_pcs_anx_lp_abil_s cn; */
};
static inline u64 CGXX_GMP_PCS_ANX_LP_ABIL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCS_ANX_LP_ABIL(u64 a)
{
return 0x30018 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs_an#_results
*
* CGX GMP PCS Autonegotiation Results Registers This register is not
* valid when CGX()_GMP_PCS_MISC()_CTL[AN_OVRD] is set to 1. If
* CGX()_GMP_PCS_MISC()_CTL[AN_OVRD] is set to 0 and
* CGX()_GMP_PCS_AN()_RESULTS[AN_CPT] is set to 1, this register is
* valid.
*/
union cgxx_gmp_pcs_anx_results {
u64 u;
struct cgxx_gmp_pcs_anx_results_s {
u64 link_ok : 1;
u64 dup : 1;
u64 an_cpt : 1;
u64 spd : 2;
u64 pause : 2;
u64 reserved_7_63 : 57;
} s;
/* struct cgxx_gmp_pcs_anx_results_s cn; */
};
static inline u64 CGXX_GMP_PCS_ANX_RESULTS(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCS_ANX_RESULTS(u64 a)
{
return 0x30020 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs_int#
*
* CGX GMP PCS Interrupt Registers
*/
union cgxx_gmp_pcs_intx {
u64 u;
struct cgxx_gmp_pcs_intx_s {
u64 lnkspd : 1;
u64 xmit : 1;
u64 an_err : 1;
u64 txfifu : 1;
u64 txfifo : 1;
u64 txbad : 1;
u64 rxerr : 1;
u64 rxbad : 1;
u64 rxlock : 1;
u64 an_bad : 1;
u64 sync_bad : 1;
u64 dup : 1;
u64 dbg_sync : 1;
u64 reserved_13_15 : 3;
u64 an_page_received : 1;
u64 an_complete : 1;
u64 reserved_18_19 : 2;
u64 eee_tx_change : 1;
u64 eee_rx_change : 1;
u64 eee_rx_link_fail : 1;
u64 reserved_23_63 : 41;
} s;
/* struct cgxx_gmp_pcs_intx_s cn; */
};
static inline u64 CGXX_GMP_PCS_INTX(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCS_INTX(u64 a)
{
return 0x30080 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs_int#_ena_w1c
*
* CGX GMP PCS Interrupt Enable Clear Registers This register clears
* interrupt enable bits.
*/
union cgxx_gmp_pcs_intx_ena_w1c {
u64 u;
struct cgxx_gmp_pcs_intx_ena_w1c_s {
u64 lnkspd : 1;
u64 xmit : 1;
u64 an_err : 1;
u64 txfifu : 1;
u64 txfifo : 1;
u64 txbad : 1;
u64 rxerr : 1;
u64 rxbad : 1;
u64 rxlock : 1;
u64 an_bad : 1;
u64 sync_bad : 1;
u64 dup : 1;
u64 dbg_sync : 1;
u64 reserved_13_15 : 3;
u64 an_page_received : 1;
u64 an_complete : 1;
u64 reserved_18_19 : 2;
u64 eee_tx_change : 1;
u64 eee_rx_change : 1;
u64 eee_rx_link_fail : 1;
u64 reserved_23_63 : 41;
} s;
/* struct cgxx_gmp_pcs_intx_ena_w1c_s cn; */
};
static inline u64 CGXX_GMP_PCS_INTX_ENA_W1C(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCS_INTX_ENA_W1C(u64 a)
{
return 0x30090 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs_int#_ena_w1s
*
* CGX GMP PCS Interrupt Enable Set Registers This register sets
* interrupt enable bits.
*/
union cgxx_gmp_pcs_intx_ena_w1s {
u64 u;
struct cgxx_gmp_pcs_intx_ena_w1s_s {
u64 lnkspd : 1;
u64 xmit : 1;
u64 an_err : 1;
u64 txfifu : 1;
u64 txfifo : 1;
u64 txbad : 1;
u64 rxerr : 1;
u64 rxbad : 1;
u64 rxlock : 1;
u64 an_bad : 1;
u64 sync_bad : 1;
u64 dup : 1;
u64 dbg_sync : 1;
u64 reserved_13_15 : 3;
u64 an_page_received : 1;
u64 an_complete : 1;
u64 reserved_18_19 : 2;
u64 eee_tx_change : 1;
u64 eee_rx_change : 1;
u64 eee_rx_link_fail : 1;
u64 reserved_23_63 : 41;
} s;
/* struct cgxx_gmp_pcs_intx_ena_w1s_s cn; */
};
static inline u64 CGXX_GMP_PCS_INTX_ENA_W1S(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCS_INTX_ENA_W1S(u64 a)
{
return 0x30098 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs_int#_w1s
*
* CGX GMP PCS Interrupt Set Registers This register sets interrupt bits.
*/
union cgxx_gmp_pcs_intx_w1s {
u64 u;
struct cgxx_gmp_pcs_intx_w1s_s {
u64 lnkspd : 1;
u64 xmit : 1;
u64 an_err : 1;
u64 txfifu : 1;
u64 txfifo : 1;
u64 txbad : 1;
u64 rxerr : 1;
u64 rxbad : 1;
u64 rxlock : 1;
u64 an_bad : 1;
u64 sync_bad : 1;
u64 dup : 1;
u64 dbg_sync : 1;
u64 reserved_13_15 : 3;
u64 an_page_received : 1;
u64 an_complete : 1;
u64 reserved_18_19 : 2;
u64 eee_tx_change : 1;
u64 eee_rx_change : 1;
u64 eee_rx_link_fail : 1;
u64 reserved_23_63 : 41;
} s;
/* struct cgxx_gmp_pcs_intx_w1s_s cn; */
};
static inline u64 CGXX_GMP_PCS_INTX_W1S(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCS_INTX_W1S(u64 a)
{
return 0x30088 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs_link#_timer
*
* CGX GMP PCS Link Timer Registers This is the 1.6 ms nominal link timer
* register.
*/
union cgxx_gmp_pcs_linkx_timer {
u64 u;
struct cgxx_gmp_pcs_linkx_timer_s {
u64 count : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_gmp_pcs_linkx_timer_s cn; */
};
static inline u64 CGXX_GMP_PCS_LINKX_TIMER(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCS_LINKX_TIMER(u64 a)
{
return 0x30040 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs_misc#_ctl
*
* CGX GMP SGMII Miscellaneous Control Registers Internal: SGMII bit [12]
* is really a misnomer, it is a decode of pi_qlm_cfg pins to indicate
* SGMII or 1000Base-X modes. Note: The SGMII AN Advertisement Register
* above will be sent during Auto Negotiation if [MAC_PHY] is set (1=PHY
* mode). If the bit is not set (0=MAC mode), the tx_Config_Reg\<14\>
* becomes ACK bit and tx_Config_Reg\<0\> is always 1. All other bits in
* tx_Config_Reg sent will be 0. The PHY dictates the Auto Negotiation
* results.
*/
union cgxx_gmp_pcs_miscx_ctl {
u64 u;
struct cgxx_gmp_pcs_miscx_ctl_s {
u64 samp_pt : 7;
u64 an_ovrd : 1;
u64 mode : 1;
u64 mac_phy : 1;
u64 loopbck2 : 1;
u64 gmxeno : 1;
u64 reserved_12 : 1;
u64 disp_en : 1;
u64 reserved_14_15 : 2;
u64 qsgmii_comma_wd : 16;
u64 qsgmii_comma_wd_en : 1;
u64 reserved_33_63 : 31;
} s;
struct cgxx_gmp_pcs_miscx_ctl_cn {
u64 samp_pt : 7;
u64 an_ovrd : 1;
u64 mode : 1;
u64 mac_phy : 1;
u64 loopbck2 : 1;
u64 gmxeno : 1;
u64 reserved_12 : 1;
u64 disp_en : 1;
u64 reserved_14_15 : 2;
u64 qsgmii_comma_wd : 16;
u64 qsgmii_comma_wd_en : 1;
u64 reserved_33_35 : 3;
u64 reserved_36_63 : 28;
} cn;
};
static inline u64 CGXX_GMP_PCS_MISCX_CTL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCS_MISCX_CTL(u64 a)
{
return 0x30078 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs_mr#_control
*
* CGX GMP PCS Control Registers
*/
union cgxx_gmp_pcs_mrx_control {
u64 u;
struct cgxx_gmp_pcs_mrx_control_s {
u64 reserved_0_4 : 5;
u64 uni : 1;
u64 spdmsb : 1;
u64 coltst : 1;
u64 dup : 1;
u64 rst_an : 1;
u64 reserved_10 : 1;
u64 pwr_dn : 1;
u64 an_en : 1;
u64 spdlsb : 1;
u64 loopbck1 : 1;
u64 reset : 1;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_gmp_pcs_mrx_control_s cn; */
};
static inline u64 CGXX_GMP_PCS_MRX_CONTROL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCS_MRX_CONTROL(u64 a)
{
return 0x30000 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs_mr#_status
*
* CGX GMP PCS Status Registers Bits \<15:9\> in this register indicate
* the ability to operate when CGX()_GMP_PCS_MISC()_CTL[MAC_PHY] is set
* to MAC mode. Bits \<15:9\> are always read as 0, indicating that the
* chip cannot operate in the corresponding modes. The field [RM_FLT] is
* a 'don't care' when the selected mode is SGMII/QSGMII.
*/
union cgxx_gmp_pcs_mrx_status {
u64 u;
struct cgxx_gmp_pcs_mrx_status_s {
u64 extnd : 1;
u64 reserved_1 : 1;
u64 lnk_st : 1;
u64 an_abil : 1;
u64 rm_flt : 1;
u64 an_cpt : 1;
u64 prb_sup : 1;
u64 reserved_7 : 1;
u64 ext_st : 1;
u64 hun_t2hd : 1;
u64 hun_t2fd : 1;
u64 ten_hd : 1;
u64 ten_fd : 1;
u64 hun_xhd : 1;
u64 hun_xfd : 1;
u64 hun_t4 : 1;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_gmp_pcs_mrx_status_s cn; */
};
static inline u64 CGXX_GMP_PCS_MRX_STATUS(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCS_MRX_STATUS(u64 a)
{
return 0x30008 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs_rx#_states
*
* CGX GMP PCS RX State-Machines States Registers
*/
union cgxx_gmp_pcs_rxx_states {
u64 u;
struct cgxx_gmp_pcs_rxx_states_s {
u64 an_st : 4;
u64 an_bad : 1;
u64 sync : 4;
u64 sync_bad : 1;
u64 rx_st : 5;
u64 rx_bad : 1;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_gmp_pcs_rxx_states_s cn; */
};
static inline u64 CGXX_GMP_PCS_RXX_STATES(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCS_RXX_STATES(u64 a)
{
return 0x30058 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs_rx#_sync
*
* CGX GMP PCS Code Group Synchronization Registers
*/
union cgxx_gmp_pcs_rxx_sync {
u64 u;
struct cgxx_gmp_pcs_rxx_sync_s {
u64 bit_lock : 1;
u64 sync : 1;
u64 reserved_2_63 : 62;
} s;
/* struct cgxx_gmp_pcs_rxx_sync_s cn; */
};
static inline u64 CGXX_GMP_PCS_RXX_SYNC(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCS_RXX_SYNC(u64 a)
{
return 0x30050 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs_sgm#_an_adv
*
* CGX GMP PCS SGMII Autonegotiation Advertisement Registers This is the
* SGMII autonegotiation advertisement register (sent out as
* tx_Config_Reg\<15:0\> as defined in IEEE 802.3 clause 37). This
* register is sent during autonegotiation if
* CGX()_GMP_PCS_MISC()_CTL[MAC_PHY] is set (1 = PHY mode). If the bit is
* not set (0 = MAC mode), then tx_Config_Reg\<14\> becomes ACK bit and
* tx_Config_Reg\<0\> is always 1. All other bits in tx_Config_Reg sent
* will be 0. The PHY dictates the autonegotiation results.
*/
union cgxx_gmp_pcs_sgmx_an_adv {
u64 u;
struct cgxx_gmp_pcs_sgmx_an_adv_s {
u64 one : 1;
u64 reserved_1_9 : 9;
u64 speed : 2;
u64 dup : 1;
u64 reserved_13 : 1;
u64 ack : 1;
u64 link : 1;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_gmp_pcs_sgmx_an_adv_s cn; */
};
static inline u64 CGXX_GMP_PCS_SGMX_AN_ADV(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCS_SGMX_AN_ADV(u64 a)
{
return 0x30068 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs_sgm#_lp_adv
*
* CGX GMP PCS SGMII Link-Partner-Advertisement Registers This is the
* SGMII link partner advertisement register (received as
* rx_Config_Reg\<15:0\> as defined in IEEE 802.3 clause 37).
*/
union cgxx_gmp_pcs_sgmx_lp_adv {
u64 u;
struct cgxx_gmp_pcs_sgmx_lp_adv_s {
u64 one : 1;
u64 reserved_1_9 : 9;
u64 speed : 2;
u64 dup : 1;
u64 reserved_13_14 : 2;
u64 link : 1;
u64 reserved_16_63 : 48;
} s;
struct cgxx_gmp_pcs_sgmx_lp_adv_cn {
u64 one : 1;
u64 reserved_1_9 : 9;
u64 speed : 2;
u64 dup : 1;
u64 reserved_13 : 1;
u64 reserved_14 : 1;
u64 link : 1;
u64 reserved_16_63 : 48;
} cn;
};
static inline u64 CGXX_GMP_PCS_SGMX_LP_ADV(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCS_SGMX_LP_ADV(u64 a)
{
return 0x30070 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs_tx#_states
*
* CGX GMP PCS TX State-Machines States Registers
*/
union cgxx_gmp_pcs_txx_states {
u64 u;
struct cgxx_gmp_pcs_txx_states_s {
u64 ord_st : 4;
u64 tx_bad : 1;
u64 xmit : 2;
u64 reserved_7_63 : 57;
} s;
/* struct cgxx_gmp_pcs_txx_states_s cn; */
};
static inline u64 CGXX_GMP_PCS_TXX_STATES(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCS_TXX_STATES(u64 a)
{
return 0x30060 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_gmp_pcs_tx_rx#_polarity
*
* CGX GMP PCS TX/RX Polarity Registers
* CGX()_GMP_PCS_TX_RX()_POLARITY[AUTORXPL] shows correct polarity needed
* on the link receive path after code group synchronization is achieved.
