blob: 172e260a55d926483587e772800f11dea8ac83a9 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+ OR MIT
/*
* Copyright 2021 NXP
*/
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/ddr.h>
#include <asm/arch/imx-regs.h>
#define DENALI_CTL_00 (DDR_CTL_BASE_ADDR + 4 * 0)
#define CTL_START 0x1
#define DENALI_CTL_03 (DDR_CTL_BASE_ADDR + 4 * 3)
#define DENALI_CTL_197 (DDR_CTL_BASE_ADDR + 4 * 197)
#define DENALI_CTL_250 (DDR_CTL_BASE_ADDR + 4 * 250)
#define DENALI_CTL_251 (DDR_CTL_BASE_ADDR + 4 * 251)
#define DENALI_CTL_266 (DDR_CTL_BASE_ADDR + 4 * 266)
#define DFI_INIT_COMPLETE 0x2
#define DENALI_CTL_614 (DDR_CTL_BASE_ADDR + 4 * 614)
#define DENALI_CTL_615 (DDR_CTL_BASE_ADDR + 4 * 615)
#define DENALI_PI_00 (DDR_PI_BASE_ADDR + 4 * 0)
#define PI_START 0x1
#define DENALI_PI_04 (DDR_PI_BASE_ADDR + 4 * 4)
#define DENALI_PI_11 (DDR_PI_BASE_ADDR + 4 * 11)
#define DENALI_PI_12 (DDR_PI_BASE_ADDR + 4 * 12)
#define DENALI_CTL_23 (DDR_CTL_BASE_ADDR + 4 * 23)
#define DENALI_CTL_25 (DDR_CTL_BASE_ADDR + 4 * 25)
#define DENALI_PHY_1624 (DDR_PHY_BASE_ADDR + 4 * 1624)
#define DENALI_PHY_1625 (DDR_PHY_BASE_ADDR + 4 * 1625)
#define DENALI_PHY_1537 (DDR_PHY_BASE_ADDR + 4 * 1537)
#define PHY_FREQ_SEL_MULTICAST_EN(X) ((X) << 8)
#define PHY_FREQ_SEL_INDEX(X) ((X) << 16)
#define DENALI_PHY_1547 (DDR_PHY_BASE_ADDR + 4 * 1547)
#define DENALI_PHY_1555 (DDR_PHY_BASE_ADDR + 4 * 1555)
#define DENALI_PHY_1564 (DDR_PHY_BASE_ADDR + 4 * 1564)
#define DENALI_PHY_1565 (DDR_PHY_BASE_ADDR + 4 * 1565)
static void ddr_enable_pll_bypass(void)
{
u32 reg_val;
/* PI_INIT_LVL_EN=0x0 (DENALI_PI_04) */
reg_val = readl(DENALI_PI_04) & ~0x1;
writel(reg_val, DENALI_PI_04);
/* PI_FREQ_MAP=0x1 (DENALI_PI_12) */
writel(0x1, DENALI_PI_12);
/* PI_INIT_WORK_FREQ=0x0 (DENALI_PI_11) */
reg_val = readl(DENALI_PI_11) & ~(0x1f << 8);
writel(reg_val, DENALI_PI_11);
/* DFIBUS_FREQ_INIT=0x0 (DENALI_CTL_23) */
reg_val = readl(DENALI_CTL_23) & ~(0x3 << 24);
writel(reg_val, DENALI_CTL_23);
/* PHY_LP4_BOOT_DISABLE=0x0 (DENALI_PHY_1547) */
reg_val = readl(DENALI_PHY_1547) & ~(0x1 << 8);
writel(reg_val, DENALI_PHY_1547);
/* PHY_PLL_BYPASS=0x1 (DENALI_PHY_1624) */
reg_val = readl(DENALI_PHY_1624) | 0x1;
writel(reg_val, DENALI_PHY_1624);
/* PHY_LP4_BOOT_PLL_BYPASS to 0x1 (DENALI_PHY_1555) */
reg_val = readl(DENALI_PHY_1555) | 0x1;
writel(reg_val, DENALI_PHY_1555);
/* FREQ_CHANGE_TYPE_F0 = 0x0/FREQ_CHANGE_TYPE_F1 = 0x1/FREQ_CHANGE_TYPE_F2 = 0x2 */
reg_val = 0x020100;
writel(reg_val, DENALI_CTL_25);
}
int ddr_calibration(unsigned int fsp_table[3])
{
u32 reg_val;
u32 int_status_init, phy_freq_req, phy_freq_type;
u32 lock_0, lock_1, lock_2;
u32 freq_chg_pt, freq_chg_cnt;
u32 is_lpddr4 = 0;
if (IS_ENABLED(CONFIG_IMX8ULP_DRAM_PHY_PLL_BYPASS)) {
ddr_enable_pll_bypass();
freq_chg_cnt = 0;
freq_chg_pt = 0;
} else {
reg_val = (readl(DENALI_CTL_00)>>8)&0xf;
if(reg_val == 0x7) {
/* LPDDR3 type */
set_ddr_clk(fsp_table[1] >> 1);
freq_chg_cnt = 0;
freq_chg_pt = 0;
} else if(reg_val == 0xb) {
/* LPDDR4/4x type */
is_lpddr4 = 1;
reg_val = readl(DENALI_CTL_250);
if (((reg_val >> 16) & 0x3) == 1)
