blob: a855c9987f803e452b1c3469c2eeeb8e703c5a02 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2009
* Magnus Lilja <lilja.magnus@gmail.com>
*
* (C) Copyright 2008
* Maxim Artamonov, <scn1874 at yandex.ru>
*
* (C) Copyright 2006-2008
* Stefan Roese, DENX Software Engineering, sr at denx.de.
*/
#include <common.h>
#include <hang.h>
#include <nand.h>
#include <system-constants.h>
#include <linux/mtd/rawnand.h>
#include <asm/arch/imx-regs.h>
#include <asm/io.h>
#include "mxc_nand.h"
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
static struct mxc_nand_regs *const nfc = (void *)NFC_BASE_ADDR;
#elif defined(MXC_NFC_V3_2)
static struct mxc_nand_regs *const nfc = (void *)NFC_BASE_ADDR_AXI;
static struct mxc_nand_ip_regs *const nfc_ip = (void *)NFC_BASE_ADDR;
#endif
static void nfc_wait_ready(void)
{
uint32_t tmp;
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
while (!(readnfc(&nfc->config2) & NFC_V1_V2_CONFIG2_INT))
;
/* Reset interrupt flag */
tmp = readnfc(&nfc->config2);
tmp &= ~NFC_V1_V2_CONFIG2_INT;
writenfc(tmp, &nfc->config2);
#elif defined(MXC_NFC_V3_2)
while (!(readnfc(&nfc_ip->ipc) & NFC_V3_IPC_INT))
;
/* Reset interrupt flag */
tmp = readnfc(&nfc_ip->ipc);
tmp &= ~NFC_V3_IPC_INT;
writenfc(tmp, &nfc_ip->ipc);
#endif
}
static void nfc_nand_init(void)
{
#if defined(MXC_NFC_V3_2)
int ecc_per_page = CONFIG_SYS_NAND_PAGE_SIZE / 512;
int tmp;
tmp = (readnfc(&nfc_ip->config2) & ~(NFC_V3_CONFIG2_SPAS_MASK |
NFC_V3_CONFIG2_EDC_MASK | NFC_V3_CONFIG2_PS_MASK)) |
NFC_V3_CONFIG2_SPAS(CONFIG_SYS_NAND_OOBSIZE / 2) |
NFC_V3_CONFIG2_INT_MSK | NFC_V3_CONFIG2_ECC_EN |
NFC_V3_CONFIG2_ONE_CYCLE;
if (CONFIG_SYS_NAND_PAGE_SIZE == 4096)
tmp |= NFC_V3_CONFIG2_PS_4096;
else if (CONFIG_SYS_NAND_PAGE_SIZE == 2048)
tmp |= NFC_V3_CONFIG2_PS_2048;
else if (CONFIG_SYS_NAND_PAGE_SIZE == 512)
tmp |= NFC_V3_CONFIG2_PS_512;
/*
* if spare size is larger that 16 bytes per 512 byte hunk
* then use 8 symbol correction instead of 4
*/
if (CONFIG_SYS_NAND_OOBSIZE / ecc_per_page > 16)
tmp |= NFC_V3_CONFIG2_ECC_MODE_8;
else
tmp &= ~NFC_V3_CONFIG2_ECC_MODE_8;
writenfc(tmp, &nfc_ip->config2);
tmp = NFC_V3_CONFIG3_NUM_OF_DEVS(0) |
NFC_V3_CONFIG3_NO_SDMA |
NFC_V3_CONFIG3_RBB_MODE |
NFC_V3_CONFIG3_SBB(6) | /* Reset default */
NFC_V3_CONFIG3_ADD_OP(0);
#ifndef CONFIG_SYS_NAND_BUSWIDTH_16
tmp |= NFC_V3_CONFIG3_FW8;
#endif
writenfc(tmp, &nfc_ip->config3);
writenfc(0, &nfc_ip->delay_line);
#elif defined(MXC_NFC_V2_1)
int ecc_per_page = CONFIG_SYS_NAND_PAGE_SIZE / 512;
int config1;
writenfc(CONFIG_SYS_NAND_OOBSIZE / 2, &nfc->spare_area_size);
/* unlocking RAM Buff */
writenfc(0x2, &nfc->config);
/* hardware ECC checking and correct */
config1 = readnfc(&nfc->config1) | NFC_V1_V2_CONFIG1_ECC_EN |
NFC_V1_V2_CONFIG1_INT_MSK | NFC_V2_CONFIG1_ONE_CYCLE |
NFC_V2_CONFIG1_FP_INT;
/*
* if spare size is larger that 16 bytes per 512 byte hunk