* When LMAC_TYPE=QSGMII, only lane 0 polarity data and settings are
* relevant and settings for lanes 1, 2 and 3 are unused.
*/
union cgxx_gmp_pcs_tx_rxx_polarity {
u64 u;
struct cgxx_gmp_pcs_tx_rxx_polarity_s {
u64 txplrt : 1;
u64 rxplrt : 1;
u64 autorxpl : 1;
u64 rxovrd : 1;
u64 reserved_4_63 : 60;
} s;
/* struct cgxx_gmp_pcs_tx_rxx_polarity_s cn; */
};
static inline u64 CGXX_GMP_PCS_TX_RXX_POLARITY(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_GMP_PCS_TX_RXX_POLARITY(u64 a)
{
return 0x30048 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_msix_pba#
*
* CGX MSI-X Pending Bit Array Registers This register is the MSI-X PBA
* table, the bit number is indexed by the CGX_INT_VEC_E enumeration.
*/
union cgxx_msix_pbax {
u64 u;
struct cgxx_msix_pbax_s {
u64 pend : 64;
} s;
/* struct cgxx_msix_pbax_s cn; */
};
static inline u64 CGXX_MSIX_PBAX(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_MSIX_PBAX(u64 a)
{
return 0xf0000 + 8 * a;
}
/**
* Register (RSL) cgx#_msix_vec#_addr
*
* CGX MSI-X Vector Table Address Registers This register is the MSI-X
* vector table, indexed by the CGX_INT_VEC_E enumeration.
*/
union cgxx_msix_vecx_addr {
u64 u;
struct cgxx_msix_vecx_addr_s {
u64 secvec : 1;
u64 reserved_1 : 1;
u64 addr : 51;
u64 reserved_53_63 : 11;
} s;
/* struct cgxx_msix_vecx_addr_s cn; */
};
static inline u64 CGXX_MSIX_VECX_ADDR(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_MSIX_VECX_ADDR(u64 a)
{
return 0 + 0x10 * a;
}
/**
* Register (RSL) cgx#_msix_vec#_ctl
*
* CGX MSI-X Vector Table Control and Data Registers This register is the
* MSI-X vector table, indexed by the CGX_INT_VEC_E enumeration.
*/
union cgxx_msix_vecx_ctl {
u64 u;
struct cgxx_msix_vecx_ctl_s {
u64 data : 32;
u64 mask : 1;
u64 reserved_33_63 : 31;
} s;
/* struct cgxx_msix_vecx_ctl_s cn; */
};
static inline u64 CGXX_MSIX_VECX_CTL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_MSIX_VECX_CTL(u64 a)
{
return 8 + 0x10 * a;
}
/**
* Register (RSL) cgx#_smu#_bp_test
*
* INTERNAL: CGX SMU TX Backpressure Test Registers
*/
union cgxx_smux_bp_test {
u64 u;
struct cgxx_smux_bp_test_s {
u64 lfsr_freq : 12;
u64 reserved_12_15 : 4;
u64 bp_cfg : 8;
u64 reserved_24_47 : 24;
u64 enable : 4;
u64 reserved_52_63 : 12;
} s;
/* struct cgxx_smux_bp_test_s cn; */
};
static inline u64 CGXX_SMUX_BP_TEST(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_BP_TEST(u64 a)
{
return 0x20230 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_cbfc_ctl
*
* CGX SMU PFC Control Registers Internal: INTERNAL: XOFF for a specific
* class/channel \<i\> is XOFF\<i\> = ([PHYS_EN]\<i\> & cmr_rx_phys_bp) |
* ([LOGL_EN]\<i\> & cmr_rx_logl_xoff\<i\>).
*/
union cgxx_smux_cbfc_ctl {
u64 u;
struct cgxx_smux_cbfc_ctl_s {
u64 rx_en : 1;
u64 tx_en : 1;
u64 drp_en : 1;
u64 bck_en : 1;
u64 reserved_4_31 : 28;
u64 logl_en : 16;
u64 phys_en : 16;
} s;
/* struct cgxx_smux_cbfc_ctl_s cn; */
};
static inline u64 CGXX_SMUX_CBFC_CTL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_CBFC_CTL(u64 a)
{
return 0x20218 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_ctrl
*
* CGX SMU Control Registers
*/
union cgxx_smux_ctrl {
u64 u;
struct cgxx_smux_ctrl_s {
u64 rx_idle : 1;
u64 tx_idle : 1;
u64 reserved_2_63 : 62;
} s;
/* struct cgxx_smux_ctrl_s cn; */
};
static inline u64 CGXX_SMUX_CTRL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_CTRL(u64 a)
{
return 0x20200 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_ext_loopback
*
* CGX SMU External Loopback Registers In loopback mode, the IFG1+IFG2 of
* local and remote parties must match exactly; otherwise loopback FIFO
* will overrun: CGX()_SMU()_TX_INT[LB_OVRFLW].
*/
union cgxx_smux_ext_loopback {
u64 u;
struct cgxx_smux_ext_loopback_s {
u64 thresh : 6;
u64 reserved_6_7 : 2;
u64 depth : 6;
u64 reserved_14_15 : 2;
u64 en : 1;
u64 reserved_17_63 : 47;
} s;
/* struct cgxx_smux_ext_loopback_s cn; */
};
static inline u64 CGXX_SMUX_EXT_LOOPBACK(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_EXT_LOOPBACK(u64 a)
{
return 0x20208 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_hg2_control
*
* CGX SMU HiGig2 Control Registers HiGig2 TX- and RX-enable are normally
* set together for HiGig2 messaging. Setting just the TX or RX bit
* results in only the HG2 message transmit or receive capability.
* Setting [PHYS_EN] and [LOGL_EN] to 1 allows link PAUSE or backpressure
* to NIX as per the received HiGig2 message. Setting these fields to 0
* disables link PAUSE and backpressure to NIX in response to received
* messages. CGX()_SMU()_TX_CTL[HG_EN] must be set (to enable HiGig)
* whenever either [HG2TX_EN] or [HG2RX_EN] are set.
* CGX()_SMU()_RX_UDD_SKP[LEN] must be set to 16 (to select HiGig2)
* whenever either [HG2TX_EN] or [HG2RX_EN] are set.
* CGX()_CMR_RX_OVR_BP[EN]\<0\> must be set and
* CGX()_CMR_RX_OVR_BP[BP]\<0\> must be cleared to 0 (to forcibly disable
* hardware-automatic 802.3 PAUSE packet generation) with the HiGig2
* Protocol when [HG2TX_EN] = 0. (The HiGig2 protocol is indicated by
* CGX()_SMU()_TX_CTL[HG_EN] = 1 and CGX()_SMU()_RX_UDD_SKP[LEN]=16.)
* Hardware can only autogenerate backpressure via HiGig2 messages
* (optionally, when [HG2TX_EN] = 1) with the HiGig2 protocol.
*/
union cgxx_smux_hg2_control {
u64 u;
struct cgxx_smux_hg2_control_s {
u64 logl_en : 16;
u64 phys_en : 1;
u64 hg2rx_en : 1;
u64 hg2tx_en : 1;
u64 reserved_19_63 : 45;
} s;
/* struct cgxx_smux_hg2_control_s cn; */
};
static inline u64 CGXX_SMUX_HG2_CONTROL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_HG2_CONTROL(u64 a)
{
return 0x20210 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_mmsi_ctl_sta
*
* CGX SMU MAC Merge Service Interface (MMSI) Control/Status Registers
* MMSI control and status registers for frame preemption mode. Refer to
* IEEE 802.3br, Clause 99.
*/
union cgxx_smux_mmsi_ctl_sta {
u64 u;
struct cgxx_smux_mmsi_ctl_sta_s {
u64 p_en : 1;
u64 dis_v : 1;
u64 afs : 2;
u64 v_sta : 3;
u64 tx_pactive : 1;
u64 reserved_8_31 : 24;
u64 v_time : 24;
u64 reserved_56_63 : 8;
} s;
/* struct cgxx_smux_mmsi_ctl_sta_s cn; */
};
static inline u64 CGXX_SMUX_MMSI_CTL_STA(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_MMSI_CTL_STA(u64 a)
{
return 0x20220 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_rx_bad_col_ctrl
*
* CGX SMU RX Bad Column High Registers
*/
union cgxx_smux_rx_bad_col_ctrl {
u64 u;
struct cgxx_smux_rx_bad_col_ctrl_s {
u64 lane_rxc : 16;
u64 state : 3;
u64 val : 1;
u64 reserved_20_63 : 44;
} s;
/* struct cgxx_smux_rx_bad_col_ctrl_s cn; */
};
static inline u64 CGXX_SMUX_RX_BAD_COL_CTRL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_RX_BAD_COL_CTRL(u64 a)
{
return 0x20060 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_rx_bad_col_data_hi
*
* CGX SMU RX Bad Column Low Registers
*/
union cgxx_smux_rx_bad_col_data_hi {
u64 u;
struct cgxx_smux_rx_bad_col_data_hi_s {
u64 lane_rxd : 64;
} s;
/* struct cgxx_smux_rx_bad_col_data_hi_s cn; */
};
static inline u64 CGXX_SMUX_RX_BAD_COL_DATA_HI(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_RX_BAD_COL_DATA_HI(u64 a)
{
return 0x20058 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_rx_bad_col_data_lo
*
* CGX SMU RX Bad Column Low Registers
*/
union cgxx_smux_rx_bad_col_data_lo {
u64 u;
struct cgxx_smux_rx_bad_col_data_lo_s {
u64 lane_rxd : 64;
} s;
/* struct cgxx_smux_rx_bad_col_data_lo_s cn; */
};
static inline u64 CGXX_SMUX_RX_BAD_COL_DATA_LO(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_RX_BAD_COL_DATA_LO(u64 a)
{
return 0x20050 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_rx_ctl
*
* CGX SMU RX Control Registers
*/
union cgxx_smux_rx_ctl {
u64 u;
struct cgxx_smux_rx_ctl_s {
u64 status : 2;
u64 reserved_2_63 : 62;
} s;
/* struct cgxx_smux_rx_ctl_s cn; */
};
static inline u64 CGXX_SMUX_RX_CTL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_RX_CTL(u64 a)
{
return 0x20048 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_rx_decision
*
* CGX SMU Packet Decision Registers This register specifies the byte
* count used to determine when to accept or to filter a packet. As each
* byte in a packet is received by CGX, the L2 byte count (i.e. the
* number of bytes from the beginning of the L2 header (DMAC)) is
* compared against CNT. In normal operation, the L2 header begins after
* the PREAMBLE + SFD (CGX()_SMU()_RX_FRM_CTL[PRE_CHK] = 1) and any
* optional UDD skip data (CGX()_SMU()_RX_UDD_SKP[LEN]).
*/
union cgxx_smux_rx_decision {
u64 u;
struct cgxx_smux_rx_decision_s {
u64 cnt : 5;
u64 reserved_5_63 : 59;
} s;
/* struct cgxx_smux_rx_decision_s cn; */
};
static inline u64 CGXX_SMUX_RX_DECISION(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_RX_DECISION(u64 a)
{
return 0x20038 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_rx_frm_chk
*
* CGX SMU RX Frame Check Registers The CSRs provide the enable bits for
* a subset of errors passed to CMR encoded.
*/
union cgxx_smux_rx_frm_chk {
u64 u;
struct cgxx_smux_rx_frm_chk_s {
u64 reserved_0_2 : 3;
u64 jabber : 1;
u64 fcserr_d : 1;
u64 fcserr_c : 1;
u64 reserved_6 : 1;
u64 rcverr : 1;
u64 skperr : 1;
u64 reserved_9_63 : 55;
} s;
/* struct cgxx_smux_rx_frm_chk_s cn; */
};
static inline u64 CGXX_SMUX_RX_FRM_CHK(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_RX_FRM_CHK(u64 a)
{
return 0x20028 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_rx_frm_ctl
*
* CGX SMU RX Frame Control Registers This register controls the handling
* of the frames. The [CTL_BCK] and [CTL_DRP] bits control how the
* hardware handles incoming PAUSE packets. The most common modes of
* operation: _ [CTL_BCK] = 1, [CTL_DRP] = 1: hardware handles everything
* _ [CTL_BCK] = 0, [CTL_DRP] = 0: software sees all PAUSE frames _
* [CTL_BCK] = 0, [CTL_DRP] = 1: all PAUSE frames are completely ignored
* These control bits should be set to [CTL_BCK] = 0, [CTL_DRP] = 0 in
* half-duplex mode. Since PAUSE packets only apply to full duplex
* operation, any PAUSE packet would constitute an exception which should
* be handled by the processing cores. PAUSE packets should not be
* forwarded.
*/
union cgxx_smux_rx_frm_ctl {
u64 u;
struct cgxx_smux_rx_frm_ctl_s {
u64 pre_chk : 1;
u64 pre_strp : 1;
u64 ctl_drp : 1;
u64 ctl_bck : 1;
u64 ctl_mcst : 1;
u64 ctl_smac : 1;
u64 reserved_6_11 : 6;
u64 ptp_mode : 1;
u64 reserved_13_63 : 51;
} s;
/* struct cgxx_smux_rx_frm_ctl_s cn; */
};
static inline u64 CGXX_SMUX_RX_FRM_CTL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_RX_FRM_CTL(u64 a)
{
return 0x20020 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_rx_int
*
* CGX SMU Receive Interrupt Registers SMU Interrupt Register. Internal:
* Exception conditions \<9\> and \<4:0\> can also set the rcv/opcode in
* the received packet's work queue entry. CGX()_SMU()_RX_FRM_CHK
* provides a bit mask for configuring which conditions set the error.