freq_chg_cnt = 2;
else
freq_chg_cnt = 3;
reg_val = readl(DENALI_PI_12);
if(reg_val == 0x3)
freq_chg_pt = 1;
else if(reg_val == 0x7)
freq_chg_pt = 2;
else {
printf("frequency map(0x%x) is wrong, please check!\r\n", reg_val);
return -1;
}
} else {
printf("Incorrect DDR type configured!\r\n");
return -1;
}
}
/* Assert PI_START parameter and then assert START parameter in Controller. */
reg_val = readl(DENALI_PI_00) | PI_START;
writel(reg_val, DENALI_PI_00);
reg_val = readl(DENALI_CTL_00) | CTL_START;
writel(reg_val, DENALI_CTL_00);
/* Poll for init_done_bit in Controller interrupt status register (INT_STATUS_INIT) */
do {
if (!freq_chg_cnt) {
int_status_init = (readl(DENALI_CTL_266) >> 8) & 0xff;
/* DDR subsystem is ready for traffic. */
if (int_status_init & DFI_INIT_COMPLETE) {
debug("complete\n");
break;
}
}
/*
* During leveling, PHY will request for freq change and SoC clock logic
* should provide requested frequency
* Polling SIM LPDDR_CTRL2 Bit phy_freq_chg_req until be 1'b1
*/
reg_val = readl(AVD_SIM_LPDDR_CTRL2);
/* DFS interrupt is set */
phy_freq_req = ((reg_val >> 7) & 0x1) && ((reg_val >> 15) & 0x1);
if (phy_freq_req) {
phy_freq_type = reg_val & 0x1F;
if (phy_freq_type == 0x00) {
debug("Poll for freq_chg_req on SIM register and change to F0 frequency.\n");
set_ddr_clk(fsp_table[phy_freq_type] >> 1);
/* Write 1'b1 at LPDDR_CTRL2 bit phy_freq_cfg_ack */
reg_val = readl(AVD_SIM_LPDDR_CTRL2);
writel(reg_val | (0x1 << 6), AVD_SIM_LPDDR_CTRL2);
} else if (phy_freq_type == 0x01) {
debug("Poll for freq_chg_req on SIM register and change to F1 frequency.\n");
set_ddr_clk(fsp_table[phy_freq_type] >> 1);
/* Write 1'b1 at LPDDR_CTRL2 bit phy_freq_cfg_ack */
reg_val = readl(AVD_SIM_LPDDR_CTRL2);
writel(reg_val | (0x1 << 6), AVD_SIM_LPDDR_CTRL2);
if (freq_chg_pt == 1)
freq_chg_cnt--;
} else if (phy_freq_type == 0x02) {
debug("Poll for freq_chg_req on SIM register and change to F2 frequency.\n");
set_ddr_clk(fsp_table[phy_freq_type] >> 1);
/* Write 1'b1 at LPDDR_CTRL2 bit phy_freq_cfg_ack */
reg_val = readl(AVD_SIM_LPDDR_CTRL2);
writel(reg_val | (0x1 << 6), AVD_SIM_LPDDR_CTRL2);
if (freq_chg_pt == 2)
freq_chg_cnt--;
}
/* Hardware clear the ack on falling edge of LPDDR_CTRL2:phy_freq_chg_reg */
/* Ensure the ack is clear before starting to poll request again */
while ((readl(AVD_SIM_LPDDR_CTRL2) & BIT(6)))
;
}
} while (1);
/* Check PLL lock status */
lock_0 = readl(DENALI_PHY_1564) & 0xffff;
lock_1 = (readl(DENALI_PHY_1564) >> 16) & 0xffff;
lock_2 = readl(DENALI_PHY_1565) & 0xffff;
if ((lock_0 & 0x3) != 0x3 || (lock_1 & 0x3) != 0x3 || (lock_2 & 0x3) != 0x3) {
debug("De-Skew PLL failed to lock\n");
debug("lock_0=0x%x, lock_1=0x%x, lock_2=0x%x\n", lock_0, lock_1, lock_2);
return -1;
}
debug("De-Skew PLL is locked and ready\n");
/* Change LPDDR4 FREQ1 to bypass mode if it is lower than 200MHz */
if(is_lpddr4 && fsp_table[1] < 400) {
/* Set FREQ1 to bypass mode */
reg_val = PHY_FREQ_SEL_MULTICAST_EN(0) | PHY_FREQ_SEL_INDEX(0);
writel(reg_val, DENALI_PHY_1537);
/* PHY_PLL_BYPASS=0x1 (DENALI_PHY_1624) */