* then use 8 symbol correction instead of 4
*/
if (CONFIG_SYS_NAND_OOBSIZE / ecc_per_page > 16)
config1 &= ~NFC_V2_CONFIG1_ECC_MODE_4;
else
config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
writenfc(config1, &nfc->config1);
#elif defined(MXC_NFC_V1)
/* unlocking RAM Buff */
writenfc(0x2, &nfc->config);
/* hardware ECC checking and correct */
writenfc(NFC_V1_V2_CONFIG1_ECC_EN | NFC_V1_V2_CONFIG1_INT_MSK,
&nfc->config1);
#endif
}
static void nfc_nand_command(unsigned short command)
{
writenfc(command, &nfc->flash_cmd);
writenfc(NFC_CMD, &nfc->operation);
nfc_wait_ready();
}
static void nfc_nand_address(unsigned short address)
{
writenfc(address, &nfc->flash_addr);
writenfc(NFC_ADDR, &nfc->operation);
nfc_wait_ready();
}
static void nfc_nand_page_address(unsigned int page_address)
{
unsigned int page_count;
nfc_nand_address(0x00);
/* code only for large page flash */
if (CONFIG_SYS_NAND_PAGE_SIZE > 512)
nfc_nand_address(0x00);
page_count = CONFIG_SYS_NAND_SIZE / CONFIG_SYS_NAND_PAGE_SIZE;
if (page_address <= page_count) {
page_count--; /* transform 0x01000000 to 0x00ffffff */
do {
nfc_nand_address(page_address & 0xff);
page_address = page_address >> 8;
page_count = page_count >> 8;
} while (page_count);
}
nfc_nand_address(0x00);
}
static void nfc_nand_data_output(void)
{
#ifdef NAND_MXC_2K_MULTI_CYCLE
int i;
#endif
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
writenfc(0, &nfc->buf_addr);
#elif defined(MXC_NFC_V3_2)
int config1 = readnfc(&nfc->config1);
config1 &= ~NFC_V3_CONFIG1_RBA_MASK;
writenfc(config1, &nfc->config1);
#endif
writenfc(NFC_OUTPUT, &nfc->operation);
nfc_wait_ready();
#ifdef NAND_MXC_2K_MULTI_CYCLE
/*
* This NAND controller requires multiple input commands
* for pages larger than 512 bytes.
*/
for (i = 1; i < CONFIG_SYS_NAND_PAGE_SIZE / 512; i++) {
writenfc(i, &nfc->buf_addr);
writenfc(NFC_OUTPUT, &nfc->operation);
nfc_wait_ready();
}
#endif
}
static int nfc_nand_check_ecc(void)
{
#if defined(MXC_NFC_V1)
u16 ecc_status = readw(&nfc->ecc_status_result);
return (ecc_status & 0x3) == 2 || (ecc_status >> 2) == 2;
#elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
u32 ecc_status = readl(&nfc->ecc_status_result);
int ecc_per_page = CONFIG_SYS_NAND_PAGE_SIZE / 512;
int err_limit = CONFIG_SYS_NAND_OOBSIZE / ecc_per_page > 16 ? 8 : 4;
int subpages = CONFIG_SYS_NAND_PAGE_SIZE / 512;
do {
if ((ecc_status & 0xf) > err_limit)
return 1;
ecc_status >>= 4;
} while (--subpages);
return 0;
#endif
}
static void nfc_nand_read_page(unsigned int page_address)
{
/* read in first 0 buffer */
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
writenfc(0, &nfc->buf_addr);
#elif defined(MXC_NFC_V3_2)
int config1 = readnfc(&nfc->config1);
config1 &= ~NFC_V3_CONFIG1_RBA_MASK;
writenfc(config1, &nfc->config1);
#endif
nfc_nand_command(NAND_CMD_READ0);
nfc_nand_page_address(page_address);