*/
union cgxx_smux_rx_int {
u64 u;
struct cgxx_smux_rx_int_s {
u64 jabber : 1;
u64 fcserr : 1;
u64 rcverr : 1;
u64 skperr : 1;
u64 pcterr : 1;
u64 rsverr : 1;
u64 loc_fault : 1;
u64 rem_fault : 1;
u64 bad_seq : 1;
u64 bad_term : 1;
u64 hg2fld : 1;
u64 hg2cc : 1;
u64 badver : 1;
u64 badrsp : 1;
u64 reserved_14_63 : 50;
} s;
/* struct cgxx_smux_rx_int_s cn; */
};
static inline u64 CGXX_SMUX_RX_INT(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_RX_INT(u64 a)
{
return 0x20000 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_rx_int_ena_w1c
*
* CGX SMU Receive Interrupt Enable Clear Registers This register clears
* interrupt enable bits.
*/
union cgxx_smux_rx_int_ena_w1c {
u64 u;
struct cgxx_smux_rx_int_ena_w1c_s {
u64 jabber : 1;
u64 fcserr : 1;
u64 rcverr : 1;
u64 skperr : 1;
u64 pcterr : 1;
u64 rsverr : 1;
u64 loc_fault : 1;
u64 rem_fault : 1;
u64 bad_seq : 1;
u64 bad_term : 1;
u64 hg2fld : 1;
u64 hg2cc : 1;
u64 badver : 1;
u64 badrsp : 1;
u64 reserved_14_63 : 50;
} s;
/* struct cgxx_smux_rx_int_ena_w1c_s cn; */
};
static inline u64 CGXX_SMUX_RX_INT_ENA_W1C(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_RX_INT_ENA_W1C(u64 a)
{
return 0x20010 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_rx_int_ena_w1s
*
* CGX SMU Receive Interrupt Enable Set Registers This register sets
* interrupt enable bits.
*/
union cgxx_smux_rx_int_ena_w1s {
u64 u;
struct cgxx_smux_rx_int_ena_w1s_s {
u64 jabber : 1;
u64 fcserr : 1;
u64 rcverr : 1;
u64 skperr : 1;
u64 pcterr : 1;
u64 rsverr : 1;
u64 loc_fault : 1;
u64 rem_fault : 1;
u64 bad_seq : 1;
u64 bad_term : 1;
u64 hg2fld : 1;
u64 hg2cc : 1;
u64 badver : 1;
u64 badrsp : 1;
u64 reserved_14_63 : 50;
} s;
/* struct cgxx_smux_rx_int_ena_w1s_s cn; */
};
static inline u64 CGXX_SMUX_RX_INT_ENA_W1S(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_RX_INT_ENA_W1S(u64 a)
{
return 0x20018 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_rx_int_w1s
*
* CGX SMU Receive Interrupt Set Registers This register sets interrupt
* bits.
*/
union cgxx_smux_rx_int_w1s {
u64 u;
struct cgxx_smux_rx_int_w1s_s {
u64 jabber : 1;
u64 fcserr : 1;
u64 rcverr : 1;
u64 skperr : 1;
u64 pcterr : 1;
u64 rsverr : 1;
u64 loc_fault : 1;
u64 rem_fault : 1;
u64 bad_seq : 1;
u64 bad_term : 1;
u64 hg2fld : 1;
u64 hg2cc : 1;
u64 badver : 1;
u64 badrsp : 1;
u64 reserved_14_63 : 50;
} s;
/* struct cgxx_smux_rx_int_w1s_s cn; */
};
static inline u64 CGXX_SMUX_RX_INT_W1S(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_RX_INT_W1S(u64 a)
{
return 0x20008 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_rx_jabber
*
* CGX SMU Maximum Packet-Size Registers This register specifies the
* maximum size for packets, beyond which the SMU truncates. Internal:
* JABBER[CNT] is checked against the packet that arrives from SPU. The
* checking is performed before preamble is stripped or PTP is inserted.
* If present, preamble is counted as eight bytes of the incoming packet.
*/
union cgxx_smux_rx_jabber {
u64 u;
struct cgxx_smux_rx_jabber_s {
u64 cnt : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_smux_rx_jabber_s cn; */
};
static inline u64 CGXX_SMUX_RX_JABBER(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_RX_JABBER(u64 a)
{
return 0x20030 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_rx_udd_skp
*
* CGX SMU User-Defined Data Skip Registers Internal: (1) The skip bytes
* are part of the packet and will be sent down the NCB packet interface
* and will be handled by NIX. (2) The system can determine if the UDD
* bytes are included in the FCS check by using the FCSSEL field if the
* FCS check is enabled. (3) Assume that the preamble/sfd is always at
* the start of the frame even before UDD bytes. In most cases, there
* will be no preamble in these cases since it will be packet interface
* in direct communication to another packet interface (MAC to MAC)
* without a PHY involved. (4) We can still do address filtering and
* control packet filtering if the user desires. (5) In all cases, the
* UDD bytes will be sent down the packet interface as part of the
* packet. The UDD bytes are never stripped from the actual packet.
*/
union cgxx_smux_rx_udd_skp {
u64 u;
struct cgxx_smux_rx_udd_skp_s {
u64 len : 7;
u64 reserved_7 : 1;
u64 fcssel : 1;
u64 reserved_9_63 : 55;
} s;
/* struct cgxx_smux_rx_udd_skp_s cn; */
};
static inline u64 CGXX_SMUX_RX_UDD_SKP(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_RX_UDD_SKP(u64 a)
{
return 0x20040 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_rx_wol_ctrl0
*
* CGX SMU RX Wake-on-LAN Control 0 Registers
*/
union cgxx_smux_rx_wol_ctrl0 {
u64 u;
struct cgxx_smux_rx_wol_ctrl0_s {
u64 dmac : 48;
u64 pswd_len : 4;
u64 reserved_52_63 : 12;
} s;
/* struct cgxx_smux_rx_wol_ctrl0_s cn; */
};
static inline u64 CGXX_SMUX_RX_WOL_CTRL0(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_RX_WOL_CTRL0(u64 a)
{
return 0x20068 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_rx_wol_ctrl1
*
* CGX SMU RX Wake-on-LAN Control 1 Registers
*/
union cgxx_smux_rx_wol_ctrl1 {
u64 u;
struct cgxx_smux_rx_wol_ctrl1_s {
u64 pswd : 64;
} s;
/* struct cgxx_smux_rx_wol_ctrl1_s cn; */
};
static inline u64 CGXX_SMUX_RX_WOL_CTRL1(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_RX_WOL_CTRL1(u64 a)
{
return 0x20070 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_rx_wol_int
*
* CGX SMU RX WOL Interrupt Registers These registers allow WOL
* interrupts to be sent to the control processor.
*/
union cgxx_smux_rx_wol_int {
u64 u;
struct cgxx_smux_rx_wol_int_s {
u64 wol_rcvd : 1;
u64 reserved_1_63 : 63;
} s;
/* struct cgxx_smux_rx_wol_int_s cn; */
};
static inline u64 CGXX_SMUX_RX_WOL_INT(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_RX_WOL_INT(u64 a)
{
return 0x20078 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_rx_wol_int_ena_w1c
*
* CGX SMU RX WOL Interrupt Enable Clear Registers This register clears
* interrupt enable bits.
*/
union cgxx_smux_rx_wol_int_ena_w1c {
u64 u;
struct cgxx_smux_rx_wol_int_ena_w1c_s {
u64 wol_rcvd : 1;
u64 reserved_1_63 : 63;
} s;
/* struct cgxx_smux_rx_wol_int_ena_w1c_s cn; */
};
static inline u64 CGXX_SMUX_RX_WOL_INT_ENA_W1C(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_RX_WOL_INT_ENA_W1C(u64 a)
{
return 0x20088 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_rx_wol_int_ena_w1s
*
* CGX SMU RX WOL Interrupt Enable Set Registers This register sets
* interrupt enable bits.
*/
union cgxx_smux_rx_wol_int_ena_w1s {
u64 u;
struct cgxx_smux_rx_wol_int_ena_w1s_s {
u64 wol_rcvd : 1;
u64 reserved_1_63 : 63;
} s;
/* struct cgxx_smux_rx_wol_int_ena_w1s_s cn; */
};
static inline u64 CGXX_SMUX_RX_WOL_INT_ENA_W1S(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_RX_WOL_INT_ENA_W1S(u64 a)
{
return 0x20090 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_rx_wol_int_w1s
*
* CGX SMU RX WOL Interrupt Set Registers This register sets interrupt
* bits.
*/
union cgxx_smux_rx_wol_int_w1s {
u64 u;
struct cgxx_smux_rx_wol_int_w1s_s {
u64 wol_rcvd : 1;
u64 reserved_1_63 : 63;
} s;
/* struct cgxx_smux_rx_wol_int_w1s_s cn; */
};
static inline u64 CGXX_SMUX_RX_WOL_INT_W1S(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_RX_WOL_INT_W1S(u64 a)
{
return 0x20080 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_smac
*
* CGX SMU SMAC Registers
*/
union cgxx_smux_smac {
u64 u;
struct cgxx_smux_smac_s {
u64 smac : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_smux_smac_s cn; */
};
static inline u64 CGXX_SMUX_SMAC(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_SMAC(u64 a)
{
return 0x20108 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_tx_append
*
* CGX SMU TX Append Control Registers For more details on the
* interactions between FCS and PAD, see also the description of
* CGX()_SMU()_TX_MIN_PKT[MIN_SIZE].
*/
union cgxx_smux_tx_append {
u64 u;
struct cgxx_smux_tx_append_s {
u64 preamble : 1;
u64 pad : 1;
u64 fcs_d : 1;
u64 fcs_c : 1;
u64 reserved_4_63 : 60;
} s;
/* struct cgxx_smux_tx_append_s cn; */
};
static inline u64 CGXX_SMUX_TX_APPEND(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_TX_APPEND(u64 a)
{
return 0x20100 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_tx_ctl
*
* CGX SMU Transmit Control Registers
*/
union cgxx_smux_tx_ctl {
u64 u;
struct cgxx_smux_tx_ctl_s {
u64 dic_en : 1;
u64 uni_en : 1;
u64 x4a_dis : 1;
u64 mia_en : 1;
u64 ls : 2;
u64 ls_byp : 1;
u64 l2p_bp_conv : 1;
u64 hg_en : 1;
u64 hg_pause_hgi : 2;
u64 reserved_11_63 : 53;
} s;
/* struct cgxx_smux_tx_ctl_s cn; */
};
static inline u64 CGXX_SMUX_TX_CTL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_TX_CTL(u64 a)
{
return 0x20178 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_tx_dack
*
* CGX SMU TX Drop Counters Registers
*/
union cgxx_smux_tx_dack {
u64 u;
struct cgxx_smux_tx_dack_s {
u64 dpi_sdrop_ack : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_smux_tx_dack_s cn; */
};
static inline u64 CGXX_SMUX_TX_DACK(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_TX_DACK(u64 a)
{
return 0x201b0 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_tx_dcnt
*
* CGX SMU TX Drop Counters Registers
*/
union cgxx_smux_tx_dcnt {
u64 u;
struct cgxx_smux_tx_dcnt_s {
u64 dpi_sdrop_cnt : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_smux_tx_dcnt_s cn; */
};
static inline u64 CGXX_SMUX_TX_DCNT(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_TX_DCNT(u64 a)
{
return 0x201a8 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_tx_eee
*
* INTERNAL: CGX SMU TX EEE Configure Registers Resvered. Internal:
* These registers control when SMU TX requests to enter or exist LPI.
* Those registers take effect only when EEE is supported and enabled for
* a given LMAC.
*/
union cgxx_smux_tx_eee {
u64 u;
struct cgxx_smux_tx_eee_s {
u64 idle_thresh : 28;
u64 reserved_28 : 1;
u64 force_lpi : 1;
u64 wakeup : 1;
u64 auto_lpi : 1;
u64 idle_cnt : 28;
u64 reserved_60_61 : 2;
u64 tx_lpi_wake : 1;
u64 tx_lpi : 1;
} s;
/* struct cgxx_smux_tx_eee_s cn; */
};
static inline u64 CGXX_SMUX_TX_EEE(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_TX_EEE(u64 a)
{
return 0x20190 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_tx_eee_timer_status
*
* INTERNAL: CGX SMU TX EEE TIMER STATUS Registers Reserved. Internal:
* These registers configure SMU TX EEE timing parameters.
*/
union cgxx_smux_tx_eee_timer_status {
u64 u;
struct cgxx_smux_tx_eee_timer_status_s {
u64 lpi_wake_cnt : 16;
u64 reserved_16_30 : 15;
u64 wake_timer_done : 1;
u64 link_ok_cnt : 30;
u64 reserved_62 : 1;
u64 link_timer_done : 1;
} s;
/* struct cgxx_smux_tx_eee_timer_status_s cn; */
};
static inline u64 CGXX_SMUX_TX_EEE_TIMER_STATUS(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_TX_EEE_TIMER_STATUS(u64 a)
{
return 0x201a0 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_tx_eee_timing
*
* INTERNAL: CGX SMU TX EEE TIMING Parameter Registers Reserved.
* Internal: These registers configure SMU TX EEE timing parameters.
*/
union cgxx_smux_tx_eee_timing {
u64 u;
struct cgxx_smux_tx_eee_timing_s {
u64 w_sys_tx_min : 16;
u64 reserved_16_31 : 16;
u64 link_ok_min : 30;
u64 reserved_62_63 : 2;
} s;
/* struct cgxx_smux_tx_eee_timing_s cn; */
};
static inline u64 CGXX_SMUX_TX_EEE_TIMING(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_TX_EEE_TIMING(u64 a)
{
return 0x20198 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_tx_ifg
*
* CGX SMU TX Interframe-Gap Cycles Registers Programming IFG1 and IFG2:
* * For XAUI/RXAUI/10G/25G/40G/50G/100G systems that require IEEE 802.3
* compatibility, the [IFG1]+[IFG2] sum must be 12. * In loopback mode,
* the [IFG1]+[IFG2] of local and remote parties must match exactly;
* otherwise loopback FIFO will overrun: CGX()_SMU()_TX_INT[LB_OVRFLW]. *
* When CGX()_SMU()_TX_CTL[DIC_EN] is set, [IFG1]+[IFG2] sum must be at
* least 8. The behavior of smaller values is un-determined. * When
* CGX()_SMU()_TX_CTL[DIC_EN] is cleared, the minimum value of
* [IFG1]+[IFG2] is 1 for 40G/50G/100G LMAC_TYPE configurations and 5 for
* all other values. The behavior of smaller values is un-determined.