reg_val =readl(DENALI_PHY_1624) | 0x1;
writel(reg_val, DENALI_PHY_1624);
/* DENALI_PHY_1625: bypass mode in PHY PLL */
reg_val =readl(DENALI_PHY_1625) & ~0xf;
writel(reg_val, DENALI_PHY_1625);
}
return 0;
}
static void save_dram_config(struct dram_timing_info2 *timing_info, unsigned long saved_timing_base)
{
int i = 0;
struct dram_timing_info2 *saved_timing = (struct dram_timing_info2 *)saved_timing_base;
struct dram_cfg_param *cfg;
saved_timing->ctl_cfg_num = timing_info->ctl_cfg_num;
saved_timing->phy_f1_cfg_num = timing_info->phy_f1_cfg_num;
saved_timing->phy_f2_cfg_num = timing_info->phy_f2_cfg_num;
/* save the fsp table */
for (i = 0; i < 3; i++)
saved_timing->fsp_table[i] = timing_info->fsp_table[i];
cfg = (struct dram_cfg_param *)(saved_timing_base +
sizeof(*timing_info));
/* save ctl config */
saved_timing->ctl_cfg = cfg;
for (i = 0; i < timing_info->ctl_cfg_num; i++) {
cfg->reg = timing_info->ctl_cfg[i].reg;
cfg->val = timing_info->ctl_cfg[i].val;
cfg++;
}
/* save phy f1 config */
saved_timing->phy_f1_cfg = cfg;
for (i = 0; i < timing_info->phy_f1_cfg_num; i++) {
cfg->reg = timing_info->phy_f1_cfg[i].reg;
cfg->val = timing_info->phy_f1_cfg[i].val;
cfg++;
}
/* save phy f2 config */
saved_timing->phy_f2_cfg = cfg;
for (i = 0; i < timing_info->phy_f2_cfg_num; i++) {
cfg->reg = timing_info->phy_f2_cfg[i].reg;
cfg->val = timing_info->phy_f2_cfg[i].val;
cfg++;
}
}
int ddr_init(struct dram_timing_info2 *dram_timing)
{
int i;
if (IS_ENABLED(CONFIG_IMX8ULP_DRAM_PHY_PLL_BYPASS)) {
/* Use PLL bypass for boot freq */
/* Since PLL can't generate the double freq, Need ddr clock to generate it. */
set_ddr_clk(dram_timing->fsp_table[0]); /* Set to boot freq */
setbits_le32(AVD_SIM_BASE_ADDR, 0x1); /* SIM_DDR_CTRL_DIV2_EN */
} else {
set_ddr_clk(dram_timing->fsp_table[0] >> 1); /* Set to boot freq */
clrbits_le32(AVD_SIM_BASE_ADDR, 0x1); /* SIM_DDR_CTRL_DIV2_EN */
}
/* save the dram config into sram for low power mode */
save_dram_config(dram_timing, CONFIG_SAVED_DRAM_TIMING_BASE);
/* Initialize CTL registers */
for (i = 0; i < dram_timing->ctl_cfg_num; i++)
writel(dram_timing->ctl_cfg[i].val, (ulong)dram_timing->ctl_cfg[i].reg);
/* Initialize PI registers */
for (i = 0; i < dram_timing->pi_cfg_num; i++)
writel(dram_timing->pi_cfg[i].val, (ulong)dram_timing->pi_cfg[i].reg);
/* Write PHY regiters for all 3 frequency points (48Mhz/384Mhz/528Mhz): f1_index=0 */
writel(PHY_FREQ_SEL_MULTICAST_EN(1) | PHY_FREQ_SEL_INDEX(0), DENALI_PHY_1537);
for (i = 0; i < dram_timing->phy_f1_cfg_num; i++)
writel(dram_timing->phy_f1_cfg[i].val, (ulong)dram_timing->phy_f1_cfg[i].reg);
/* Write PHY regiters for freqency point 2 (528Mhz): f2_index=1 */
writel(PHY_FREQ_SEL_MULTICAST_EN(0) | PHY_FREQ_SEL_INDEX(1), DENALI_PHY_1537);
for (i = 0; i < dram_timing->phy_f2_cfg_num; i++)
writel(dram_timing->phy_f2_cfg[i].val, (ulong)dram_timing->phy_f2_cfg[i].reg);
/* Re-enable MULTICAST mode */
writel(PHY_FREQ_SEL_MULTICAST_EN(1) | PHY_FREQ_SEL_INDEX(0), DENALI_PHY_1537);
return ddr_calibration(dram_timing->fsp_table);
}