if (CONFIG_SYS_NAND_PAGE_SIZE > 512)
nfc_nand_command(NAND_CMD_READSTART);
nfc_nand_data_output(); /* fill the main buffer 0 */
}
static int nfc_read_page(unsigned int page_address, unsigned char *buf)
{
int i;
u32 *src;
u32 *dst;
nfc_nand_read_page(page_address);
if (nfc_nand_check_ecc())
return -EBADMSG;
src = (u32 *)&nfc->main_area[0][0];
dst = (u32 *)buf;
/* main copy loop from NAND-buffer to SDRAM memory */
for (i = 0; i < CONFIG_SYS_NAND_PAGE_SIZE / 4; i++) {
writel(readl(src), dst);
src++;
dst++;
}
return 0;
}
static int is_badblock(int pagenumber)
{
int page = pagenumber;
u32 badblock;
u32 *src;
/* Check the first two pages for bad block markers */
for (page = pagenumber; page < pagenumber + 2; page++) {
nfc_nand_read_page(page);
src = (u32 *)&nfc->spare_area[0][0];
/*
* IMPORTANT NOTE: The nand flash controller uses a non-
* standard layout for large page devices. This can
* affect the position of the bad block marker.
*/
/* Get the bad block marker */
badblock = readl(&src[CONFIG_SYS_NAND_BAD_BLOCK_POS / 4]);
badblock >>= 8 * (CONFIG_SYS_NAND_BAD_BLOCK_POS % 4);
badblock &= 0xff;
/* bad block marker verify */
if (badblock != 0xff)
return 1; /* potential bad block */
}
return 0;
}
int nand_spl_load_image(uint32_t from, unsigned int size, void *buf)
{
int i;
unsigned int page;
unsigned int maxpages = CONFIG_SYS_NAND_SIZE /
CONFIG_SYS_NAND_PAGE_SIZE;
nfc_nand_init();
/* Convert to page number */
page = from / CONFIG_SYS_NAND_PAGE_SIZE;
i = 0;
size = roundup(size, CONFIG_SYS_NAND_PAGE_SIZE);
while (i < size / CONFIG_SYS_NAND_PAGE_SIZE) {
if (nfc_read_page(page, buf) < 0)
return -1;
page++;
i++;
buf = buf + CONFIG_SYS_NAND_PAGE_SIZE;
/*
* Check if we have crossed a block boundary, and if so
* check for bad block.
*/
if (!(page % SYS_NAND_BLOCK_PAGES)) {
/*
* Yes, new block. See if this block is good. If not,
* loop until we find a good block.
*/
while (is_badblock(page)) {
page = page + SYS_NAND_BLOCK_PAGES;
/* Check i we've reached the end of flash. */
if (page >= maxpages)
return -1;
}
}
}
return 0;
}
#ifndef CONFIG_SPL_FRAMEWORK
/*
* The main entry for NAND booting. It's necessary that SDRAM is already
* configured and available since this code loads the main U-Boot image
* from NAND into SDRAM and starts it from there.
*/
__used void nand_boot(void)
{
__attribute__((noreturn)) void (*uboot)(void);
/*
* CONFIG_SYS_NAND_U_BOOT_OFFS and CFG_SYS_NAND_U_BOOT_SIZE must
* be aligned to full pages
*/
if (!nand_spl_load_image(CONFIG_SYS_NAND_U_BOOT_OFFS,
CFG_SYS_NAND_U_BOOT_SIZE,
(uchar *)CFG_SYS_NAND_U_BOOT_DST)) {
/* Copy from NAND successful, start U-Boot */
uboot = (void *)CFG_SYS_NAND_U_BOOT_START;
uboot();
} else {
/* Unrecoverable error when copying from NAND */
hang();
}
}
#endif
void nand_init(void) {}
void nand_deselect(void) {}
unsigned int nand_page_size(void)
{
return CONFIG_SYS_NAND_PAGE_SIZE;
}