* Internal: When CGX()_SMU()_TX_CTL[DIC_EN] is set, SMU TX treats
* ([IFG1]+[IFG2]) \< 8 as 8 for 40G/50G/100G MACs and ([IFG1]+[IFG2]) \<
* 8 as 8 for other MACs. When CGX()_SMU()_TX_CTL[DIC_EN] is cleared, SMU
* TX can work correctly with any IFG1 and IFG2.
*/
union cgxx_smux_tx_ifg {
u64 u;
struct cgxx_smux_tx_ifg_s {
u64 ifg1 : 4;
u64 ifg2 : 4;
u64 mia_amt : 2;
u64 reserved_10_15 : 6;
u64 mia_cnt : 8;
u64 reserved_24_63 : 40;
} s;
/* struct cgxx_smux_tx_ifg_s cn; */
};
static inline u64 CGXX_SMUX_TX_IFG(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_TX_IFG(u64 a)
{
return 0x20160 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_tx_int
*
* CGX SMU TX Interrupt Registers
*/
union cgxx_smux_tx_int {
u64 u;
struct cgxx_smux_tx_int_s {
u64 undflw : 1;
u64 xchange : 1;
u64 fake_commit : 1;
u64 lb_undflw : 1;
u64 lb_ovrflw : 1;
u64 dpi_sdrop : 1;
u64 reserved_6_63 : 58;
} s;
/* struct cgxx_smux_tx_int_s cn; */
};
static inline u64 CGXX_SMUX_TX_INT(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_TX_INT(u64 a)
{
return 0x20140 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_tx_int_ena_w1c
*
* CGX SMU TX Interrupt Enable Clear Registers This register clears
* interrupt enable bits.
*/
union cgxx_smux_tx_int_ena_w1c {
u64 u;
struct cgxx_smux_tx_int_ena_w1c_s {
u64 undflw : 1;
u64 xchange : 1;
u64 fake_commit : 1;
u64 lb_undflw : 1;
u64 lb_ovrflw : 1;
u64 dpi_sdrop : 1;
u64 reserved_6_63 : 58;
} s;
/* struct cgxx_smux_tx_int_ena_w1c_s cn; */
};
static inline u64 CGXX_SMUX_TX_INT_ENA_W1C(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_TX_INT_ENA_W1C(u64 a)
{
return 0x20150 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_tx_int_ena_w1s
*
* CGX SMU TX Interrupt Enable Set Registers This register sets interrupt
* enable bits.
*/
union cgxx_smux_tx_int_ena_w1s {
u64 u;
struct cgxx_smux_tx_int_ena_w1s_s {
u64 undflw : 1;
u64 xchange : 1;
u64 fake_commit : 1;
u64 lb_undflw : 1;
u64 lb_ovrflw : 1;
u64 dpi_sdrop : 1;
u64 reserved_6_63 : 58;
} s;
/* struct cgxx_smux_tx_int_ena_w1s_s cn; */
};
static inline u64 CGXX_SMUX_TX_INT_ENA_W1S(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_TX_INT_ENA_W1S(u64 a)
{
return 0x20158 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_tx_int_w1s
*
* CGX SMU TX Interrupt Set Registers This register sets interrupt bits.
*/
union cgxx_smux_tx_int_w1s {
u64 u;
struct cgxx_smux_tx_int_w1s_s {
u64 undflw : 1;
u64 xchange : 1;
u64 fake_commit : 1;
u64 lb_undflw : 1;
u64 lb_ovrflw : 1;
u64 dpi_sdrop : 1;
u64 reserved_6_63 : 58;
} s;
/* struct cgxx_smux_tx_int_w1s_s cn; */
};
static inline u64 CGXX_SMUX_TX_INT_W1S(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_TX_INT_W1S(u64 a)
{
return 0x20148 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_tx_min_pkt
*
* CGX SMU TX Minimum-Size-Packet Registers Internal: [MIN_SIZE] less
* than 16 will be ignored by hardware which will use 16 instead.
*/
union cgxx_smux_tx_min_pkt {
u64 u;
struct cgxx_smux_tx_min_pkt_s {
u64 min_size : 8;
u64 reserved_8_63 : 56;
} s;
/* struct cgxx_smux_tx_min_pkt_s cn; */
};
static inline u64 CGXX_SMUX_TX_MIN_PKT(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_TX_MIN_PKT(u64 a)
{
return 0x20118 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_tx_pause_pkt_dmac
*
* CGX SMU TX PAUSE-Packet DMAC-Field Registers This register provides
* the DMAC value that is placed in outbound PAUSE packets.
*/
union cgxx_smux_tx_pause_pkt_dmac {
u64 u;
struct cgxx_smux_tx_pause_pkt_dmac_s {
u64 dmac : 48;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_smux_tx_pause_pkt_dmac_s cn; */
};
static inline u64 CGXX_SMUX_TX_PAUSE_PKT_DMAC(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_TX_PAUSE_PKT_DMAC(u64 a)
{
return 0x20168 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_tx_pause_pkt_interval
*
* CGX SMU TX PAUSE-Packet Transmission-Interval Registers This register
* specifies how often PAUSE packets are sent.
*/
union cgxx_smux_tx_pause_pkt_interval {
u64 u;
struct cgxx_smux_tx_pause_pkt_interval_s {
u64 interval : 16;
u64 hg2_intra_interval : 16;
u64 hg2_intra_en : 1;
u64 reserved_33_63 : 31;
} s;
/* struct cgxx_smux_tx_pause_pkt_interval_s cn; */
};
static inline u64 CGXX_SMUX_TX_PAUSE_PKT_INTERVAL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_TX_PAUSE_PKT_INTERVAL(u64 a)
{
return 0x20120 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_tx_pause_pkt_time
*
* CGX SMU TX PAUSE Packet Time Registers
*/
union cgxx_smux_tx_pause_pkt_time {
u64 u;
struct cgxx_smux_tx_pause_pkt_time_s {
u64 p_time : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_smux_tx_pause_pkt_time_s cn; */
};
static inline u64 CGXX_SMUX_TX_PAUSE_PKT_TIME(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_TX_PAUSE_PKT_TIME(u64 a)
{
return 0x20110 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_tx_pause_pkt_type
*
* CGX SMU TX PAUSE-Packet P_TYPE-Field Registers This register provides
* the P_TYPE field that is placed in outbound PAUSE packets.
*/
union cgxx_smux_tx_pause_pkt_type {
u64 u;
struct cgxx_smux_tx_pause_pkt_type_s {
u64 p_type : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_smux_tx_pause_pkt_type_s cn; */
};
static inline u64 CGXX_SMUX_TX_PAUSE_PKT_TYPE(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_TX_PAUSE_PKT_TYPE(u64 a)
{
return 0x20170 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_tx_pause_togo
*
* CGX SMU TX Time-to-Backpressure Registers
*/
union cgxx_smux_tx_pause_togo {
u64 u;
struct cgxx_smux_tx_pause_togo_s {
u64 p_time : 16;
u64 msg_time : 16;
u64 reserved_32_63 : 32;
} s;
/* struct cgxx_smux_tx_pause_togo_s cn; */
};
static inline u64 CGXX_SMUX_TX_PAUSE_TOGO(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_TX_PAUSE_TOGO(u64 a)
{
return 0x20130 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_tx_pause_zero
*
* CGX SMU TX PAUSE Zero Registers
*/
union cgxx_smux_tx_pause_zero {
u64 u;
struct cgxx_smux_tx_pause_zero_s {
u64 send : 1;
u64 reserved_1_63 : 63;
} s;
/* struct cgxx_smux_tx_pause_zero_s cn; */
};
static inline u64 CGXX_SMUX_TX_PAUSE_ZERO(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_TX_PAUSE_ZERO(u64 a)
{
return 0x20138 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_tx_soft_pause
*
* CGX SMU TX Soft PAUSE Registers
*/
union cgxx_smux_tx_soft_pause {
u64 u;
struct cgxx_smux_tx_soft_pause_s {
u64 p_time : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_smux_tx_soft_pause_s cn; */
};
static inline u64 CGXX_SMUX_TX_SOFT_PAUSE(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_TX_SOFT_PAUSE(u64 a)
{
return 0x20128 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_smu#_tx_thresh
*
* CGX SMU TX Threshold Registers
*/
union cgxx_smux_tx_thresh {
u64 u;
struct cgxx_smux_tx_thresh_s {
u64 cnt : 12;
u64 reserved_12_15 : 4;
u64 dpi_thresh : 5;
u64 reserved_21_23 : 3;
u64 dpi_depth : 5;
u64 reserved_29_31 : 3;
u64 ecnt : 12;
u64 reserved_44_63 : 20;
} s;
/* struct cgxx_smux_tx_thresh_s cn; */
};
static inline u64 CGXX_SMUX_TX_THRESH(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SMUX_TX_THRESH(u64 a)
{
return 0x20180 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_an_adv
*
* CGX SPU Autonegotiation Advertisement Registers Software programs this
* register with the contents of the AN-link code word base page to be
* transmitted during autonegotiation. (See IEEE 802.3 section 73.6 for
* details.) Any write operations to this register prior to completion of
* autonegotiation, as indicated by CGX()_SPU()_AN_STATUS[AN_COMPLETE],
* should be followed by a renegotiation in order for the new values to
* take effect. Renegotiation is initiated by setting
* CGX()_SPU()_AN_CONTROL[AN_RESTART]. Once autonegotiation has
* completed, software can examine this register along with
* CGX()_SPU()_AN_LP_BASE to determine the highest common denominator
* technology.
*/
union cgxx_spux_an_adv {
u64 u;
struct cgxx_spux_an_adv_s {
u64 s : 5;
u64 e : 5;
u64 pause : 1;
u64 asm_dir : 1;
u64 xnp_able : 1;
u64 rf : 1;
u64 ack : 1;
u64 np : 1;
u64 t : 5;
u64 a1g_kx : 1;
u64 a10g_kx4 : 1;
u64 a10g_kr : 1;
u64 a40g_kr4 : 1;
u64 a40g_cr4 : 1;
u64 a100g_cr10 : 1;
u64 a100g_kp4 : 1;
u64 a100g_kr4 : 1;
u64 a100g_cr4 : 1;
u64 a25g_krs_crs : 1;
u64 a25g_kr_cr : 1;
u64 arsv : 12;
u64 a25g_rs_fec_req : 1;
u64 a25g_br_fec_req : 1;
u64 fec_able : 1;
u64 fec_req : 1;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_spux_an_adv_s cn; */
};
static inline u64 CGXX_SPUX_AN_ADV(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_AN_ADV(u64 a)
{
return 0x10198 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_an_bp_status
*
* CGX SPU Autonegotiation Backplane Ethernet & BASE-R Copper Status
* Registers The contents of this register are updated during
* autonegotiation and are valid when CGX()_SPU()_AN_STATUS[AN_COMPLETE]
* is set. At that time, one of the port type bits will be set depending
* on the AN priority resolution. The port types are listed in order of
* decreasing priority. If a BASE-R type is negotiated then [FEC] or
* [RS_FEC] will be set to indicate whether/which FEC operation has been
* negotiated and will be clear otherwise.
*/
union cgxx_spux_an_bp_status {
u64 u;
struct cgxx_spux_an_bp_status_s {
u64 bp_an_able : 1;
u64 n1g_kx : 1;
u64 n10g_kx4 : 1;
u64 n10g_kr : 1;
u64 n25g_kr1 : 1;
u64 n25g_cr1 : 1;
u64 n25g_krs_crs : 1;
u64 n25g_kr_cr : 1;
u64 n40g_kr4 : 1;
u64 n40g_cr4 : 1;
u64 n50g_kr2 : 1;
u64 n50g_cr2 : 1;
u64 n100g_cr10 : 1;
u64 n100g_kp4 : 1;
u64 n100g_kr4 : 1;
u64 n100g_cr4 : 1;
u64 fec : 1;
u64 rs_fec : 1;
u64 reserved_18_63 : 46;
} s;
/* struct cgxx_spux_an_bp_status_s cn; */
};
static inline u64 CGXX_SPUX_AN_BP_STATUS(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_AN_BP_STATUS(u64 a)
{
return 0x101b8 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_an_control
*
* CGX SPU Autonegotiation Control Registers
*/
union cgxx_spux_an_control {
u64 u;
struct cgxx_spux_an_control_s {
u64 reserved_0_8 : 9;
u64 an_restart : 1;
u64 reserved_10_11 : 2;
u64 an_en : 1;
u64 xnp_en : 1;
u64 reserved_14 : 1;
u64 an_reset : 1;
u64 an_arb_link_chk_en : 1;
u64 usx_an_arb_link_chk_en : 1;
u64 reserved_18_63 : 46;
} s;
/* struct cgxx_spux_an_control_s cn; */
};
static inline u64 CGXX_SPUX_AN_CONTROL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_AN_CONTROL(u64 a)
{
return 0x10188 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_an_lp_base
*
* CGX SPU Autonegotiation Link-Partner Base-Page Ability Registers This
* register captures the contents of the latest AN link code word base
* page received from the link partner during autonegotiation. (See IEEE
* 802.3 section 73.6 for details.) CGX()_SPU()_AN_STATUS[PAGE_RX] is set
* when this register is updated by hardware.
*/
union cgxx_spux_an_lp_base {
u64 u;
struct cgxx_spux_an_lp_base_s {
u64 s : 5;
u64 e : 5;
u64 pause : 1;
u64 asm_dir : 1;
u64 xnp_able : 1;
u64 rf : 1;
u64 ack : 1;
u64 np : 1;
u64 t : 5;
u64 a1g_kx : 1;
u64 a10g_kx4 : 1;
u64 a10g_kr : 1;
u64 a40g_kr4 : 1;
u64 a40g_cr4 : 1;
u64 a100g_cr10 : 1;
u64 a100g_kp4 : 1;
u64 a100g_kr4 : 1;
u64 a100g_cr4 : 1;
u64 a25g_krs_crs : 1;
u64 a25g_kr_cr : 1;
u64 arsv : 12;
u64 a25g_rs_fec_req : 1;
u64 a25g_br_fec_req : 1;
u64 fec_able : 1;
u64 fec_req : 1;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_spux_an_lp_base_s cn; */
};
static inline u64 CGXX_SPUX_AN_LP_BASE(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_AN_LP_BASE(u64 a)
{
return 0x101a0 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_an_lp_xnp
*
* CGX SPU Autonegotiation Link Partner Extended Next Page Ability
* Registers This register captures the contents of the latest next page
* code word received from the link partner during autonegotiation, if
* any. See IEEE 802.3 section 73.7.7 for details.
*/
union cgxx_spux_an_lp_xnp {
u64 u;
struct cgxx_spux_an_lp_xnp_s {
u64 m_u : 11;
u64 toggle : 1;
u64 ack2 : 1;
u64 mp : 1;
u64 ack : 1;
u64 np : 1;
u64 u : 32;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_spux_an_lp_xnp_s cn; */
};
static inline u64 CGXX_SPUX_AN_LP_XNP(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_AN_LP_XNP(u64 a)
{
return 0x101b0 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_an_status
*
* CGX SPU Autonegotiation Status Registers
*/
union cgxx_spux_an_status {
u64 u;
struct cgxx_spux_an_status_s {
u64 lp_an_able : 1;
u64 reserved_1 : 1;
u64 link_status : 1;
u64 an_able : 1;
u64 rmt_flt : 1;
u64 an_complete : 1;
u64 page_rx : 1;
u64 xnp_stat : 1;
u64 reserved_8 : 1;
u64 prl_flt : 1;
u64 reserved_10_63 : 54;
} s;
/* struct cgxx_spux_an_status_s cn; */
};
static inline u64 CGXX_SPUX_AN_STATUS(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_AN_STATUS(u64 a)
{
return 0x10190 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_an_xnp_tx
*
* CGX SPU Autonegotiation Extended Next Page Transmit Registers Software
* programs this register with the contents of the AN message next page
* or unformatted next page link code word to be transmitted during
* autonegotiation. Next page exchange occurs after the base link code
* words have been exchanged if either end of the link segment sets the
* NP bit to 1, indicating that it has at least one next page to send.
* Once initiated, next page exchange continues until both ends of the
* link segment set their NP bits to 0. See IEEE 802.3 section 73.7.7 for
* details.
*/
union cgxx_spux_an_xnp_tx {
u64 u;
struct cgxx_spux_an_xnp_tx_s {
u64 m_u : 11;
u64 toggle : 1;
u64 ack2 : 1;
u64 mp : 1;
u64 ack : 1;
u64 np : 1;
u64 u : 32;
u64 reserved_48_63 : 16;
} s;
/* struct cgxx_spux_an_xnp_tx_s cn; */
};
static inline u64 CGXX_SPUX_AN_XNP_TX(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_AN_XNP_TX(u64 a)
{
return 0x101a8 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_br_algn_status
*
* CGX SPU Multilane BASE-R PCS Alignment-Status Registers This register
* implements the IEEE 802.3 multilane BASE-R PCS alignment status 1-4
* registers (3.50-3.53). It is valid only when the LPCS type is
* 40GBASE-R, 50GBASE-R, 100GBASE-R, (CGX()_CMR()_CONFIG[LMAC_TYPE] =
* CGX_LMAC_TYPES_E::FORTYG_R,FIFTYG_R,HUNDREDG_R), and always returns
* 0x0 for all other LPCS types. Service interfaces (lanes) 19-0 (100G)
* and 3-0 (all others) are mapped to PCS lanes 19-0 or 3-0 via
* CGX()_SPU()_BR_LANE_MAP()[LN_MAPPING]. For 100G, logical lane 0 fans
* out to service interfaces 0-4, logical lane 1 fans out to service
* interfaces 5-9, ... etc. For all other modes, logical lanes and
* service interfaces are identical. Logical interfaces (lanes) map to
* SerDes lanes via CGX()_CMR()_CONFIG[LANE_TO_SDS] (programmable).
*/
union cgxx_spux_br_algn_status {
u64 u;
struct cgxx_spux_br_algn_status_s {
u64 block_lock : 20;
u64 reserved_20_29 : 10;
u64 alignd : 1;
u64 reserved_31_40 : 10;
u64 marker_lock : 20;
u64 reserved_61_63 : 3;
} s;
/* struct cgxx_spux_br_algn_status_s cn; */
};
static inline u64 CGXX_SPUX_BR_ALGN_STATUS(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_BR_ALGN_STATUS(u64 a)
{
return 0x10050 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_br_lane_map#
*
* CGX SPU 40,50,100GBASE-R Lane-Mapping Registers This register
* implements the IEEE 802.3 lane 0-19 mapping registers (3.400-3.403).
* It is valid only when the LPCS type is 40GBASE-R, 50GBASE-R,
* 100GBASE-R, USXGMII (CGX()_CMR()_CONFIG[LMAC_TYPE]), and always
* returns 0x0 for all other LPCS types. The LNx_MAPPING field for each
* programmed PCS lane (called service interface in 802.3) is valid when
* that lane has achieved alignment marker lock on the receive side (i.e.
* the associated CGX()_SPU()_BR_ALGN_STATUS[MARKER_LOCK] = 1), and is
* invalid otherwise. When valid, it returns the actual detected receive
* PCS lane number based on the received alignment marker contents
* received on that service interface. In RS-FEC mode the LNx_MAPPING
* field is valid when that lane has achieved alignment marker lock on
* the receive side (i.e. the associated
* CGX()_SPU()_RSFEC_STATUS[AMPS_LOCK] = 1), and is invalid otherwise.
* When valid, it returns the actual detected receive FEC lane number
* based on the received alignment marker contents received on that
* logical lane therefore expect for RS-FEC that LNx_MAPPING = x. The
* mapping is flexible because IEEE 802.3 allows multilane BASE-R receive
* lanes to be re-ordered. Note that for the transmit side, each logical
* lane is mapped to a physical SerDes lane based on the programming of
* CGX()_CMR()_CONFIG[LANE_TO_SDS]. For the receive side,
* CGX()_CMR()_CONFIG[LANE_TO_SDS] specifies the logical lane to physical
* SerDes lane mapping, and this register specifies the service interface
* (or lane) to PCS lane mapping.
*/
union cgxx_spux_br_lane_mapx {
u64 u;
struct cgxx_spux_br_lane_mapx_s {
u64 ln_mapping : 6;
u64 reserved_6_63 : 58;
} s;
/* struct cgxx_spux_br_lane_mapx_s cn; */
};
static inline u64 CGXX_SPUX_BR_LANE_MAPX(u64 a, u64 b)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_BR_LANE_MAPX(u64 a, u64 b)
{
return 0x10600 + 0x40000 * a + 8 * b;
}
/**
* Register (RSL) cgx#_spu#_br_pmd_control
*
* CGX SPU BASE-R PMD Control Registers
*/
union cgxx_spux_br_pmd_control {
u64 u;
struct cgxx_spux_br_pmd_control_s {
u64 train_restart : 1;
u64 train_en : 1;
u64 use_lane_poly : 1;
u64 max_wait_disable : 1;
u64 reserved_4_63 : 60;
} s;
struct cgxx_spux_br_pmd_control_cn96xx {
u64 train_restart : 1;
u64 train_en : 1;
u64 use_lane_poly : 1;
u64 reserved_3_63 : 61;
} cn96xx;
/* struct cgxx_spux_br_pmd_control_s cnf95xxp1; */
/* struct cgxx_spux_br_pmd_control_cn96xx cnf95xxp2; */
};
static inline u64 CGXX_SPUX_BR_PMD_CONTROL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_BR_PMD_CONTROL(u64 a)
{
return 0x100a8 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_br_pmd_ld_cup
*
* INTERNAL:CGX SPU BASE-R PMD Local Device Coefficient Update Registers
* This register implements MDIO register 1.154 of 802.3-2012 Section 5
* CL45 for 10GBASE-R and and of 802.3by-2016 CL45 for 25GBASE-R. Note
* that for 10G, 25G LN0_ only is used. It implements MDIO registers
* 1.1300-1.1303 for all other BASE-R modes (40G, 50G, 100G) per
* 802.3bj-2014 CL45. Note that for 50G LN0_ and LN1_ only are used. The
* fields in this register are read/write even though they are specified
* as read-only in 802.3. The register is automatically cleared at the
* start of training. When link training is in progress, each field
* reflects the contents of the coefficient update field in the
* associated lane's outgoing training frame. If
* CGX()_SPU_DBG_CONTROL[BR_PMD_TRAIN_SOFT_EN] is set, then this register
* must be updated by software during link training and hardware updates
* are disabled. If CGX()_SPU_DBG_CONTROL[BR_PMD_TRAIN_SOFT_EN] is clear,
* this register is automatically updated by hardware, and it should not
* be written by software. The lane fields in this register are indexed
* by logical PCS lane ID.
*/
union cgxx_spux_br_pmd_ld_cup {
u64 u;
struct cgxx_spux_br_pmd_ld_cup_s {
u64 ln0_cup : 16;
u64 ln1_cup : 16;
u64 ln2_cup : 16;
u64 ln3_cup : 16;
} s;
/* struct cgxx_spux_br_pmd_ld_cup_s cn; */
};
static inline u64 CGXX_SPUX_BR_PMD_LD_CUP(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_BR_PMD_LD_CUP(u64 a)
{
return 0x100c8 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_br_pmd_ld_rep
*
* INTERNAL:CGX SPU BASE-R PMD Local Device Status Report Registers This
* register implements MDIO register 1.155 of 802.3-2012 Section 5 CL45
* for 10GBASE-R and and of 802.3by-2016 CL45 for 25GBASE-R. Note that
* for 10G, 25G LN0_ only is used. It implements MDIO registers
* 1.1400-1.1403 for all other BASE-R modes (40G, 50G, 100G) per
* 802.3bj-2014 CL45. Note that for 50G LN0_ and LN1_ only are used. The
* fields in this register are read/write even though they are specified
* as read-only in 802.3. The register is automatically cleared at the
* start of training. Each field reflects the contents of the status
* report field in the associated lane's outgoing training frame. If
* CGX()_SPU_DBG_CONTROL[BR_PMD_TRAIN_SOFT_EN] is set, then this register
* must be updated by software during link training and hardware updates
* are disabled. If CGX()_SPU_DBG_CONTROL[BR_PMD_TRAIN_SOFT_EN] is clear,
* this register is automatically updated by hardware, and it should not
* be written by software. The lane fields in this register are indexed
* by logical PCS lane ID.
*/
union cgxx_spux_br_pmd_ld_rep {
u64 u;
struct cgxx_spux_br_pmd_ld_rep_s {
u64 ln0_rep : 16;
u64 ln1_rep : 16;
u64 ln2_rep : 16;
u64 ln3_rep : 16;
} s;
/* struct cgxx_spux_br_pmd_ld_rep_s cn; */
};
static inline u64 CGXX_SPUX_BR_PMD_LD_REP(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_BR_PMD_LD_REP(u64 a)
{
return 0x100d0 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_br_pmd_lp_cup
*
* INTERNAL:CGX SPU BASE-R PMD Link Partner Coefficient Update Registers
* This register implements MDIO register 1.152 of 802.3-2012 Section 5
* CL45 for 10GBASE-R and and of 802.3by-2016 CL45 for 25GBASE-R. Note
* that for 10G, 25G LN0_ only is used. It implements MDIO registers
* 1.1100-1.1103 for all other BASE-R modes (40G, 50G, 100G) per
* 802.3bj-2014 CL45. Note that for 50G LN0_ and LN1_ only are used. The
* register is automatically cleared at the start of training. Each field
* reflects the contents of the coefficient update field in the lane's
* most recently received training frame. This register should not be
* written when link training is enabled, i.e. when
* CGX()_SPU()_BR_PMD_CONTROL[TRAIN_EN] is set. The lane fields in this
* register are indexed by logical PCS lane ID.
*/
union cgxx_spux_br_pmd_lp_cup {
u64 u;
struct cgxx_spux_br_pmd_lp_cup_s {
u64 ln0_cup : 16;
u64 ln1_cup : 16;
u64 ln2_cup : 16;
u64 ln3_cup : 16;
} s;
/* struct cgxx_spux_br_pmd_lp_cup_s cn; */
};
static inline u64 CGXX_SPUX_BR_PMD_LP_CUP(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_BR_PMD_LP_CUP(u64 a)
{
return 0x100b8 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_br_pmd_lp_rep
*
* INTERNAL:CGX SPU BASE-R PMD Link Partner Status Report Registers This
* register implements MDIO register 1.153 of 802.3-2012 Section 5 CL45
* for 10GBASE-R and and of 802.3by-2016 CL45 for 25GBASE-R. Note that
* for 10G, 25G LN0_ only is used. It implements MDIO registers
* 1.1200-1.1203 for all other BASE-R modes (40G, 50G, 100G) per
* 802.3bj-2014 CL45. Note that for 50G LN0_ and LN1_ only are used. The
* register is automatically cleared at the start of training. Each field
* reflects the contents of the coefficient update field in the lane's
* most recently received training frame. This register should not be
* written when link training is enabled, i.e. when
* CGX()_SPU()_BR_PMD_CONTROL[TRAIN_EN] is set. The lane fields in this
* register are indexed by logical PCS lane ID.
*/
union cgxx_spux_br_pmd_lp_rep {
u64 u;
struct cgxx_spux_br_pmd_lp_rep_s {
u64 ln0_rep : 16;
u64 ln1_rep : 16;
u64 ln2_rep : 16;
u64 ln3_rep : 16;
} s;
/* struct cgxx_spux_br_pmd_lp_rep_s cn; */
};
static inline u64 CGXX_SPUX_BR_PMD_LP_REP(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_BR_PMD_LP_REP(u64 a)
{
return 0x100c0 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_br_pmd_status
*
* INTERNAL:CGX SPU BASE-R PMD Status Registers The lane fields in this
* register are indexed by logical PCS lane ID. The lane 0 field (LN0_*)
* is valid for 10GBASE-R, 25GBASE-R, 40GBASE-R, 50GBASE-R and
* 100GBASE-R. The lane 1 field (LN1_*) is valid for 40GBASE-R, 50GBASE-R
* and 100GBASE-R. The remaining fields (LN2_*, LN3_*) are only valid for
* 40GBASE-R and 100GBASE-R.
*/
union cgxx_spux_br_pmd_status {
u64 u;
struct cgxx_spux_br_pmd_status_s {
u64 ln0_train_status : 4;
u64 ln1_train_status : 4;
u64 ln2_train_status : 4;
u64 ln3_train_status : 4;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_spux_br_pmd_status_s cn; */
};
static inline u64 CGXX_SPUX_BR_PMD_STATUS(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_BR_PMD_STATUS(u64 a)
{
return 0x100b0 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_br_status1
*
* CGX SPU BASE-R Status 1 Registers
*/
union cgxx_spux_br_status1 {
u64 u;
struct cgxx_spux_br_status1_s {
u64 blk_lock : 1;
u64 hi_ber : 1;
u64 prbs31 : 1;
u64 prbs9 : 1;
u64 reserved_4_11 : 8;
u64 rcv_lnk : 1;
u64 reserved_13_63 : 51;
} s;
/* struct cgxx_spux_br_status1_s cn; */
};
static inline u64 CGXX_SPUX_BR_STATUS1(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_BR_STATUS1(u64 a)
{
return 0x10030 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_br_status2
*
* CGX SPU BASE-R Status 2 Registers This register implements a
* combination of the following IEEE 802.3 registers: * BASE-R PCS status
* 2 (MDIO address 3.33). * BASE-R BER high-order counter (MDIO address
* 3.44). * Errored-blocks high-order counter (MDIO address 3.45). Note
* that the relative locations of some fields have been moved from IEEE
* 802.3 in order to make the register layout more software friendly: the
* BER counter high-order and low-order bits from sections 3.44 and 3.33
* have been combined into the contiguous, 22-bit [BER_CNT] field;
* likewise, the errored-blocks counter high-order and low-order bits
* from section 3.45 have been combined into the contiguous, 22-bit
* [ERR_BLKS] field.
*/
union cgxx_spux_br_status2 {
u64 u;
struct cgxx_spux_br_status2_s {
u64 reserved_0_13 : 14;
u64 latched_ber : 1;
u64 latched_lock : 1;
u64 ber_cnt : 22;
u64 reserved_38_39 : 2;
u64 err_blks : 22;
u64 reserved_62_63 : 2;
} s;
/* struct cgxx_spux_br_status2_s cn; */
};
static inline u64 CGXX_SPUX_BR_STATUS2(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_BR_STATUS2(u64 a)
{
return 0x10038 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_br_tp_control
*
* CGX SPU BASE-R Test-Pattern Control Registers Refer to the test
* pattern methodology described in 802.3 sections 49.2.8 and 82.2.10.
*/
union cgxx_spux_br_tp_control {
u64 u;
struct cgxx_spux_br_tp_control_s {
u64 dp_sel : 1;
u64 tp_sel : 1;
u64 rx_tp_en : 1;
u64 tx_tp_en : 1;
u64 prbs31_tx : 1;
u64 prbs31_rx : 1;
u64 prbs9_tx : 1;
u64 scramble_tp : 2;
u64 pr_tp_data_type : 1;
u64 reserved_10_63 : 54;
} s;
/* struct cgxx_spux_br_tp_control_s cn; */
};
static inline u64 CGXX_SPUX_BR_TP_CONTROL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_BR_TP_CONTROL(u64 a)
{
return 0x10040 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_br_tp_err_cnt
*
* CGX SPU BASE-R Test-Pattern Error-Count Registers This register
* provides the BASE-R PCS test-pattern error counter.
*/
union cgxx_spux_br_tp_err_cnt {
u64 u;
struct cgxx_spux_br_tp_err_cnt_s {
u64 err_cnt : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_spux_br_tp_err_cnt_s cn; */
};
static inline u64 CGXX_SPUX_BR_TP_ERR_CNT(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_BR_TP_ERR_CNT(u64 a)
{
return 0x10048 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_br_tp_seed_a
*
* CGX SPU BASE-R Test-Pattern Seed A Registers Refer to the test pattern
* methodology described in 802.3 sections 49.2.8 and 82.2.10.
*/
union cgxx_spux_br_tp_seed_a {
u64 u;
struct cgxx_spux_br_tp_seed_a_s {
u64 tp_seed_a : 58;
u64 reserved_58_63 : 6;
} s;
/* struct cgxx_spux_br_tp_seed_a_s cn; */
};
static inline u64 CGXX_SPUX_BR_TP_SEED_A(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_BR_TP_SEED_A(u64 a)
{
return 0x10060 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_br_tp_seed_b
*
* CGX SPU BASE-R Test-Pattern Seed B Registers Refer to the test pattern
* methodology described in 802.3 sections 49.2.8 and 82.2.10.
*/
union cgxx_spux_br_tp_seed_b {
u64 u;
struct cgxx_spux_br_tp_seed_b_s {
u64 tp_seed_b : 58;
u64 reserved_58_63 : 6;
} s;
/* struct cgxx_spux_br_tp_seed_b_s cn; */
};
static inline u64 CGXX_SPUX_BR_TP_SEED_B(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_BR_TP_SEED_B(u64 a)
{
return 0x10068 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_bx_status
*
* CGX SPU BASE-X Status Registers
*/
union cgxx_spux_bx_status {
u64 u;
struct cgxx_spux_bx_status_s {
u64 lsync : 4;
u64 reserved_4_10 : 7;
u64 pattst : 1;
u64 alignd : 1;
u64 reserved_13_63 : 51;
} s;
/* struct cgxx_spux_bx_status_s cn; */
};
static inline u64 CGXX_SPUX_BX_STATUS(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_BX_STATUS(u64 a)
{
return 0x10028 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_control1
*
* CGX SPU Control 1 Registers
*/
union cgxx_spux_control1 {
u64 u;
struct cgxx_spux_control1_s {
u64 reserved_0_1 : 2;
u64 spd : 4;
u64 spdsel0 : 1;
u64 reserved_7_10 : 4;
u64 lo_pwr : 1;
u64 reserved_12 : 1;
u64 spdsel1 : 1;
u64 loopbck : 1;
u64 reset : 1;
u64 usxgmii_type : 3;
u64 usxgmii_rate : 3;
u64 disable_am : 1;
u64 reserved_23_63 : 41;
} s;
struct cgxx_spux_control1_cn96xxp1 {
u64 reserved_0_1 : 2;
u64 spd : 4;
u64 spdsel0 : 1;
u64 reserved_7_10 : 4;
u64 lo_pwr : 1;
u64 reserved_12 : 1;
u64 spdsel1 : 1;
u64 loopbck : 1;
u64 reset : 1;
u64 usxgmii_type : 3;
u64 usxgmii_rate : 3;
u64 reserved_22_63 : 42;
} cn96xxp1;
/* struct cgxx_spux_control1_s cn96xxp3; */
/* struct cgxx_spux_control1_cn96xxp1 cnf95xxp1; */
struct cgxx_spux_control1_cnf95xxp2 {
u64 reserved_0_1 : 2;
u64 spd : 4;
u64 spdsel0 : 1;
u64 reserved_7_10 : 4;
u64 lo_pwr : 1;
u64 reserved_12 : 1;
u64 spdsel1 : 1;
u64 loopbck : 1;
u64 reset : 1;
u64 usxgmii_type : 3;
u64 usxgmii_rate : 3;
u64 reserved_22 : 1;
u64 reserved_23_63 : 41;
} cnf95xxp2;
};
static inline u64 CGXX_SPUX_CONTROL1(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_CONTROL1(u64 a)
{
return 0x10000 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_control2
*
* CGX SPU Control 2 Registers
*/
union cgxx_spux_control2 {
u64 u;
struct cgxx_spux_control2_s {
u64 pcs_type : 4;
u64 reserved_4_63 : 60;
} s;
/* struct cgxx_spux_control2_s cn; */
};
static inline u64 CGXX_SPUX_CONTROL2(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_CONTROL2(u64 a)
{
return 0x10018 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_fec_abil
*
* CGX SPU Forward Error Correction Ability Registers
*/
union cgxx_spux_fec_abil {
u64 u;
struct cgxx_spux_fec_abil_s {
u64 fec_abil : 1;
u64 err_abil : 1;
u64 reserved_2_63 : 62;
} s;
/* struct cgxx_spux_fec_abil_s cn; */
};
static inline u64 CGXX_SPUX_FEC_ABIL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_FEC_ABIL(u64 a)
{
return 0x100d8 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_fec_control
*
* CGX SPU Forward Error Correction Control Registers
*/
union cgxx_spux_fec_control {
u64 u;
struct cgxx_spux_fec_control_s {
u64 fec_en : 2;
u64 err_en : 1;
u64 fec_byp_ind_en : 1;
u64 fec_byp_cor_en : 1;
u64 reserved_5_63 : 59;
} s;
/* struct cgxx_spux_fec_control_s cn; */
};
static inline u64 CGXX_SPUX_FEC_CONTROL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_FEC_CONTROL(u64 a)
{
return 0x100e0 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_fec_ln#_rsfec_err
*
* CGX SPU Reed-Solomon FEC Symbol Error Counter for FEC Lanes 0-3
* Registers This register is valid only when Reed-Solomon FEC is
* enabled. The symbol error counters are defined in 802.3 section
* 91.6.11 (for 100G and extended to 50G) and 802.3by-2016 section
* 108.6.9 (for 25G and extended to USXGMII). The counter is reset to all
* zeros when the register is read, and held at all ones in case of
* overflow. The reset operation takes precedence over the increment
* operation; if the register is read on the same clock cycle as an
* increment operation, the counter is reset to all zeros and the
* increment operation is lost. The counters are writable for test
* purposes, rather than read-only as specified in IEEE 802.3.
*/
union cgxx_spux_fec_lnx_rsfec_err {
u64 u;
struct cgxx_spux_fec_lnx_rsfec_err_s {
u64 symb_err_cnt : 32;
u64 reserved_32_63 : 32;
} s;
/* struct cgxx_spux_fec_lnx_rsfec_err_s cn; */
};
static inline u64 CGXX_SPUX_FEC_LNX_RSFEC_ERR(u64 a, u64 b)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_FEC_LNX_RSFEC_ERR(u64 a, u64 b)
{
return 0x10900 + 0x40000 * a + 8 * b;
}
/**
* Register (RSL) cgx#_spu#_int
*
* CGX SPU Interrupt Registers
*/
union cgxx_spux_int {
u64 u;
struct cgxx_spux_int_s {
u64 rx_link_up : 1;
u64 rx_link_down : 1;
u64 err_blk : 1;
u64 bitlckls : 1;
u64 synlos : 1;
u64 algnlos : 1;
u64 dbg_sync : 1;
u64 bip_err : 1;
u64 fec_corr : 1;
u64 fec_uncorr : 1;
u64 an_page_rx : 1;
u64 an_link_good : 1;
u64 an_complete : 1;
u64 training_done : 1;
u64 training_failure : 1;
u64 fec_align_status : 1;
u64 rsfec_corr : 1;
u64 rsfec_uncorr : 1;
u64 hi_ser : 1;
u64 usx_an_lnk_st : 1;
u64 usx_an_cpt : 1;
u64 reserved_21_63 : 43;
} s;
/* struct cgxx_spux_int_s cn; */
};
static inline u64 CGXX_SPUX_INT(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_INT(u64 a)
{
return 0x10220 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_int_ena_w1c
*
* CGX SPU Interrupt Enable Clear Registers This register clears
* interrupt enable bits.
*/
union cgxx_spux_int_ena_w1c {
u64 u;
struct cgxx_spux_int_ena_w1c_s {
u64 rx_link_up : 1;
u64 rx_link_down : 1;
u64 err_blk : 1;
u64 bitlckls : 1;
u64 synlos : 1;
u64 algnlos : 1;
u64 dbg_sync : 1;
u64 bip_err : 1;
u64 fec_corr : 1;
u64 fec_uncorr : 1;
u64 an_page_rx : 1;
u64 an_link_good : 1;
u64 an_complete : 1;
u64 training_done : 1;
u64 training_failure : 1;
u64 fec_align_status : 1;
u64 rsfec_corr : 1;
u64 rsfec_uncorr : 1;
u64 hi_ser : 1;
u64 usx_an_lnk_st : 1;
u64 usx_an_cpt : 1;
u64 reserved_21_63 : 43;
} s;
/* struct cgxx_spux_int_ena_w1c_s cn; */
};
static inline u64 CGXX_SPUX_INT_ENA_W1C(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_INT_ENA_W1C(u64 a)
{
return 0x10230 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_int_ena_w1s
*
* CGX SPU Interrupt Enable Set Registers This register sets interrupt
* enable bits.
*/
union cgxx_spux_int_ena_w1s {
u64 u;
struct cgxx_spux_int_ena_w1s_s {
u64 rx_link_up : 1;
u64 rx_link_down : 1;
u64 err_blk : 1;
u64 bitlckls : 1;
u64 synlos : 1;
u64 algnlos : 1;
u64 dbg_sync : 1;
u64 bip_err : 1;
u64 fec_corr : 1;
u64 fec_uncorr : 1;
u64 an_page_rx : 1;
u64 an_link_good : 1;
u64 an_complete : 1;
u64 training_done : 1;
u64 training_failure : 1;
u64 fec_align_status : 1;
u64 rsfec_corr : 1;
u64 rsfec_uncorr : 1;
u64 hi_ser : 1;
u64 usx_an_lnk_st : 1;
u64 usx_an_cpt : 1;
u64 reserved_21_63 : 43;
} s;
/* struct cgxx_spux_int_ena_w1s_s cn; */
};
static inline u64 CGXX_SPUX_INT_ENA_W1S(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_INT_ENA_W1S(u64 a)
{
return 0x10238 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_int_w1s
*
* CGX SPU Interrupt Set Registers This register sets interrupt bits.
*/
union cgxx_spux_int_w1s {
u64 u;
struct cgxx_spux_int_w1s_s {
u64 rx_link_up : 1;
u64 rx_link_down : 1;
u64 err_blk : 1;
u64 bitlckls : 1;
u64 synlos : 1;
u64 algnlos : 1;
u64 dbg_sync : 1;
u64 bip_err : 1;
u64 fec_corr : 1;
u64 fec_uncorr : 1;
u64 an_page_rx : 1;
u64 an_link_good : 1;
u64 an_complete : 1;
u64 training_done : 1;
u64 training_failure : 1;
u64 fec_align_status : 1;
u64 rsfec_corr : 1;
u64 rsfec_uncorr : 1;
u64 hi_ser : 1;
u64 usx_an_lnk_st : 1;
u64 usx_an_cpt : 1;
u64 reserved_21_63 : 43;
} s;
/* struct cgxx_spux_int_w1s_s cn; */
};
static inline u64 CGXX_SPUX_INT_W1S(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_INT_W1S(u64 a)
{
return 0x10228 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_ln#_br_bip_err_cnt
*
* CGX SPU 40,50,100GBASE-R BIP Error-Counter Registers This register
* implements the IEEE 802.3 BIP error-counter registers for PCS lanes
* 0-19 (3.200-3.203). It is valid only when the LPCS type is 40GBASE-R,
* 50GBASE-R, 100GBASE-R, (CGX()_CMR()_CONFIG[LMAC_TYPE]), and always
* returns 0x0 for all other LPCS types. The counters are indexed by the
* RX PCS lane number based on the alignment marker detected on each lane
* and captured in CGX()_SPU()_BR_LANE_MAP(). Each counter counts the BIP
* errors for its PCS lane, and is held at all ones in case of overflow.
* The counters are reset to all zeros when this register is read by
* software. The reset operation takes precedence over the increment
* operation; if the register is read on the same clock cycle as an
* increment operation, the counter is reset to all zeros and the
* increment operation is lost. The counters are writable for test
* purposes, rather than read-only as specified in IEEE 802.3.
*/
union cgxx_spux_lnx_br_bip_err_cnt {
u64 u;
struct cgxx_spux_lnx_br_bip_err_cnt_s {
u64 bip_err_cnt : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_spux_lnx_br_bip_err_cnt_s cn; */
};
static inline u64 CGXX_SPUX_LNX_BR_BIP_ERR_CNT(u64 a, u64 b)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_LNX_BR_BIP_ERR_CNT(u64 a, u64 b)
{
return 0x10500 + 0x40000 * a + 8 * b;
}
/**
* Register (RSL) cgx#_spu#_ln#_fec_corr_blks
*
* CGX SPU FEC Corrected-Blocks Counters 0-19 Registers This register is
* valid only when the LPCS type is BASE-R
* (CGX()_CMR()_CONFIG[LMAC_TYPE]) and applies to BASE-R FEC and Reed-
* Solomon FEC (RS-FEC). When BASE-R FEC is enabled, the FEC corrected-
* block counters are defined in IEEE 802.3 section 74.8.4.1. Each
* corrected-blocks counter increments by one for a corrected FEC block,
* i.e. an FEC block that has been received with invalid parity on the
* associated PCS lane and has been corrected by the FEC decoder. The
* counter is reset to all zeros when the register is read, and held at
* all ones in case of overflow. The reset operation takes precedence
* over the increment operation; if the register is read on the same
* clock cycle as an increment operation, the counter is reset to all
* zeros and the increment operation is lost. The counters are writable
* for test purposes, rather than read-only as specified in IEEE 802.3.
*/
union cgxx_spux_lnx_fec_corr_blks {
u64 u;
struct cgxx_spux_lnx_fec_corr_blks_s {
u64 ln_corr_blks : 32;
u64 reserved_32_63 : 32;
} s;
/* struct cgxx_spux_lnx_fec_corr_blks_s cn; */
};
static inline u64 CGXX_SPUX_LNX_FEC_CORR_BLKS(u64 a, u64 b)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_LNX_FEC_CORR_BLKS(u64 a, u64 b)
{
return 0x10700 + 0x40000 * a + 8 * b;
}
/**
* Register (RSL) cgx#_spu#_ln#_fec_uncorr_blks
*
* CGX SPU FEC Uncorrected-Blocks Counters 0-19 Registers This register
* is valid only when the LPCS type is BASE-R
* (CGX()_CMR()_CONFIG[LMAC_TYPE]) and applies to BASE-R FEC and Reed-
* Solomon FEC (RS-FEC). When BASE-R FEC is enabled, the FEC corrected-
* block counters are defined in IEEE 802.3 section 74.8.4.2. Each
* uncorrected-blocks counter increments by one for an uncorrected FEC
* block, i.e. an FEC block that has been received with invalid parity on
* the associated PCS lane and has not been corrected by the FEC decoder.
* The counter is reset to all zeros when the register is read, and held
* at all ones in case of overflow. The reset operation takes precedence
* over the increment operation; if the register is read on the same
* clock cycle as an increment operation, the counter is reset to all
* zeros and the increment operation is lost. The counters are writable
* for test purposes, rather than read-only as specified in IEEE 802.3.
*/
union cgxx_spux_lnx_fec_uncorr_blks {
u64 u;
struct cgxx_spux_lnx_fec_uncorr_blks_s {
u64 ln_uncorr_blks : 32;
u64 reserved_32_63 : 32;
} s;
/* struct cgxx_spux_lnx_fec_uncorr_blks_s cn; */
};
static inline u64 CGXX_SPUX_LNX_FEC_UNCORR_BLKS(u64 a, u64 b)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_LNX_FEC_UNCORR_BLKS(u64 a, u64 b)
{
return 0x10800 + 0x40000 * a + 8 * b;
}
/**
* Register (RSL) cgx#_spu#_lpcs_states
*
* CGX SPU BASE-X Transmit/Receive States Registers
*/
union cgxx_spux_lpcs_states {
u64 u;
struct cgxx_spux_lpcs_states_s {
u64 deskew_sm : 3;
u64 reserved_3 : 1;
u64 deskew_am_found : 20;
u64 bx_rx_sm : 2;
u64 reserved_26_27 : 2;
u64 br_rx_sm : 3;
u64 reserved_31_63 : 33;
} s;
/* struct cgxx_spux_lpcs_states_s cn; */
};
static inline u64 CGXX_SPUX_LPCS_STATES(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_LPCS_STATES(u64 a)
{
return 0x10208 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_misc_control
*
* CGX SPU Miscellaneous Control Registers "* RX logical PCS lane
* polarity vector \<3:0\> = [XOR_RXPLRT]\<3:0\> ^ {4{[RXPLRT]}}. * TX
* logical PCS lane polarity vector \<3:0\> = [XOR_TXPLRT]\<3:0\> ^
* {4{[TXPLRT]}}. In short, keep [RXPLRT] and [TXPLRT] cleared, and use
* [XOR_RXPLRT] and [XOR_TXPLRT] fields to define the polarity per
* logical PCS lane. Only bit 0 of vector is used for 10GBASE-R, and only
* bits 1:0 of vector are used for RXAUI."
*/
union cgxx_spux_misc_control {
u64 u;
struct cgxx_spux_misc_control_s {
u64 txplrt : 1;
u64 rxplrt : 1;
u64 xor_txplrt : 4;
u64 xor_rxplrt : 4;
u64 intlv_rdisp : 1;
u64 skip_after_term : 1;
u64 rx_packet_dis : 1;
u64 rx_edet_signal_ok : 1;
u64 reserved_14_63 : 50;
} s;
/* struct cgxx_spux_misc_control_s cn; */
};
static inline u64 CGXX_SPUX_MISC_CONTROL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_MISC_CONTROL(u64 a)
{
return 0x10218 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_rsfec_corr
*
* CGX SPU Reed-Solomon FEC Corrected Codeword Counter Register This
* register implements the IEEE 802.3 RS-FEC corrected codewords counter
* described in 802.3 section 91.6.8 (for 100G and extended to 50G) and
* 802.3by-2016 section 108.6.7 (for 25G and extended to USXGMII).
*/
union cgxx_spux_rsfec_corr {
u64 u;
struct cgxx_spux_rsfec_corr_s {
u64 cw_cnt : 32;
u64 reserved_32_63 : 32;
} s;
/* struct cgxx_spux_rsfec_corr_s cn; */
};
static inline u64 CGXX_SPUX_RSFEC_CORR(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_RSFEC_CORR(u64 a)
{
return 0x10088 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_rsfec_status
*
* CGX SPU Reed-Solomon FEC Status Registers This register implements the
* IEEE 802.3 RS-FEC status and lane mapping registers as described in
* 802.3 section 91.6 (for 100G and extended to 50G) and 802.3by-2016
* section 108-6 (for 25G and extended to USXGMII).
*/
union cgxx_spux_rsfec_status {
u64 u;
struct cgxx_spux_rsfec_status_s {
u64 fec_lane_mapping : 8;
u64 fec_align_status : 1;
u64 amps_lock : 4;
u64 hi_ser : 1;
u64 fec_byp_ind_abil : 1;
u64 fec_byp_cor_abil : 1;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_spux_rsfec_status_s cn; */
};
static inline u64 CGXX_SPUX_RSFEC_STATUS(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_RSFEC_STATUS(u64 a)
{
return 0x10080 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_rsfec_uncorr
*
* CGX SPU Reed-Solomon FEC Uncorrected Codeword Counter Register This
* register implements the IEEE 802.3 RS-FEC uncorrected codewords
* counter described in 802.3 section 91.6.9 (for 100G and extended to
* 50G) and 802.3by-2016 section 108.6.8 (for 25G and extended to
* USXGMII).
*/
union cgxx_spux_rsfec_uncorr {
u64 u;
struct cgxx_spux_rsfec_uncorr_s {
u64 cw_cnt : 32;
u64 reserved_32_63 : 32;
} s;
/* struct cgxx_spux_rsfec_uncorr_s cn; */
};
static inline u64 CGXX_SPUX_RSFEC_UNCORR(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_RSFEC_UNCORR(u64 a)
{
return 0x10090 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_rx_eee_wake
*
* INTERNAL: CGX SPU RX EEE Wake Error Counter Registers Reserved.
* Internal: A counter that is incremented each time that the LPI receive
* state diagram enters the RX_WTF state indicating that a wake time
* fault has been detected.
*/
union cgxx_spux_rx_eee_wake {
u64 u;
struct cgxx_spux_rx_eee_wake_s {
u64 wtf_error_counter : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_spux_rx_eee_wake_s cn; */
};
static inline u64 CGXX_SPUX_RX_EEE_WAKE(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_RX_EEE_WAKE(u64 a)
{
return 0x103e0 + 8 * a;
}
/**
* Register (RSL) cgx#_spu#_rx_lpi_timing
*
* INTERNAL: CGX SPU RX EEE LPI Timing Parameters Registers Reserved.
* Internal: This register specifies receiver LPI timing parameters Tqr,
* Twr and Twtf.
*/
union cgxx_spux_rx_lpi_timing {
u64 u;
struct cgxx_spux_rx_lpi_timing_s {
u64 twtf : 20;
u64 twr : 20;
u64 tqr : 20;
u64 reserved_60_61 : 2;
u64 rx_lpi_fw : 1;
u64 rx_lpi_en : 1;
} s;
/* struct cgxx_spux_rx_lpi_timing_s cn; */
};
static inline u64 CGXX_SPUX_RX_LPI_TIMING(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_RX_LPI_TIMING(u64 a)
{
return 0x103c0 + 8 * a;
}
/**
* Register (RSL) cgx#_spu#_rx_lpi_timing2
*
* INTERNAL: CGX SPU RX EEE LPI Timing2 Parameters Registers Reserved.
* Internal: This register specifies receiver LPI timing parameters
* hold_off_timer.
*/
union cgxx_spux_rx_lpi_timing2 {
u64 u;
struct cgxx_spux_rx_lpi_timing2_s {
u64 hold_off_timer : 20;
u64 reserved_20_63 : 44;
} s;
/* struct cgxx_spux_rx_lpi_timing2_s cn; */
};
static inline u64 CGXX_SPUX_RX_LPI_TIMING2(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_RX_LPI_TIMING2(u64 a)
{
return 0x10420 + 8 * a;
}
/**
* Register (RSL) cgx#_spu#_rx_mrk_cnt
*
* CGX SPU Receiver Marker Interval Count Control Registers
*/
union cgxx_spux_rx_mrk_cnt {
u64 u;
struct cgxx_spux_rx_mrk_cnt_s {
u64 mrk_cnt : 20;
u64 reserved_20_43 : 24;
u64 by_mrk_100g : 1;
u64 reserved_45_47 : 3;
u64 ram_mrk_cnt : 8;
u64 reserved_56_63 : 8;
} s;
/* struct cgxx_spux_rx_mrk_cnt_s cn; */
};
static inline u64 CGXX_SPUX_RX_MRK_CNT(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_RX_MRK_CNT(u64 a)
{
return 0x103a0 + 8 * a;
}
/**
* Register (RSL) cgx#_spu#_spd_abil
*
* CGX SPU PCS Speed Ability Registers
*/
union cgxx_spux_spd_abil {
u64 u;
struct cgxx_spux_spd_abil_s {
u64 tengb : 1;
u64 tenpasst : 1;
u64 usxgmii : 1;
u64 twentyfivegb : 1;
u64 fortygb : 1;
u64 fiftygb : 1;
u64 hundredgb : 1;
u64 reserved_7_63 : 57;
} s;
/* struct cgxx_spux_spd_abil_s cn; */
};
static inline u64 CGXX_SPUX_SPD_ABIL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_SPD_ABIL(u64 a)
{
return 0x10010 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_status1
*
* CGX SPU Status 1 Registers
*/
union cgxx_spux_status1 {
u64 u;
struct cgxx_spux_status1_s {
u64 reserved_0 : 1;
u64 lpable : 1;
u64 rcv_lnk : 1;
u64 reserved_3_6 : 4;
u64 flt : 1;
u64 rx_lpi_indication : 1;
u64 tx_lpi_indication : 1;
u64 rx_lpi_received : 1;
u64 tx_lpi_received : 1;
u64 reserved_12_63 : 52;
} s;
/* struct cgxx_spux_status1_s cn; */
};
static inline u64 CGXX_SPUX_STATUS1(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_STATUS1(u64 a)
{
return 0x10008 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_status2
*
* CGX SPU Status 2 Registers
*/
union cgxx_spux_status2 {
u64 u;
struct cgxx_spux_status2_s {
u64 tengb_r : 1;
u64 tengb_x : 1;
u64 tengb_w : 1;
u64 tengb_t : 1;
u64 usxgmii_r : 1;
u64 twentyfivegb_r : 1;
u64 fortygb_r : 1;
u64 fiftygb_r : 1;
u64 hundredgb_r : 1;
u64 reserved_9 : 1;
u64 rcvflt : 1;
u64 xmtflt : 1;
u64 reserved_12_13 : 2;
u64 dev : 2;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_spux_status2_s cn; */
};
static inline u64 CGXX_SPUX_STATUS2(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_STATUS2(u64 a)
{
return 0x10020 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_tx_lpi_timing
*
* INTERNAL: CGX SPU TX EEE LPI Timing Parameters Registers Reserved.
* Internal: Transmit LPI timing parameters Tsl, Tql and Tul
*/
union cgxx_spux_tx_lpi_timing {
u64 u;
struct cgxx_spux_tx_lpi_timing_s {
u64 tql : 19;
u64 reserved_19_31 : 13;
u64 tul : 12;
u64 reserved_44_47 : 4;
u64 tsl : 12;
u64 reserved_60 : 1;
u64 tx_lpi_ignore_twl : 1;
u64 tx_lpi_fw : 1;
u64 tx_lpi_en : 1;
} s;
/* struct cgxx_spux_tx_lpi_timing_s cn; */
};
static inline u64 CGXX_SPUX_TX_LPI_TIMING(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_TX_LPI_TIMING(u64 a)
{
return 0x10400 + 8 * a;
}
/**
* Register (RSL) cgx#_spu#_tx_lpi_timing2
*
* INTERNAL: CGX SPU TX EEE LPI Timing2 Parameters Registers Reserved.
* Internal: This register specifies transmit LPI timer parameters.
*/
union cgxx_spux_tx_lpi_timing2 {
u64 u;
struct cgxx_spux_tx_lpi_timing2_s {
u64 t1u : 8;
u64 reserved_8_11 : 4;
u64 twl : 12;
u64 reserved_24_31 : 8;
u64 twl2 : 12;
u64 reserved_44_47 : 4;
u64 tbyp : 12;
u64 reserved_60_63 : 4;
} s;
/* struct cgxx_spux_tx_lpi_timing2_s cn; */
};
static inline u64 CGXX_SPUX_TX_LPI_TIMING2(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_TX_LPI_TIMING2(u64 a)
{
return 0x10440 + 8 * a;
}
/**
* Register (RSL) cgx#_spu#_tx_mrk_cnt
*
* CGX SPU Transmitter Marker Interval Count Control Registers
*/
union cgxx_spux_tx_mrk_cnt {
u64 u;
struct cgxx_spux_tx_mrk_cnt_s {
u64 mrk_cnt : 20;
u64 reserved_20_43 : 24;
u64 by_mrk_100g : 1;
u64 reserved_45_47 : 3;
u64 ram_mrk_cnt : 8;
u64 reserved_56_63 : 8;
} s;
/* struct cgxx_spux_tx_mrk_cnt_s cn; */
};
static inline u64 CGXX_SPUX_TX_MRK_CNT(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_TX_MRK_CNT(u64 a)
{
return 0x10380 + 8 * a;
}
/**
* Register (RSL) cgx#_spu#_usx_an_adv
*
* CGX SPU USXGMII Autonegotiation Advertisement Registers Software
* programs this register with the contents of the AN-link code word base
* page to be transmitted during autonegotiation. Any write operations to
* this register prior to completion of autonegotiation should be
* followed by a renegotiation in order for the new values to take
* effect. Once autonegotiation has completed, software can examine this
* register along with CGX()_SPU()_USX_AN_ADV to determine the highest
* common denominator technology. The format for this register is from
* USXGMII Multiport specification section 1.1.2 Table 2.
*/
union cgxx_spux_usx_an_adv {
u64 u;
struct cgxx_spux_usx_an_adv_s {
u64 set : 1;
u64 reserved_1_6 : 6;
u64 eee_clk_stop_abil : 1;
u64 eee_abil : 1;
u64 spd : 3;
u64 dplx : 1;
u64 reserved_13_14 : 2;
u64 lnk_st : 1;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_spux_usx_an_adv_s cn; */
};
static inline u64 CGXX_SPUX_USX_AN_ADV(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_USX_AN_ADV(u64 a)
{
return 0x101d0 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_usx_an_control
*
* CGX SPU USXGMII Autonegotiation Control Register
*/
union cgxx_spux_usx_an_control {
u64 u;
struct cgxx_spux_usx_an_control_s {
u64 reserved_0_8 : 9;
u64 rst_an : 1;
u64 reserved_10_11 : 2;
u64 an_en : 1;
u64 reserved_13_14 : 2;
u64 an_reset : 1;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_spux_usx_an_control_s cn; */
};
static inline u64 CGXX_SPUX_USX_AN_CONTROL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_USX_AN_CONTROL(u64 a)
{
return 0x101c0 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_usx_an_expansion
*
* CGX SPU USXGMII Autonegotiation Expansion Register This register is
* only used to signal page reception.
*/
union cgxx_spux_usx_an_expansion {
u64 u;
struct cgxx_spux_usx_an_expansion_s {
u64 reserved_0 : 1;
u64 an_page_received : 1;
u64 next_page_able : 1;
u64 reserved_3_63 : 61;
} s;
/* struct cgxx_spux_usx_an_expansion_s cn; */
};
static inline u64 CGXX_SPUX_USX_AN_EXPANSION(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_USX_AN_EXPANSION(u64 a)
{
return 0x101e0 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_usx_an_flow_ctrl
*
* CGX SPU USXGMII Flow Control Registers This register is used by
* software to affect USXGMII AN hardware behavior.
*/
union cgxx_spux_usx_an_flow_ctrl {
u64 u;
struct cgxx_spux_usx_an_flow_ctrl_s {
u64 start_idle_detect : 1;
u64 reserved_1_63 : 63;
} s;
/* struct cgxx_spux_usx_an_flow_ctrl_s cn; */
};
static inline u64 CGXX_SPUX_USX_AN_FLOW_CTRL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_USX_AN_FLOW_CTRL(u64 a)
{
return 0x101e8 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_usx_an_link_timer
*
* CGX SPU USXGMII Link Timer Registers This is the link timer register.
*/
union cgxx_spux_usx_an_link_timer {
u64 u;
struct cgxx_spux_usx_an_link_timer_s {
u64 count : 16;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_spux_usx_an_link_timer_s cn; */
};
static inline u64 CGXX_SPUX_USX_AN_LINK_TIMER(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_USX_AN_LINK_TIMER(u64 a)
{
return 0x101f0 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_usx_an_lp_abil
*
* CGX SPU USXGMII Autonegotiation Link-Partner Advertisement Registers
* This register captures the contents of the latest AN link code word
* base page received from the link partner during autonegotiation. This
* is register 5 per IEEE 802.3, Clause 37.
* CGX()_SPU()_USX_AN_EXPANSION[AN_PAGE_RECEIVED] is set when this
* register is updated by hardware.
*/
union cgxx_spux_usx_an_lp_abil {
u64 u;
struct cgxx_spux_usx_an_lp_abil_s {
u64 set : 1;
u64 reserved_1_6 : 6;
u64 eee_clk_stop_abil : 1;
u64 eee_abil : 1;
u64 spd : 3;
u64 dplx : 1;
u64 reserved_13_14 : 2;
u64 lnk_st : 1;
u64 reserved_16_63 : 48;
} s;
/* struct cgxx_spux_usx_an_lp_abil_s cn; */
};
static inline u64 CGXX_SPUX_USX_AN_LP_ABIL(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_USX_AN_LP_ABIL(u64 a)
{
return 0x101d8 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu#_usx_an_status
*
* CGX SPU USXGMII Autonegotiation Status Register
*/
union cgxx_spux_usx_an_status {
u64 u;
struct cgxx_spux_usx_an_status_s {
u64 extnd : 1;
u64 reserved_1 : 1;
u64 lnk_st : 1;
u64 an_abil : 1;
u64 rmt_flt : 1;
u64 an_cpt : 1;
u64 reserved_6_63 : 58;
} s;
/* struct cgxx_spux_usx_an_status_s cn; */
};
static inline u64 CGXX_SPUX_USX_AN_STATUS(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPUX_USX_AN_STATUS(u64 a)
{
return 0x101c8 + 0x40000 * a;
}
/**
* Register (RSL) cgx#_spu_dbg_control
*
* CGX SPU Debug Control Registers
*/
union cgxx_spu_dbg_control {
u64 u;
struct cgxx_spu_dbg_control_s {
u64 marker_rxp : 15;
u64 reserved_15 : 1;
u64 scramble_dis : 1;
u64 reserved_17_18 : 2;
u64 br_pmd_train_soft_en : 1;
u64 reserved_20_27 : 8;
u64 timestamp_norm_dis : 1;
u64 an_nonce_match_dis : 1;
u64 br_ber_mon_dis : 1;
u64 rf_cw_mon_erly_restart_dis : 1;
u64 us_clk_period : 12;
u64 ms_clk_period : 12;
u64 reserved_56_63 : 8;
} s;
struct cgxx_spu_dbg_control_cn96xxp1 {
u64 marker_rxp : 15;
u64 reserved_15 : 1;
u64 scramble_dis : 1;
u64 reserved_17_18 : 2;
u64 br_pmd_train_soft_en : 1;
u64 reserved_20_27 : 8;
u64 timestamp_norm_dis : 1;
u64 an_nonce_match_dis : 1;
u64 br_ber_mon_dis : 1;
u64 reserved_31 : 1;
u64 us_clk_period : 12;
u64 ms_clk_period : 12;
u64 reserved_56_63 : 8;
} cn96xxp1;
/* struct cgxx_spu_dbg_control_s cn96xxp3; */
/* struct cgxx_spu_dbg_control_cn96xxp1 cnf95xxp1; */
/* struct cgxx_spu_dbg_control_s cnf95xxp2; */
};
static inline u64 CGXX_SPU_DBG_CONTROL(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPU_DBG_CONTROL(void)
{
return 0x10300;
}
/**
* Register (RSL) cgx#_spu_sds#_skew_status
*
* CGX SPU SerDes Lane Skew Status Registers This register provides
* SerDes lane skew status. One register per physical SerDes lane.
*/
union cgxx_spu_sdsx_skew_status {
u64 u;
struct cgxx_spu_sdsx_skew_status_s {
u64 skew_status : 32;
u64 reserved_32_63 : 32;
} s;
/* struct cgxx_spu_sdsx_skew_status_s cn; */
};
static inline u64 CGXX_SPU_SDSX_SKEW_STATUS(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPU_SDSX_SKEW_STATUS(u64 a)
{
return 0x10340 + 8 * a;
}
/**
* Register (RSL) cgx#_spu_sds#_states
*
* CGX SPU SerDes States Registers This register provides SerDes lane
* states. One register per physical SerDes lane.
*/
union cgxx_spu_sdsx_states {
u64 u;
struct cgxx_spu_sdsx_states_s {
u64 bx_sync_sm : 4;
u64 br_sh_cnt : 11;
u64 br_block_lock : 1;
u64 br_sh_invld_cnt : 7;
u64 reserved_23 : 1;
u64 fec_sync_cnt : 4;
u64 fec_block_sync : 1;
u64 reserved_29 : 1;
u64 an_rx_sm : 2;
u64 an_arb_sm : 3;
u64 reserved_35 : 1;
u64 train_lock_bad_markers : 3;
u64 train_lock_found_1st_marker : 1;
u64 train_frame_lock : 1;
u64 train_code_viol : 1;
u64 train_sm : 3;
u64 reserved_45_47 : 3;
u64 am_lock_sm : 2;
u64 am_lock_invld_cnt : 2;
u64 reserved_52_63 : 12;
} s;
/* struct cgxx_spu_sdsx_states_s cn; */
};
static inline u64 CGXX_SPU_SDSX_STATES(u64 a)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPU_SDSX_STATES(u64 a)
{
return 0x10360 + 8 * a;
}
/**
* Register (RSL) cgx#_spu_usxgmii_control
*
* CGX SPU Common USXGMII Control Register This register is the common
* control register that enables USXGMII Mode. The fields in this
* register are preserved across any LMAC soft-resets. For an LMAC in
* soft- reset state in USXGMII mode, the CGX will transmit Remote Fault
* BASE-R blocks.
*/
union cgxx_spu_usxgmii_control {
u64 u;
struct cgxx_spu_usxgmii_control_s {
u64 enable : 1;
u64 usxgmii_type : 3;
u64 sds_id : 2;
u64 reserved_6_63 : 58;
} s;
/* struct cgxx_spu_usxgmii_control_s cn; */
};
static inline u64 CGXX_SPU_USXGMII_CONTROL(void)
__attribute__ ((pure, always_inline));
static inline u64 CGXX_SPU_USXGMII_CONTROL(void)
{
return 0x10920;
}
#endif /* __CSRS_CGX_H__ */